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INFINITESIMAL HOLONOMY ISOMETRIES

AND

THE CONTINUITY OF HOLONOMY DISPLACEMENTS

Taechang Byun*

Abstract. Given a noncompact semisimple Lie group G and its
maximal compact Lie subgroup K such that the right multiplication
of each element in K gives an isometry on G, consider a principal
bundle G → G/K, which is a Riemannian submersion. We study
the infinitesimal holonomy isometries. Given a closed curve at eK in
the base space G/K, consider the holonomy displacement of e by the
horizontal lifting of the curve. We prove that the correspondence is
continuous.

1. introduction

When the structure group of a given principal bundle is an isometry
group of its total space, the bundle can be viewed as a Riemannian sub-
mersion. Holonomy displacements play a key role for us to understand
the structure of the bundle.

If the dimension of a fiber is zero, then the horizontal lifts of two
homotopic simple closed curves give the same holonomy displacement.
But, if the dimension is greater than or equal to one, it may not. Thus,
we can ask if the convergency of curves in a base space preserve that of
holonomy displacements, i.e., the continuity of holonomy displacements.

Given a noncompact semisimple Lie group G and its maximal com-
pact Lie subgroup K, assume that the right multiplication of each ele-
ment in K gives an isometry on G. For example, let G = SO0(1, n) and
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K = SO(n). Then we can consider a Riemannian submersion

K −→ G −→ G/K.

We will view holonomy isometries infinitesimally and show the continuity
of holonomy displacements in this bundle.

This paper is a partial result of the thesis[1].

2. Infinitesimal holonomy isometries

We use the notation in [6] for general mathematical concepts.
Recall the definition of a Riemannian submersion and basic facts:

Definition 2.1 (Definition 1.2.1; [3]). Let π : M → B be a submer-
sion, where M is a Riemannian manifold. The horizontal distribution
of π is the orthogonal complement H = V⊥ of V. If in addition B is
a Riemannian manifold, then the submersion is said to be Riemannian
if it is isometric when restritcted to the horizontal distribution; i.e. if
|π∗x| = |x| for all x ∈ H.

Theorem 2.2 (Theorem 1.3.1; [3]). Let π : M → B denote a Rie-
mannian submersion. If c : I →M is a geodesic with ċ(t0) ∈ H for some
t0 ∈ I, then ċ(t) ∈ H for all t ∈ I, and π ◦ c is a geodesic in B. Such a c
will be called a horizontal geodesic of M. Furthermore, if M is complete,
then

1. B is complete;
2. π is a submetry; i.e., π maps the closure of the metric ball Br(p) =
{q ∈ M |d(p, q) < r} of radius r around p onto the closure of
Br(π(p)) for any p ∈M ;

3. the fibers of π are equidistant; i.e., for any two fibers F0 and F1,
and p ∈ F0, the distance between p and F1 equals that between F0

and F1;
4. π is a locally trivial fiber bundle; i.e., any point b in B has a

neighborhood U such that π−1(U) is diffeomorphic to U×F, where
F = π−1(U).

Like a path lifting in an algebraic topology, we can consider a hor-
izontal lifting induced from a curve in the base space, which gives a
diffeomorphism between two fibers over the endpoints of the curve in
the base space:

Definition 2.3 (Definition 1.3.1; [3]). Let π : M → B denote a
Riemannian submersion, and c : [0, 1]→ B a piecewise smooth curve in
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the base space. The holonomy displacement associated to c is the map
hc : π−1(c(0)) → π−1(c(1)) between two fibers over the endpoints of c
that maps a point p in the first fiber to the endpoint of the horizontal
lift c̃ of c that starts at p, i.e.,

π ◦ c̃ = c, ˙̃c(t) ∈ H, ∀t ∈ (0, 1), c̃(0) = p and hc(p) = c̃(1).

We use the symbol h and v as the horizontal part and the vertical
part of a given vector, respectively, i.e., e = eh + ev ∈ H ⊕ V for any
vector e. And let X denote a Lie algebra of vector fields.

Before considering the infinitesimal version of a holonomy displace-
ment, recall the local version of a Riemannian submersion and two ten-
sors related to it:

Definition 2.4 (Definition 1.2.2; [3]). A foliation on a Riemannnian
manifold is said to be metric if LUgh is horizontally zero or any U ∈ Xv,
or equivalently, if ∇v

XX = 0 for all X ∈ Xv.

Definition 2.5 (Definition 1.4.1; [3]). The A-tensor of a metric fo-
liation on M is the tensor field A : H×H → V on M given by

AXY = ∇v
XY =

1

2
[X,Y ]v, X, Y ∈ Xh.

Definition 2.6 (Definition 1.4.2; [3]). The S-tensor of a metric foli-
ation on M is the tensor field S : H× V → V on M given by

SXU = −∇v
UX, X ∈ Xh, U ∈ Xv.

Definition 2.7 (Definition 1.4.3; [3]). A Jocobi field J along a
horizontal geodesic c : [0, a] → M that is vertical at 0 and satisfies
J ′(0) = −A∗ċ(0)J(0)− Sċ(0)J(0) is called a holonomy field.

Notice that for t ∈ [0, a], a holonomy field J satisfies

J ′(t) = −A∗ċ(t)J(t)− Sċ(t)J(t), t ∈ [0, a].

It is known that a holonomy field can be constructed as follows:

Lemma 2.8 (Lemma 1.4.2; [3]). Let π : M → B denote a Riemannian
submersion, and h : F0 → F1 the holonomy diffeomorphism induced by
the geodesic c : [0, 1] → B, where c(0) = π(F0), c(1) = π(F1). Given
p ∈ F0, let cp denote the horizontal lift of c starting at p. Then, for
u ∈ Tp(F0),

h∗u = J(1),

where J is the holonomy field along cp with J(0) = u.
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For the case of Lie groups, let G be a Lie group, K a closed subgroup
of G, and consider a left-invariant metric on G that is right-invariant
under K. In a principal bundle π : G −→ G/K, the following facts are
already known:

1. For X ∈ k⊥, t 7→ g· exp (tX) : (−∞,∞) → G is a horizontal
geodesic for any g ∈ G [Theorem 1.3.1; [3]].

2. Each fiber gK, g ∈ G, is totally geodesic. More precisely, for U ∈ k,
t 7→ g· exp(tU) : (−∞,∞) → gK ⊂ G is a vertical geodesic for
any g ∈ G. Especially, if g ∈ K, then its image lies on K = eK.
Furthermore, for any piecewise smooth curve c : [a, b] → G/K,
its induced holonomy hc : π−1(c(a)) → π−1(c(b)) is an isometry
[Theorem 2.4.1; Lemma 1.4.3; [3]].

3. For any k ∈ K, the right translation Rk : G→ G by k,Rk(g) = gk,
is an isometry. Or, equivalently, Adk : g → g is a linear isometry
for any k ∈ K [Proposition 2.4.1; [3]].

Consider the following Proposition, which is the explanation of the
holonomy isometry hc in terms of vector fields.

Proposition 2.9. Let G be a Lie group with a left invariant metric
and K be its closed subgroup such that the right multiplication by each
element of K gives an isometry on G. Consider a principal bundle π :
G −→ G/K, which is also a Riemannian submersion. Then, for any
U ∈ k and for any horizontal geodesic c̃ : [a, b]→ G, U ◦ c̃ is a holonomy
field along c̃.

Proof. Consider a vertical geodesic γ : (−ε, ε)→ c̃(a)K given by

γ(s) = c̃(a) · exp(sU),

and a variation V (t, s) : [a, b]× (−ε, ε)→ G defined by

V (t, s) = c̃(t) · exp(sU).

Then, for inclusions maps is : [a, b] → [a, b] × (−ε, ε) and jt : (−ε, ε) →
[a, b]× (−ε, ε) with is(t) = (t, s) = jt(s),

V ◦ j0 = γ, V ◦ i0 = c̃

and
V ◦ is is a horizontal geodesic with π ◦ V ◦ is = π ◦ c̃

since

exp(sU) ∈ K, V ◦ is(t) = V (t, s) = Rexp(sU)

(
c̃(t)
)

and

the right multiplication Rexp(sU) is an isometry for each s ∈ (−ε, ε).
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So from

V (t, s) = c̃(t) · exp(s0U) · exp
(
(s− s0)U

)
= V (t, s0) · exp

(
(s− s0)U

)
,

we get

V∗D2 ◦ is0(t) = LV (t,s0)∗
Ue = UV (t,s0) = U ◦ (V ◦ is0)(t)

and that U is a holonomy field along V ◦is0 from Lemma 2.8. Especially,
U ◦ c̃ is a holonomy field along a horizontal geodesic c̃ = V ◦ i0.

3. The Iwasawa decomposition

In this section, we recall the basic properties of a symmetric space of
the noncompact type [Section 3.7; Section 9.2; [5]]: let g be a noncom-
pact semisimple Lie algebra over R and B : g × g → R be its Killing
form. If an involutive automorphism θ : g→ g, θ2 = Idg (and θ 6= Idg),
induces a strictly postive definite bilinear form Bθ : g× g→ R given by
Bθ(X,Y ) := −B(X, θY ), then it is called a Cartan involution. Consider
a Lie subalgebra k which is the fixed point set of θ and a vector subspace
p(⊂ g) consisting of all elements X ∈ g saitsfying θ(X) = −X. Then,
g = k⊕ p, which is called a Cartan decomposition of g.

Let a be a maximal abelian subspace of p and m denote the centralizer
of a in k. Then the simultaneous diagonalization of the adg(a) induces
the (restricted) root space decomposition

g = g0 ⊕
⊕
λ∈Σ

gλ, g0 = a⊕m,

where each λ is a nontrivial element in the dual space a∗ of a and

gλ = {X ∈ g | [H,X] = λ(H)X for H ∈ a} 6= {0}.
Let Σ+ be the set of positive elements in Σ and n the subalgebra

n =
⊕
λ∈Σ+

gλ,

which is a nilpotent subalgebra of g. We have the following one, called
the Iwasawa decomposition:

Theorem 3.1 (Chpater 9, Theorem 1.3; [5]). Let G be any connected
noncompact semisimple Lie group with Lie algebra g. Then,

g = n⊕ a⊕ k,

G = NAK,
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that is, the mappping (n, a, k) 7→ nak : N ×A×K → G is a diffeomor-
phism, where N,A and K are analytics subgroups of G with Lie algebra
n, a and k.

4. Example

This section is based on [2].

Let O(1, n) = {A ∈ GL(n+1;R) | AtSA = S}, where S =

(
−1 0
0 In

)
.

Let SO0(1, n) be the identity component of O(1, n), which is also the
identity component of SO(1, n), and consider a subgroup of SO0(1, n)

consisting of all matrices of the form

(
1 0
0 B

)
, where B ∈ SO(n). Denote

the embedded subgroup by SO(n) for the simplicity of the notation.
Note the Lie algebra o(1, n) is given by

o(1, n) = {X ∈ gl(n+ 1;R)|XtS + SX = 0}.
Define a left-invariant metric on SO0(1, n) from an inner product

〈· , ·〉 on the Lie algebra o(1, n), given by

〈A,B〉 = 1
2 trace(AtB), A,B ∈ o(1, n).

If φ is a Killing-Cartan form, then

φ(X,Y ) = 2(n− 1) 〈X,Y 〉 for X,Y ∈ o(n)⊥ ⊂ o(1, n) .

The right action of SO(n) becomes an isometry and SO0(1, n)/SO(n)
becomes isometric to Hn. Under this metric, we have a principal bundle
structure

SO(n) −→ SO0(1, n)
π−→ Hn,

where π : SO0(1, n)→ Hn is a Riemannian submersion.
Let G = SO0(1, n), K = SO(n), and g and k be their Lie algebras,

respectively.
Let

Eij = εijeij + eji, 1 ≤ i < j ≤ n+ 1

for the matrix eij whose (i, j)-entry is 1 and 0 elsewhere and for εij whose
value is −1 if j < n + 1 and is 1 if j = n + 1. It is well-known([Section
4.2; [2]]) that the subgroup NA of SO0(1, n) has the structure

N ∼= Rn−1, A ∼= R+
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as Lie groups. The subgroup NA with the Riemannian metric induced
form that of SO0(1, n) has an orthonormal basis

{ 1√
2
N1, · · · 1√

2
Nn−1, A1}

at the identity while the quotient SO0(1, n)/SO(n) is isometric to the Lie
group NA with a new left-invariant metrc coming from the orthonormal
basis

{N1, · · ·Nn−1, A1},
where

Ni = E i n + E i n+1 for i = 1, · · · , n− 1

For n = 2, N, A and K are

N =

1 −t t
t 1

2(2− t2) 1
2 t

2

t −1
2 t

2 1
2(2 + t2)

 ,

A =

1 0 0
0 cosh t sinh t
0 sinh t cosh t

 ,

K =

cos t − sin t 0
sin t cos t 0

0 0 1

 .

Consider our Riemannian submersion

SO(n) −→ SO0(1, n) −→ SO0(1, n)/SO(n).

This bundle has a global cross section s : H → NA ⊂ G = SO0(1, n),
which comes from the Iwasawa decompositionNAK, whereK = SO(n).
That is, every element ofG is uniquely written as nak, and the projection
maps this to naK ∈ H [Chapter 0; Chapter 1; Section 4.1; [2]].

5. The continuity of holonomy displacements

Consider a noncompact semisimple Lie group G and its Iwasawa de-
composition NAK. Then the bundle

K −→ G −→ G/K

has a global cross section s : G/K → NA ⊂ G, which comes from the
Iwasawa decomposition NAK. That is, every element of G is uniquely
written as nak, and the projection maps this to naK ∈ G/K.

The cross section s provides us with a one-to-one correspondence
between the space of all continuous piecewise Ck-curves in G/K and in
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NA, with initial points ē and e, by the correspondence of a curve h in
G/K to another one s ◦h in NA. By abusing notations, express s ◦h by

h. For a curve h : [0, 1] → Hn, the unique horizontal lift h̃ : [0, 1] → G

is given by h(t) · a(t) = h̃(t) for a unique curve a(t) in K. Under the
identification of the tangent space of G at the identity e with its Lie
algebra g, such an a(t) is obtained from the solution of the differential
equation

(5.1) 〈h−1h′ + a′a−1, V 〉 = 0

for every V ∈ k, where both h′ and a′ are tangent vectors. Note that the
first entry h−1h′ + a′ a−1 is an element of the Lie algebra g. The equa-
tion (5.1) can be obtained as follows. The curve h̃(t) being horizontal
implies that the following equalities should hold on the tangent space at
h(t)a(t) :

0 = 〈(h(t)a(t))′, (h(t)a(t))V 〉
= 〈(h(t)a(t))

(
a(t)−1h(t)−1h′(t)a(t) + a(t)−1a′(t)

)
, (h(t)a(t))V 〉

for every V ∈ k. Thus, we get

0 = 〈a(t)−1h(t)−1h′(t)a(t) + a(t)−1a′(t), V 〉, V ∈ k,

Since this holds for all V ∈ k and the multiplication by any element in
K, especially a(t)−1 ∈ K, on the right-hand side is also an isometry, the
conjugation by a(t) produces the equivalence of the above equlaity to
(5.1).

We examine the equality (5.1) more closely. It holds for every V ∈ k,
so h(t)−1h′(t) +a′(t)a−1(t) does not have any vertical component. That
is, −a′(t)a−1(t) is the vertical component of h(t)−1h′(t) so that

h(t)−1h′(t) = −a′(t)a−1(t) +X1 ∈ k⊕ k⊥

is a vertical and horizontal splitting.
Let g(t) be another path with a unique horizontal lift g̃(t) = g(t)b(t),

satisfying

0 = 〈g−1g′ + b′b−1, V 〉,(5.2)

for every V ∈ k. Again, we have a splitting

g(t)−1g′(t) = −b′(t)b−1(t) +X2 ∈ k⊕ k⊥.

From ||h(t)−1h′(t)−g(t)−1g′(t)||2 = ||a′(t)a−1(t)−b′(t)b−1(t)||2+||X1−X2||2,
we get

||a′(t)a−1(t)− b′(t)b−1(t)|| ≤ ||h(t)−1h′(t)− g(t)−1g′(t)||.(5.3)

These are norms on the Lie algebra g.
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On the space of continuous piecewise Ck-curves (k ≥ 1) in G with
initial point e, we define a distance function by

ρ(h, g) =

∫ 1

0
||h(t)−1 · h′(t)− g(t)−1 · g′(t)|| dt.

Note that h(t)−1 ·h′(t) ∈ g and ||.|| is the norm there. We argue that this
is a metric. Suppose ρ(h, g) = 0. Then, by continuity (on each proper
subinterval of [0, 1] if needed), h(t)−1 · h′(t) = g(t)−1 · g′(t) for every
t. Now we apply the similar statement of the following Lemma to the
C1-curves piece by piece to conclude h(t) = g(t) for all t ∈ [0, 1] from
the continuity of h and g and from translation by right multiplication
if needed, see [[4], vol 1, p69]. In fact, for h̃(t) := h(t0)−1h(t0 + t), t ∈
[0, t1− t0], and for s = t0 + t ∈ [t0, t1], we get both h(s) = h(t0)h̃(s− t0)

and h̃(t)−1h̃′(t) = h(s)−1h′(s) from h̃′(t) = h(t0)−1h′(t0 + t).

Lemma 5.1. Let G be a Lie group and g its Lie algebra identified
with Te(G). Let Yt, 0 ≤ t ≤ 1, be a continuous curve in Te(G). Then
there exists in G a unique curve at of class C1 such that a0 = e and
ȧta
−1
t = Yt for 0 ≤ t ≤ 1.

Let h be a curve in G/K (or in NA, by abuse of notation). The
unique curve a : [0, 1] → K such that h(t) · a(t) is the horizontal lift of
h(t) will be called wh.

For two curves h and g, the inequality (5.3) shows that ρ(wh, wg) ≤
ρ(h, g). Let P be the space of all continuous piecewise Ck-curves on NA
with the initial point e. Then, we can get the following result:

Theorem 5.2. The map P −→ G sending h to wh(1) is continuous.
More precisely, let h : [0, 1] → NA be a piecewise Ck-curve. For every
ε > 0, there exists δ > 0 such that, if g ∈ P and ρ(h, g) < δ, then
d(e, wh(1)−1 · wg(1)) = d(wh(1), wg(1)) < ε.

Proof. For simplicity, we write wh(t), wg(t) by a(t), b(t), respectively.
Note

0 = (bb−1)′ = b′b−1 + b(b−1)′(5.4)

Then, the differentiation of a(a−1b)b−1 = e and the equality (5.4) give

a(a−1b)′b−1 = −a′(a−1b)b−1 − a(a−1b)(b−1)′ = −a′a−1 + b′b−1.

Thus,
||a′a−1 − b′b−1|| = ||a(a−1b)′b−1||.

Observe that (a−1b)′ ∈ Ta−1b(K). The left translation La and the right
translation Rb−1 maps this vector to a tangent vector at Te(K). However,
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both these translations are isometries so that they preserve the norms.
We have,

||a′a−1 − b′b−1|| = ||a(a−1b)′b−1|| = ||(a−1b)′||.

Consequently, if
∫ 1

0 ||(a
−1b)′|| dt =

∫ 1
0 ||a

′a−1 − b′b−1|| dt is small, the

arc-length of the path a(t)−1b(t) is small. Therefore, if a(0) and b(0) are
close (or if a(0) = b(0)), then a(1) and b(1) are close. This finishes the
proof from the inequality (5.3).
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