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H-V-SEMI-SLANT SUBMERSIONS FROM ALMOST

QUATERNIONIC HERMITIAN MANIFOLDS

Kwang-Soon Park

Abstract. We introduce the notions of h-v-semi-slant submersions and
almost h-v-semi-slant submersions from almost quaternionic Hermitian
manifolds onto Riemannian manifolds. We obtain characterizations, in-
vestigate the integrability of distributions, the geometry of foliations, and
a decomposition theorem. We find a condition for such submersions to
be totally geodesic. We also obtain an inequality of a h-v-semi-slant
submersion in terms of squared mean curvature, scalar curvature, and
h-v-semi-slant angle. Finally, we give examples of such maps.

1. Introduction

Given a C∞-submersion F from a (semi-)Riemannian manifold (M, gM )
onto a (semi-)Riemannian manifold (N, gN ), according to the conditions on the
map F : (M, gM ) 7→ (N, gN ), we can obtain the following: a semi-Riemannian
submersion and a Lorentzian submersion [8], a Riemannian submersion ([9],
[16]), a slant submersion ([6], [22]), an almost Hermitian submersion [24], a
contact-complex submersion [10], a quaternionic submersion [11], an almost
h-slant submersion [17], a semi-invariant submersion [23], an almost h-semi-
invariant submersion [18], a semi-slant submersion [21], an almost h-semi-slant
submersions [19], a v-semi-slant submersions [20], etc.

As we know, Riemannian submersions are related with physics and have their
applications in the Yang-Mills theory ([4], [25]), Kaluza-Klein theory ([5], [12]),
Supergravity and superstring theories ([13], [15]), etc. And the quaternionic
Kähler manifolds have applications in physics as the target spaces for nonlinear
σ-models with supersymmetry [7].

As a generalization of v-semi-slant submersions, we will define the notions
of h-v-semi-slant submersions and almost h-v-semi-slant submersions.

The paper is organized as follows. In Section 2 we recall some notions, which
are needed in the following sections. In Section 3 we give the definitions of
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h-v-semi-slant submersions and almost h-v-semi-slant submersions and we ob-
tain some results on them: characterizations, the integrability of distributions,
the equivalent conditions for distributions to be totally geodesic foliations, the
equivalent conditions for such maps to be totally geodesic, etc. In Section 4
we consider an inequality of a h-v-semi-slant submersion in terms of squared
mean curvature, scalar curvature, and h-v-semi-slant angle. In Section 5 we
give some examples of h-v-semi-slant submersions and almost h-v-semi-slant
submersions.

2. Preliminaries

Let (M, gM ) and (N, gN ) be Riemannian manifolds, where gM and gN are
Riemannian metrics on C∞-manifolds M and N , respectively.

Let F : (M, gM ) 7→ (N, gN ) be a C∞-map.
The second fundamental form of F is given by

(∇F∗)(X,Y ) := ∇F
XF∗Y − F∗(∇XY ) for X,Y ∈ Γ(TM),

where ∇F is the pullback connection and we denote conveniently by ∇ the
Levi-Civita connections of the metrics gM and gN [2].

Recall that F is said to be harmonic if trace(∇F∗) = 0 and F is called a
totally geodesic map if (∇F∗)(X,Y ) = 0 for X,Y ∈ Γ(TM) [2].

We call the map F a C∞-submersion if F is surjective and the differential
(F∗)p has maximal rank for any p ∈ M .

The map F is said to be a Riemannian submersion ([16], [8]) if F is a
C∞-submersion and

(F∗)p : ((ker(F∗)p)
⊥, (gM )p) 7→ (TF (p)N, (gN )F (p))

is a linear isometry for any p ∈ M , where (ker(F∗)p)
⊥ is the orthogonal com-

plement of the space ker(F∗)p in the tangent space TpM to M at p.
Let F : (M, gM ) 7→ (N, gN ) be a Riemannian submersion.
For any vector field U ∈ Γ(TM), we have

U = VU +HU,

where VU ∈ Γ(kerF∗) and HU ∈ Γ((kerF∗)
⊥).

Define the (O’Neill) tensors T and A by

AEF = H∇HEVF + V∇HEHF,

TEF = H∇VEVF + V∇VEHF

for vector fields E,F ∈ Γ(TM), where ∇ is the Levi-Civita connection of gM
([16], [8]).

Define ̂∇XY := V∇XY for X,Y ∈ Γ(kerF∗).
Let (M, gM , J) be an almost Hermitian manifold, where J is an almost

complex structure on M .
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A Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is called a semi-slant

submersion if there is a distribution D1 ⊂ kerF∗ such that

kerF∗ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)q is constant for nonzero
X ∈ (D2)q and q ∈ M , where D2 is the orthogonal complement of D1 in kerF∗

[21].
We call the angle θ a semi-slant angle.
A Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is called a v-semi-slant

submersion if there is a distribution D1 ⊂ (kerF∗)
⊥ such that

(kerF∗)
⊥ = D1 ⊕D2, J(D1) = D1,

and the angle θ = θ(X) between JX and the space (D2)p is constant for
nonzero X ∈ (D2)p and p ∈ M , where D2 is the orthogonal complement of D1

in (kerF∗)
⊥ [20].

We call the angle θ a v-semi-slant angle.
Let M be a 4m-dimensional C∞-manifold and let E be a rank 3 subbundle

of End(TM) such that for any point p ∈ M with a neighborhood U , there exists
a local basis {J1, J2, J3} of sections of E on U satisfying for all α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

where the indices are taken from {1, 2, 3} modulo 3.
Then we call E an almost quaternionic structure on M and (M,E) an almost

quaternionic manifold [1].
Moreover, let g be a Riemannian metric on M such that for any point p ∈ M

with a neighborhood U , there exists a local basis {J1, J2, J3} of sections of E
on U satisfying for all α ∈ {1, 2, 3}

(2.1) J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,

(2.2) g(JαX, JαY ) = g(X,Y )

for all vector fields X,Y ∈ Γ(TM), where the indices are taken from {1, 2, 3}
modulo 3.

Then we call (M,E, g) an almost quaternionic Hermitian manifold [11].
Conveniently, the above basis {J1, J2, J3} satisfying (2.1) and (2.2) is said

to be a quaternionic Hermitian basis.
Let (M,E, g) be an almost quaternionic Hermitian manifold.
We call (M,E, g) a quaternionic Kähler manifold if there exist locally defined

1-forms ω1, ω2, ω3 such that for α ∈ {1, 2, 3}

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2

for any vector field X ∈ Γ(TM), where the indices are taken from {1, 2, 3}
modulo 3 [11].



444 KWANG-SOON PARK

If there exists a global parallel quaternionic Hermitian basis {J1, J2, J3} of
sections of E on M (i.e., ∇Jα = 0 for α ∈ {1, 2, 3}, where ∇ is the Levi-
Civita connection of the metric g), then (M,E, g) is said to be a hyperkähler

manifold. Furthermore, we call (J1, J2, J3, g) a hyperkähler structure on M and
g a hyperkähler metric [3].

Let (M,EM , gM ) and (N,EN , gN) be almost quaternionic Hermitian mani-
folds.

A map F : M 7→ N is called a (EM , EN )-holomorphic map if given a point
x ∈ M , for any J ∈ (EM )x there exists J ′ ∈ (EN )F (x) such that

F∗ ◦ J = J ′ ◦ F∗.

A Riemannian submersion F : M 7→ N which is a (EM , EN )-holomorphic map
is called a quaternionic submersion [11].

Moreover, if (M,EM , gM ) is a quaternionic Kähler manifold (or a hyper-
kähler manifold), then we say that F is a quaternionic Kähler submersion (or
a hyperkähler submersion) [11].

It is well-known that any quaternionic Kähler submersion is a harmonic map
[11].

Let (M,E, gM ) be an almost quaternionic Hermitian manifold and (N, gN )
a Riemannian manifold. A Riemannian submersion F : (M,E, gM ) 7→ (N, gN )
is said to be an almost h-slant submersion if given a point p ∈ M with a neigh-
borhood U , there exists a quaternionic Hermitian basis {I, J,K} of sections of
E on U such that for R ∈ {I, J,K} the angle θR = θR(X) between RX and
the space ker(F∗)q is constant for nonzero X ∈ ker(F∗)q and q ∈ U [17].

We call such a basis {I, J,K} an almost h-slant basis and the angles {θI , θJ ,
θK} almost h-slant angles.

A Riemannian submersion F : (M,E, gM ) 7→ (N, gN ) is called a h-slant

submersion if given a point p ∈ M with a neighborhood U , there exists a
quaternionic Hermitian basis {I, J,K} of sections of E on U such that for
R ∈ {I, J,K} the angle θR = θR(X) between RX and the space ker(F∗)q is
constant for nonzero X ∈ ker(F∗)q and q ∈ U , and θ = θI = θJ = θK [17].

We call such a basis {I, J,K} a h-slant basis and the angle θ a h-slant angle.
A Riemannian submersion F : (M,E, gM ) 7→ (N, gN ) is called a h-semi-

invariant submersion if given a point p ∈ M with a neighborhood U , there
exists a quaternionic Hermitian basis {I, J,K} of sections of E on U such that
for any R ∈ {I, J,K}, there is a distribution D1 ⊂ kerF∗ on U such that

kerF∗ = D1 ⊕D2, R(D1) = D1, R(D2) ⊂ (kerF∗)
⊥,

where D2 is the orthogonal complement of D1 in kerF∗ [18].
We call such a basis {I, J,K} a h-semi-invariant basis.
A Riemannian submersion F : (M,E, gM ) 7→ (N, gN ) is called an almost

h-semi-invariant submersion if given a point p ∈ M with a neighborhood U ,
there exists a quaternionic Hermitian basis {I, J,K} of sections of E on U such
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that for each R ∈ {I, J,K}, there is a distribution DR
1 ⊂ kerF∗ on U such that

kerF∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 , R(DR
2 ) ⊂ (kerF∗)

⊥,

where DR
2 is the orthogonal complement of DR

1 in kerF∗ [18].
We call such a basis {I, J,K} an almost h-semi-invariant basis.
A Riemannian submersion F : (M,E, gM ) 7→ (N, gN ) is called a h-semi-

slant submersion if given a point p ∈ M with a neighborhood U , there exists a
quaternionic Hermitian basis {I, J,K} of sections of E on U such that for any
R ∈ {I, J,K}, there is a distribution D1 ⊂ kerF∗ on U such that

kerF∗ = D1 ⊕D2, R(D1) = D1,

and the angle θR = θR(X) between RX and the space (D2)q is constant for
nonzero X ∈ (D2)q and q ∈ U , where D2 is the orthogonal complement of D1

in kerF∗ [19].
We call such a basis {I, J,K} a h-semi-slant basis and the angles {θI , θJ , θK}

h-semi-slant angles.
Furthermore, if we have

θ = θI = θJ = θK ,

then we call the map F : (M,E, gM ) 7→ (N, gN ) a strictly h-semi-slant submer-

sion, {I, J,K} a strictly h-semi-slant basis, and the angle θ a strictly h-semi-

slant angle [19].
A Riemannian submersion F : (M,E, gM ) 7→ (N, gN ) is called an almost

h-semi-slant submersion if given a point p ∈ M with a neighborhood U , there
exists a quaternionic Hermitian basis {I, J,K} of sections of E on U such that
for each R ∈ {I, J,K}, there is a distribution DR

1 ⊂ kerF∗ on U such that

kerF∗ = DR
1 ⊕DR

2 , R(DR
1 ) = DR

1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for

nonzero X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1

in kerF∗ [19].
We call such a basis {I, J,K} an almost h-semi-slant basis and the angles

{θI , θJ , θK} almost h-semi-slant angles.
Throughout this paper, we will use the above notations.

3. H-v-semi-slant submersions

Definition 3.1. Let (M,E, gM ) be an almost quaternionic Hermitian man-
ifold and (N, gN ) a Riemannian manifold. A Riemannian submersion F :
(M,E, gM ) 7→ (N, gN ) is called a h-v-semi-slant submersion if given a point
p ∈ M with a neighborhood U , there exists a quaternionic Hermitian basis
{I, J,K} of sections of E on U such that for any R ∈ {I, J,K}, there is a
distribution D1 ⊂ (kerF∗)

⊥ on U such that

(kerF∗)
⊥ = D1 ⊕D2, R(D1) = D1,
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and the angle θR = θR(X) between RX and the space (D2)q is constant for
nonzero X ∈ (D2)q and q ∈ U , where D2 is the orthogonal complement of D1

in (kerF∗)
⊥.

We call such a basis {I, J,K} a h-v-semi-slant basis and the angles {θI , θJ ,
θK} h-v-semi-slant angles.

Furthermore, if we have

θ = θI = θJ = θK ,

then we call the map F : (M,E, gM ) 7→ (N, gN) a strictly h-v-semi-slant sub-

mersion, {I, J,K} a strictly h-v-semi-slant basis, and the angle θ a strictly

h-v-semi-slant angle.

Definition 3.2. Let (M,E, gM ) be an almost quaternionic Hermitian man-
ifold and (N, gN ) a Riemannian manifold. A Riemannian submersion F :
(M,E, gM ) 7→ (N, gN ) is called an almost h-v-semi-slant submersion if given
a point p ∈ M with a neighborhood U , there exists a quaternionic Hermitian
basis {I, J,K} of sections of E on U such that for each R ∈ {I, J,K}, there is
a distribution DR

1 ⊂ (kerF∗)
⊥ on U such that

(kerF∗)
⊥ = DR

1 ⊕DR
2 , R(DR

1 ) = DR
1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for

nonzero X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1

in (kerF∗)
⊥.

We call such a basis {I, J,K} an almost h-v-semi-slant basis and the angles
{θI , θJ , θK} almost h-v-semi-slant angles.

Remark 3.3. Let F : (M,E, gM ) 7→ (N, gN ) be an almost h-v-semi-slant sub-
mersion. Then given a point p ∈ M with a neighborhood U , there exists a
quaternionic Hermitian basis {I, J,K} of sections of E on U such that for each
R ∈ {I, J,K}, there is a distribution DR

1 ⊂ (kerF∗)
⊥ on U such that

(kerF∗)
⊥ = DR

1 ⊕DR
2 , R(DR

1 ) = DR
1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for

nonzero X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1

in (kerF∗)
⊥.

If DR
2 = (kerF∗)

⊥ for R ∈ {I, J,K}, then we call the map F an almost

h-v-slant submersion and the angles {θI , θJ , θK} almost h-v-slant angles [17].
Otherwise, if θR = π

2 for R ∈ {I, J,K}, then we call the map F an almost

h-v-semi-invariant submersion [18].

Let F : (M,E, gM ) 7→ (N, gN ) be an almost h-v-semi-slant submersion.
Then given a point p ∈ M with a neighborhood U , there exists a quaternionic
Hermitian basis {I, J,K} of sections of E on U such that for eachR ∈ {I, J,K},
there is a distribution DR

1 ⊂ (kerF∗)
⊥ on U such that

(kerF∗)
⊥ = DR

1 ⊕DR
2 , R(DR

1 ) = DR
1 ,
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and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for

nonzero X ∈ (DR
2 )q and q ∈ U , where DR

2 is the orthogonal complement of DR
1

in (kerF∗)
⊥.

Then for X ∈ Γ((kerF∗)
⊥), we have

X = PRX +QRX,

where PRX ∈ Γ(DR
1 ) and QRX ∈ Γ(DR

2 ).
For X ∈ Γ(kerF∗), we get

RX = φRX + ωRX,

where φRX ∈ Γ(kerF∗) and ωRX ∈ Γ((kerF∗)
⊥).

For Z ∈ Γ((kerF∗)
⊥), we obtain

RZ = BRZ + CRZ,

where BRZ ∈ Γ(kerF∗) and CRZ ∈ Γ((kerF∗)
⊥).

Then
kerF∗ = BRD

R
2 ⊕ µR,

where µR is the orthogonal complement of BRD
R
2 in kerF∗ and is invariant

under R.
Furthermore,

CRD
R
1 = DR

1 , BRD
R
1 = 0, CRD

R
2 ⊂ DR

2 , ωR(kerF∗) = DR
2 ,

φ2
R +BRωR = −id, C2

R + ωRBR = −id,

ωRφR + CRωR = 0, BRCR + φRBR = 0.

Then it is easy to have:

Lemma 3.4. Let F be an almost h-v-semi-slant submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J ,
K) is an almost h-v-semi-slant basis. Then we get

(1)

̂∇XφRY + TXωRY = φR
̂∇XY +BRTXY,

TXφRY +H∇XωRY = ωR
̂∇XY + CRTXY

for X,Y ∈ Γ(kerF∗) and R ∈ {I, J,K}.
(2)

V∇ZBRW +AZCRW = φRAZW +BRH∇ZW,

AZBRW +H∇ZCRW = ωRAZW + CRH∇ZW

for Z,W ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K}.

(3)

̂∇XBRZ + TXCRZ = φRTXZ +BRH∇XZ,

TXBRZ +H∇XCRZ = ωRTXZ + CRH∇XZ

for X ∈ Γ(kerF∗), Z ∈ Γ((kerF∗)
⊥), and R ∈ {I, J,K}.
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Theorem 3.5. Let F be a h-v-semi-slant submersion from a hyperkähler man-

ifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is a h-v-semi-slant basis. Then the following conditions are equivalent:

a) the slant distribution D2 is integrable.

b) AXY = 0 and PI((AXBIY −AY BIX) +H(∇XCIY −∇Y CIX)) = 0
for X,Y ∈ Γ(D2).

c) AXY = 0 and PJ((AXBJY −AY BJX)+H(∇XCJY −∇Y CJX)) = 0
for X,Y ∈ Γ(D2).

d) AXY = 0 and PK((AXBKY −AY BKX)+H(∇XCKY −∇Y CKX)) =
0 for X,Y ∈ Γ(D2).

Proof. Given X,Y ∈ Γ(D2), Z ∈ Γ(D1), and R ∈ {I, J,K}, assume that
AXY = 0. Since AXY = 1

2V [X,Y ], we have

gM ([X,Y ], RZ) = − gM (∇XRY −∇Y RX,Z)

= − gM (V∇XBRY +AXBRY +AXCRY +H∇XCRY

− V∇Y BRX −AY BRX −AY CRX −H∇Y CRX,Z)

= gM (AXBRY +H∇XCRY −AY BRX −H∇Y CRX,Z).

Thus, a) ⇔ AXY = 0 and PR((AXBRY −AY BRX)+H(∇XCRY −∇Y CRX))
= 0 for X,Y ∈ Γ(D2).

Hence, we have

a) ⇔ b), a) ⇔ c), a) ⇔ d).

Therefore, we get the result. �

In a similar way, we have:

Theorem 3.6. Let F be a h-v-semi-slant submersion from a hyperkähler man-

ifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is a h-v-semi-slant basis. Then the following conditions are equivalent:

a) the complex distribution D1 is integrable.

b) AXY = 0 for X,Y ∈ Γ(D1).

Proposition 3.7. Let F be an almost h-v-semi-slant submersion from an al-

most quaternionic Hermitian manifold (M,E, gM ) onto a Riemannian mani-

fold (N, gN ). Then we get

C2
RX = − cos2 θRX for X ∈ Γ(DR

2 ) and R ∈ {I, J,K},

where {I, J,K} is an almost h-v-semi-slant basis with the almost h-v-semi-slant

angles {θI , θJ , θK}.

Proof. Since

cos θR =
gM (RX,CRX)

||RX || · ||CRX ||
=

−gM (X,C2
RX)

||X || · ||CRX ||
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and cos θR =
||CRX ||

||RX ||
, we obtain

cos2 θR = −
gM (X,C2

RX)

||X ||2
for X ∈ Γ(DR

2 ).

Hence,
C2

RX = − cos2 θRX for X ∈ Γ(DR
2 ). �

Remark 3.8. Particularly, it is easy to see that the converse of Proposition 3.7
is also true.

Remark 3.9. Let F be an almost h-v-semi-slant submersion from an almost
quaternionic Hermitian manifold (M,E, gM ) onto a Riemannian manifold (N ,
gN).

By Proposition 3.7, we can get

gM (CRX,CRY ) = cos2 θRgM (X,Y ),

gM (BRX,BRY ) = sin2 θRgM (X,Y )

for X,Y ∈ Γ(DR
2 ) and R ∈ {I, J,K} so that for any θR ∈ [0, π2 ), there exists a

local orthonormal frame {X1, sec θRCRX1, . . . , Xk, sec θRCRXk} of DR
2 .

Assume that we have an almost h-v-semi-slant angle θR ∈ [0, π2 ) for some

R ∈ {I, J,K} and define an endomorphism ̂R of (kerF∗)
⊥ by

̂R := RPR +
1

cos θR
CRQR.

Then,

̂R2 = −id on (kerF∗)
⊥.(3.1)

From (3.1), we get:

Theorem 3.10. Let F be an almost h-v-semi-slant submersion from an al-

most quaternionic Hermitian manifold (M,E, gM ) onto a Riemannian mani-

fold (N, gN ) such that {θI , θJ , θK} ∩ [0, π
2 ) 6= ∅, where {θI , θJ , θK} are almost

h-v-semi-slant angles. Then N is an even-dimensional manifold.

Proposition 3.11. Let F be an almost h-v-semi-slant submersion from a hy-

perkähler manifold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such
that (I, J,K) is an almost h-v-semi-slant basis. Then the following conditions

are equivalent:

a) the distribution (kerF∗)
⊥ defines a totally geodesic foliation.

b) φI(V∇XBIY + AXCIY ) + BI(AXBIY + H∇XCIY ) = 0 for X,Y ∈
Γ((kerF∗)

⊥).
c) φJ(V∇XBJY +AXCJY ) +BJ(AXBJY +H∇XCJY ) = 0 for X,Y ∈

Γ((kerF∗)
⊥).

d) φK(V∇XBKY +AXCKY )+BK(AXBKY +H∇XCKY ) = 0 for X,Y ∈
Γ((kerF∗)

⊥).
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Proof. For X,Y ∈ Γ((kerF∗)
⊥) and R ∈ {I, J,K},

∇XY = −R∇XRY

= −R(V∇XBRY +AXBRY +AXCRY +H∇XCRY )

= − (φRV∇XBRY + ωRV∇XBRY + BRAXBRY + CRAXBRY

+ φRAXCRY + ωRAXCRY +BRH∇XCRY + CRH∇XCRY ).

Thus,

∇XY ∈ Γ((kerF∗)
⊥)

⇔ φR(V∇XBRY +AXCRY ) +BR(AXBRY +H∇XCRY ) = 0.

Therefore, the result follows. �

Similarly, we have:

Proposition 3.12. Let F be an almost h-v-semi-slant submersion from a hy-

perkähler manifold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such
that (I, J,K) is an almost h-v-semi-slant basis. Then the following conditions

are equivalent:

a) the distribution kerF∗ defines a totally geodesic foliation.

b) ωI(̂∇XφIY + TXωIY ) + CI(TXφIY + H∇XωIY ) = 0 for X,Y ∈
Γ(kerF∗).

c) ωJ(̂∇XφJY + TXωJY ) + CJ (TXφJY + H∇XωJY ) = 0 for X,Y ∈
Γ(kerF∗).

d) ωK(̂∇XφKY + TXωKY ) + CK(TXφKY +H∇XωKY ) = 0 for X,Y ∈
Γ(kerF∗).

Using Proposition 3.11 and Proposition 3.12, we have:

Theorem 3.13. Let F be an almost h-v-semi-slant submersion from a hy-

perkähler manifold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such
that (I, J,K) is an almost h-v-semi-slant basis. Then the following conditions

are equivalent:

a) M is locally a product Riemannian manifold.

b) ωI(̂∇XφIY + TXωIY ) + CI(TXφIY +H∇XωIY ) = 0
for X,Y ∈ Γ(kerF∗),
φI(V∇ZBIW +AZCIW ) +BI(AZBIW +H∇ZCIW ) = 0
for Z,W ∈ Γ((kerF∗)

⊥).

c) ωJ(̂∇XφJY + TXωJY ) + CJ (TXφJY +H∇XωJY ) = 0
for X,Y ∈ Γ(kerF∗),
φJ(V∇ZBJW +AZCJW ) +BJ(AZBJW +H∇ZCJW ) = 0
for Z,W ∈ Γ((kerF∗)

⊥).

d) ωK(̂∇XφKY + TXωKY ) + CK(TXφKY +H∇XωKY ) = 0
for X,Y ∈ Γ(kerF∗),
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φK(V∇ZBKW +AZCKW ) +BK(AZBKW +H∇ZCKW ) = 0
for Z,W ∈ Γ((kerF∗)

⊥).

Proposition 3.14. Let F be a h-v-semi-slant submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J ,
K) is a h-v-semi-slant basis. Then the following conditions are equivalent:

a) the distribution D2 defines a totally geodesic foliation.

b) φI(V∇XBIY +AXCIY ) +BI(AXBIY +H∇XCIY ) = 0,
PI(ωI(V∇XBIY +AXCIY ) + CI(AXBIY +H∇XCIY )) = 0
for X,Y ∈ Γ(D2).

c) φJ(V∇XBJY +AXCJY ) +BJ(AXBJY +H∇XCJY ) = 0,
PJ(ωJ (V∇XBJY +AXCJY ) + CJ (AXBJY +H∇XCJY )) = 0
for X,Y ∈ Γ(D2).

d) φK(V∇XBKY +AXCKY ) +BK(AXBKY +H∇XCKY ) = 0,
PK(ωK(V∇XBKY +AXCKY ) + CK(AXBKY +H∇XCKY )) = 0
for X,Y ∈ Γ(D2).

Proof. For X,Y ∈ Γ(D2) and R ∈ {I, J,K}, we get

∇XY = −R∇XRY

= −R(V∇XBRY +AXBRY +AXCRY +H∇XCRY )

= − (φRV∇XBRY + ωRV∇XBRY + BRAXBRY + CRAXBRY

+ φRAXCRY + ωRAXCRY +BRH∇XCRY + CRH∇XCRY ).

Thus,

∇XY ∈ Γ(D2)

⇔

{

φR(V∇XBRY +AXCRY ) +BR(AXBRY +H∇XCRY ) = 0,

PR(ωR(V∇XBRY +AXCRY ) + CR(AXBRY +H∇XCRY )) = 0.

Therefore, we have the result. �

Similarly, we obtain:

Proposition 3.15. Let F be a h-v-semi-slant submersion from a hyperkähler

manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J ,
K) is a h-v-semi-slant basis. Then the following conditions are equivalent:

a) the distribution D1 defines a totally geodesic foliation.

b) φIAXIY +BIH∇XIY = 0 and QI(ωIAXIY + CIH∇XIY ) = 0
for X,Y ∈ Γ(D1).

c) φJAXJY +BJH∇XJY = 0 and QJ(ωJAXJY + CJH∇XJY ) = 0
for X,Y ∈ Γ(D1).

d) φKAXKY +BKH∇XKY = 0 and QK(ωKAXKY +CKH∇XKY ) = 0
for X,Y ∈ Γ(D1).

Theorem 3.16. Let F be an almost h-v-semi-slant submersion from a hy-

perkähler manifold (M, I, J,K, gM) onto a Riemannian manifold (N, gN ) such
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that (I, J,K) is an almost h-v-semi-slant basis. Then the following conditions

are equivalent:

a) F is a totally geodesic map.

b) ωI(̂∇XφIY + TXωIY ) + CI(TXφIY +H∇XωIY ) = 0,

ωI(̂∇XBIZ + TXCIZ) + CI(TXBIZ +H∇XCIZ) = 0
for X,Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)

⊥).

c) ωJ(̂∇XφJY + TXωJY ) + CJ (TXφJY +H∇XωJY ) = 0,

ωJ(̂∇XBJZ + TXCJZ) + CJ (TXBJZ +H∇XCJZ) = 0
for X,Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)

⊥).

d) ωK(̂∇XφKY + TXωKY ) + CK(TXφKY +H∇XωKY ) = 0,

ωK(̂∇XBKZ + TXCKZ) + CK(TXBKZ +H∇XCKZ) = 0
for X,Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)

⊥).

Proof. Since F is a Riemannian submersion, we get

(∇F∗)(Z1, Z2) = 0 for Z1, Z2 ∈ Γ((kerF∗)
⊥).

For X,Y ∈ Γ(kerF∗), we have

(∇F∗)(X,Y ) = − F∗(∇XY )

= F∗(I∇X(φIY + ωIY ))

= F∗(φI
̂∇XφIY + ωI

̂∇XφIY +BITXφIY + CITXφIY

+ φITXωIY + ωITXωIY +BIH∇XωIY + CIH∇XωIY ).

Thus,

(∇F∗)(X,Y ) = 0 ⇔ ωI(̂∇XφIY + TXωIY ) + CI(TXφIY +H∇XωIY ) = 0.

For X ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥), since (∇F∗)(X,Z) = (∇F∗)(Z,X),

it is sufficient to consider the following case:

(∇F∗)(X,Z) = − F∗(∇XZ)

= F∗(I∇X(BIZ + CIZ))

= F∗(φI
̂∇XBIZ + ωI

̂∇XBIZ +BITXBIZ + CITXBIZ

+ φITXCIZ + ωITXCIZ +BIH∇XCIZ + CIH∇XCIZ).

Thus,

(∇F∗)(X,Z) = 0 ⇔ ωI(̂∇XBIZ + TXCIZ) + CI(TXBIZ +H∇XCIZ) = 0.

Hence,

a) ⇔ b).

Similarly, we get

a) ⇔ c) and a) ⇔ d).

Therefore, we obtain the result. �
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Let F : (M, gM ) 7→ (N, gN ) be a Riemannian submersion. The map F is
called a Riemannian submersion with totally umbilical fibers if

TXY = gM (X,Y )H for X,Y ∈ Γ(kerF∗),(3.2)

where H is the mean curvature vector field of the fiber.

Lemma 3.17. Let F be an almost h-v-semi-slant submersion with totally um-

bilical fibers from a hyperkähler manifold (M, I, J,K, gM ) onto a Riemannian

manifold (N, gN ) such that (I, J,K) is an almost h-v-semi-slant basis. Then

we obtain

H ∈ Γ(DR
2 ) for R ∈ {I, J,K}.

Proof. For X,Y ∈ Γ(µR), W ∈ Γ(DR
1 ), and R ∈ {I, J,K}, we obtain

TXRY + ̂∇XRY = ∇XRY = R∇XY = BRTXY +CRTXY +φR
̂∇XY +ωR

̂∇XY

so that using (3.2), we have

gM (X,RY )gM (H,W ) = −gM (X,Y )gM (H,RW ).

Interchanging the role of X and Y , we get

gM (Y,RX)gM(H,W ) = −gM (Y,X)gM (H,RW )

so that comparing the above two equations, we obtain

gM (X,Y )gM (H,RW ) = 0,

which means H ∈ Γ(DR
2 ). �

Corollary 3.18. Let F be an almost h-v-semi-slant submersion with totally

umbilical fibers from a hyperkähler manifold (M, I, J,K, gM ) onto a Riemann-

ian manifold (N, gN ) such that (I, J,K) is an almost h-v-semi-slant basis and

DR
1 = (kerF∗)

⊥ for some R ∈ {I, J,K}. Then each fiber is minimal.

4. Curvature tensors

Let F be an almost h-v-semi-slant submersion from a hyperkähler manifold
(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is an
almost h-v-semi-slant basis. Then for each R ∈ {I, J,K}, there is a distribution
DR

1 ⊂ (kerF∗)
⊥ on M such that

(kerF∗)
⊥ = DR

1 ⊕DR
2 , R(DR

1 ) = DR
1 ,

and the angle θR = θR(X) between RX and the space (DR
2 )q is constant for

nonzero X ∈ (DR
2 )q and q ∈ M , where DR

2 is the orthogonal complement of
DR

1 in (kerF∗)
⊥. Furthermore,

CRD
R
2 ⊂ DR

2 , BRD
R
2 ⊂ kerF∗, kerF∗ = BRD

R
2 ⊕ µR,

where µR is the orthogonal complement of BRD
R
2 in kerF∗ and is invariant

under R. To deal with the sectional curvatures of a Kähler manifold, as we
know, it is enough to calculate its holomorphic sectional curvatures.
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Given a plane P being invariant by R in TpM , p ∈ M , R ∈ {I, J,K}, there

is an orthonormal basis {X,RX} of P . Denote by K(P ), K∗(P ), and ̂K(P )
the sectional curvatures of the plane P in M , N , and the fiber F−1(F (p)),
respectively, where K∗(P ) denotes the sectional curvature of the plane P∗ =
〈F∗X,F∗RX〉 in N . Let K(X ∧ Y ) be the sectional curvature of the plane
spanned by the tangent vectors X,Y ∈ TpM , p ∈ M . Using both Corollary 1
of [13, p. 465] and (1.28) of [7, p. 13], we obtain the following:

(1) If P ⊂ (µR)p, then with elementary computations we have

K(P ) = ̂K(P ) + ||TXX ||2 − ||TXRX ||2 − gM (TXX,R[RX,X ]).

(2) If P ⊂ (DR
2 ⊕BRD

R
2 )p with X ∈ (DR

2 )p, then we obtain

K(P ) = sin2 θR ·K(X ∧BRX) + 2(gM ((∇XA)(X,CRX), BRX)

+ gM (AXCRX, TBRXX)− gM (ACRXX, TBRXX)

− gM (AXX, TBRXCRX)) + cos2 θR ·K(X ∧ CRX).

(3) If P ⊂ (DR
1 )p, then we get

K(P ) = K∗(P )− 3||VR∇XX ||2.(4.1)

Using (4.1), we have:

Theorem 4.1. Let F be an almost h-v-semi-slant submersion from a hy-

perkähler manifold (M, I, J,K, gM ) onto a space (N(c), gN ) of constant holo-

morphic sectional curvature c such that (I, J,K) is an almost h-v-semi-slant

basis. Assume that the distribution DR
1 is a totally geodesic foliation with

dimDR
1 > 0 for some R ∈ {I, J,K}. Then we have

K(P ) = c for any R-invariant plane P ⊂ DR
1 .

Now we will introduce an inequality of a h-v-semi-slant submersion in terms
of squared mean curvature, scalar curvature, and h-v-semi-slant angle.

Let (M,E, gM ) be a quaternionic Kähler manifold with a local quaternionic
Hermitian basis {J1, J2, J3}.

Given a nonzero tangent vector X ∈ TpM , p ∈ M , we have a 4-dimensional
subspace

Q(X) := {a0X + a1J1X + a2J2X + a3J3X ∈ TpM | ai ∈ R, 0 ≤ i ≤ 3}.

Let S(X) be the set of all 2-dimensional subspaces P in Q(X).
Denote by K(P ) the sectional curvature of the plane P ⊂ TpM , p ∈ M , in

(M, gM ).
Then we define a function ρX : S(X) 7→ R by

ρX(P ) := K(P ) for P ∈ S(X).

If the function ρX is constant, then we call ρX the Q-sectional curvature.
A quaternionic Kähler manifold (M,E, gM ) is said to be of constant Q-

sectional curvature c if ρX is the Q-sectional curvature for any nonzero X ∈
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TpM , p ∈ M and the function ρ : S 7→ R, given by ρ(P ) := K(P ), is also

constant and is equal to c, where S =
⋃

X∈TM S(X).
It is well-known that a quaternionic Kähler manifold (M,E, gM ) is of con-

stant Q-sectional curvature c if and only if its curvature tensor is given by
[14]

R(X,Y )Z =
c

4
{gM (Z, Y )X − gM (X,Z)Y +

3
∑

i=1

(gM (Z, JiY )JiX(4.2)

− gM (Z, JiX)JiY + 2gM (X, JiY )JiZ)}

for any X,Y, Z ∈ Γ(TM).
Let (Mn(c), E, gM ) be a 4n-dimensional quaternionic Kähler manifold of

constant Q-sectional curvature c and (N4n−2, gN ) a (4n− 2)-dimensional Rie-
mannian manifold.

Let F : (Mn(c), E, gM ) 7→ (N4n−2, gN) be a h-v-semi-slant submersion.
Given a point p ∈ M with a neighborhood U , there exists a quaternionic Her-

mitian basis {J1, J2, J3} of sections of E on U such that for anyR ∈ {J1, J2, J3},
there is a distribution D1 ⊂ (kerF∗)

⊥ on U such that

(kerF∗)
⊥ = D1 ⊕D2, R(D1) = D1,

and the angle θR = θR(X) between RX and the space (D2)q is constant for
nonzero X ∈ (D2)q and q ∈ U , where D2 is the orthogonal complement of D1

in (kerF∗)
⊥.

Assume that θR ∈ (0, π
2 ) for some R ∈ {J1, J2, J3}.

Using Remark 3.9, we can obtain a local orthonormal frame

{e1, J1e1, J2e1, J3e1, . . . , en−1, J1en−1, J2en−1, J3en−1, v, sec θRCRv}

of (kerF∗)
⊥ such that {e1, J1e1, J2e1, J3e1, . . . , en−1, J1en−1, J2en−1, J3en−1}

⊂ Γ(D1), {v, sec θRCRv} ⊂ Γ(D2), and {csc θRBRv, csc θR sec θRBRCRv} is a
local orthonormal frame of kerF∗.

Denote by τ̂ and H the scalar curvature of any fiber and the mean curvature
vector field of any fiber, respectively.

On U , we have

τ̂ = ̂K(kerF∗) = csc4 θR sec2 θRgM ( ̂R(BRv,BRCRv)BRCRv,BRv)

and

H =
1

2
csc2 θR(TBRvBRv + sec2 θRTBRCRvBRCRv),

where ̂R is the Riemannian curvature tensor of any fiber.
Denote by ||H ||2 the squared mean curvature, i.e., ||H ||2 = gM (H,H).
With the above notations, we get:

Theorem 4.2. Let (Mn(c), E, gM ) be a 4n-dimensional quaternionic Kähler

manifold of constant Q-sectional curvature c and (N4n−2, gN) a (4n − 2)-
dimensional Riemannian manifold.
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Let F : (Mn(c), E, gM ) 7→ (N4n−2, gN ) be a h-v-semi-slant submersion.

Assume that θR ∈ (0, π
2 ) for some R ∈ {J1, J2, J3}.

Then we have

(4.3) ||H ||2 ≥
1

2
τ̂ −

c

8
(1 + 3 cos2 θR)

with equality holding if and only if all the fibers are totally geodesic and θJi
= π

2
for Ji ∈ {J1, J2, J3} − {R}.

Proof. For convenience, let v1 := csc θRBRv and v2 := csc θR sec θRBRCRv.
Then we have

||H ||2 =
1

4
{gM(Tv1v1, Tv1v1) + gM (Tv2v2, Tv2v2) + 2gM (Tv1v1, Tv2v2)}

and

τ̂ = gM ( ̂R(v1, v2)v2, v1)

=
c

4

(

1 + 3
3
∑

i=1

gM (v1, Jiv2)
2

)

+ gM (Tv1v1, Tv2v2)− gM (Tv1v2, Tv1v2).

Since BRCR + φRBR = 0 on (kerF∗)
⊥, by Remark 3.9, we obtain

gM (v1, Rv2)
2 = csc4 θR · sec2 θRgM (RBRv,BRCRv)

2

= csc4 θR · sec2 θRgM (BRCRv,BRCRv)
2

= cos2 θR.

Using the above results, we have

||H ||2 =
1

2
τ̂ −

c

8



1 + 3 cos2 θR + 3
∑

Ji 6=R

gM (v1, Jiv2)
2





+
1

4
||Tv1v1||

2 +
1

4
||Tv2v2||

2 +
1

2
||Tv1v2||

2.

For any Ji ∈ {J1, J2, J3} − {R}, since gM (v1, φJi
v1) = gM (v2, φJi

v2) = 0 and
gM (v1, φJi

v2) = −gM (φJi
v1, v2), we get

gM (v1, Jiv2) = 0 ⇔ gM (v1, φJi
v2) = 0

⇔ φJi
= 0 on kerF∗

⇔ θJi
=

π

2
.

Hence,

||H ||2 ≥
1

2
τ̂ −

c

8
(1 + 3 cos2 θR)

with equality holding if and only if T = 0 and θJi
= π

2 for Ji ∈ {J1, J2, J3} −
{R}.

Therefore, we obtain the result. �
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5. Examples

Note that given an Euclidean space R4m with coordinates (x1, x2, . . . , x4m),
we can canonically choose complex structures I, J,K on R4m as follows:

I( ∂
∂x4k+1

) = ∂
∂x4k+2

, I( ∂
∂x4k+2

) = − ∂
∂x4k+1

, I( ∂
∂x4k+3

) = ∂
∂x4k+4

,

I( ∂
∂x4k+4

) = − ∂
∂x4k+3

, J( ∂
∂x4k+1

) = ∂
∂x4k+3

, J( ∂
∂x4k+2

) = − ∂
∂x4k+4

,

J( ∂
∂x4k+3

) = − ∂
∂x4k+1

, J( ∂
∂x4k+4

) = ∂
∂x4k+2

, K( ∂
∂x4k+1

) = ∂
∂x4k+4

,

K( ∂
∂x4k+2

) = ∂
∂x4k+3

, K( ∂
∂x4k+3

) = − ∂
∂x4k+2

, K( ∂
∂x4k+4

) = − ∂
∂x4k+1

for k ∈ {0, 1, . . . ,m− 1}.
Then we can check that (I, J,K, 〈 , 〉) is a hyperkähler structure on R4m,

where 〈 , 〉 denotes the Euclidean metric on R4m. Throughout this section, we
will use these notations.

Example 5.1. Let (M,E, g) be an almost quaternionic Hermitian manifold.
Let π : TM 7→ M be the natural projection. Then the map π is a strictly
h-v-semi-slant submersion such that D1 = (kerπ∗)

⊥ [11].

Example 5.2. Let (M,EM , gM ) and (N,EN , gN ) be almost quaternionic Her-
mitian manifolds. Let F : M 7→ N be a quaternionic submersion. Then the
map F is a strictly h-v-semi-slant submersion such that D1 = (kerF∗)

⊥ [11].

Example 5.3. Define a map F : R8 7→ R3 by

F (x1, . . . , x8) = (x5 sinα− x7 cosα, x1, x2),

where α is constant. Then the map F is a strictly h-v-semi-slant submersion
such that

D1 = 〈
∂

∂x1
,

∂

∂x2
〉 and D2 = 〈sinα

∂

∂x5
− cosα

∂

∂x7
〉

with the strictly h-v-semi-slant angle θ = π
2 .

Example 5.4. Let (M,E, gM ) be a 4m-dimensional almost quaternionic Her-
mitian manifold and (N, gN ) a (4m−1)-dimensional Riemannian manifold. Let
F : (M,E, gM ) 7→ (N, gN ) be a Riemannian submersion. Then the map F is
an almost h-v-semi-slant submersion such that

DR
1 = ((kerF∗)⊕R(kerF∗))

⊥ and D2 = R(kerF∗)

with the almost h-v-semi-slant angle θR = π
2 for R ∈ {I, J,K}, where {I, J,K}

is a quaternionic Hermitian basis.

Example 5.5. Define a map F : R12 7→ R8 by

F (x1, . . . , x12) = (
x5 − x7
√
2

, x8,
x9 + x11

√
2

, x10, x1, x3, x2, x4).

Then the map F is a h-v-semi-slant submersion such that

D1 = 〈
∂

∂x1
,

∂

∂x2
,

∂

∂x3
,

∂

∂x4
〉 and D2 = 〈

∂

∂x8
,

∂

∂x10
,

∂

∂x5
−

∂

∂x7
,

∂

∂x9
+

∂

∂x11
〉



458 KWANG-SOON PARK

with the h-v-semi-slant angles {θI = π
4 , θJ = π

2 , θK = π
4 }.

Example 5.6. Define a map F : R12 7→ R6 by

F (x1, . . . , x12) = (x5 cosα+ x7 sinα, x6 sinβ − x8 cosβ, x11, x12, x9, x10),

where α and β are constant. Then the map F is a h-v-semi-slant submersion
such that

D1 = 〈
∂

∂x9
,

∂

∂x10
,

∂

∂x11
,

∂

∂x12
〉

and

D2 = 〈cosα
∂

∂x5
+ sinα

∂

∂x7
, sinβ

∂

∂x6
− cosβ

∂

∂x8
〉

with the h-v-semi-slant angles {θI , θJ = π
2 , θK} such that cos θI = | sin(α− β)|

and cos θK = | cos(α− β)|.

Example 5.7. Define a map F : R12 7→ R6 by

F (x1, . . . , x12) = (x8, x7, . . . , x3).

Then the map F is an almost h-v-semi-slant submersion such that

DI
1 = 〈

∂

∂x3
,

∂

∂x4
, . . . ,

∂

∂x8
〉,

DJ
1 = DK

1 = 〈
∂

∂x5
,

∂

∂x6
,

∂

∂x7
,

∂

∂x8
〉,

DI
2 = 0, DJ

2 = DK
2 = 〈

∂

∂x3
,

∂

∂x4
〉.

with the almost h-v-semi-slant angles {θI = 0, θJ = π
2 , θK = π

2 }.

Example 5.8. Define a map F : R12 7→ R4 by

F (x1, . . . , x12) = (x2, x5, x1, x7).

Then the map F is an almost h-v-semi-slant submersion such that

DI
1 = DJ

2 = 〈
∂

∂x1
,

∂

∂x2
〉,

DJ
1 = DI

2 = 〈
∂

∂x5
,

∂

∂x7
〉,

DK
1 = 0, DK

2 = 〈
∂

∂x1
,

∂

∂x2
,

∂

∂x5
,

∂

∂x7
〉,

DI
2 = 〈

∂

∂x5
,

∂

∂x7
〉, DJ

2 = 〈
∂

∂x1
,

∂

∂x2
〉,

with the almost h-v-semi-slant angles {θI = π
2 , θJ = π

2 , θK = π
2 }.
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