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CIRCLES ALONG A RIEMANNIAN MAP AND

CLAIRAUT RIEMANNIAN MAPS

Bayram Şahin

Abstract. We first extend Yano-Nomizu’s theorem, which characterizes
extrinsic spheres in a Riemannian manifold, for Riemannian maps. Then
we introduce Clairaut Riemannian maps, give an example and obtain
necessary and sufficient conditions for a Riemannian map to be Clairaut
type.

1. Introduction

A smooth curve α on a Riemannian manifold M parametrized by its ar-
clength is called a circle if it satisfies

(1.1) ∇α̇∇α̇α̇ = −κ2α̇

with some nonnegative constant κ, where ∇α̇ denotes the covariant differen-
tiation along α with respect to the Riemannian connection ∇ on M . This
condition is equivalent to the condition that there exist a nonnegative constant
κ and a field of unit vectors Y along this curve which satisfies the following
differential equations:

∇α̇α̇ = κY,(1.2)

∇α̇Y = −κα̇.(1.3)

Here κ is called curvature of α. For a given point p ∈ M , an orthonormal pair
of tangent vectors u, v ∈ TpM and a positive constant κ, by the existence and
uniqueness theorem on solutions for ordinary differential equations we have
locally a unique circle α = α(s) with initial condition that α(0) = p; α̇(0) = u

and ∇α̇α̇ = κv. In [19] Nomizu-Yano showed that α is a circle if and only if
the following is satisfied

(1.4) ∇2
α̇α̇+ g(∇α̇α̇,∇α̇α̇)α̇ = 0,
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where g is the metric and ∇2
α̇α̇ is ∇α̇∇α̇α̇. We also recall that a submanifold

Mn of a Riemannian manifold M̄m is called an (extrinsic) sphere if it is um-
bilical and has parallel mean curvature vector. Nomizu-Yano also proved that
if every circle of radius r in Mn is a circle in M̄m for some r > 0, then Mn is
a sphere. Conversely, if M is a sphere in M̄ , then every circle in M is also a
circle or a geodesic in M̄ . Many authors have studied circles on Riemannian
manifolds and they showed that it is possible to obtain certain properties of
a submanifold by observing the extrinsic shape of circles on this submanifold,
see: [1], [3], [8], [14], [15], [17], [18], [21], [22].

In elementary differential geometry, if θ is the angle between the velocity vec-
tor of a geodesic and a meridian, and r is the distance to the axis of a surface
of revolution, Clairaut’s relation states that r sin θ is constant. In the submer-
sion theory, this notion was defined by Bishop. According to his definition, a
submersion F : M → N is called a Clairaut submersion if there is a function
r : M → R

+ such that for every geodesic, making angles θ with the horizontal
subspaces, r sin θ is constant. Clairaut submersions have been studied in Loren-
tizan spaces and timelike, spacelike and null geodesics of Lorentzian Clairaut
submersion with one-dimensional fibers have been investigated in details. It
is shown that such submersions have their applications in static space times
[4]. In [13] the author also showed that the notion of Clairaut submersion is
an useful tool for obtaining decomposition theorems on Riemannian manifolds.
Moreover, Clairaut submersions have been further generalized in [5] and [9].

On the other hand, in 1992, Fischer introduced Riemannian maps between
Riemannian manifolds in [12] as a generalization of the notions of isomet-
ric immersions and Riemannian submersions. Let F : (M, g

M
) −→ (N, g

N
)

be a smooth map between Riemannian manifolds such that 0 < rankF ≤
min{m,n}, where dimM = m and dimN = n. Then we denote the kernel
space of F∗ by Vp = kerF∗p at p ∈ M and consider the orthogonal complemen-
tary space Hp = (kerF∗p)

⊥ to kerF∗p. Then TpM of M at p has the following
decomposition

TpM = kerF∗p ⊕ (kerF∗p)
⊥ = Vp ⊕Hp.

We denote the range of F∗ by rangeF∗p at p ∈ M and consider the orthogonal
complementary space (rangeF∗p)

⊥ to rangeF∗p in the tangent space TF (p)N of

N at p ∈ M . Since rankF ≤ min{m,n}, we have (rangeF∗)
⊥ 6= {0}. Thus the

tangent space TF (p)N of N at F (p) ∈ N has the following decomposition

TF (p)N = (rangeF∗p)⊕ (rangeF∗p)
⊥.

Now, a smooth map F : (M
m

1 , g
M
) −→ (M

n

2 , gN
) is called Riemannian map

at p1 ∈ M if the horizontal restriction F
h

∗p1
: (kerF∗p1

)⊥ −→ (rangeF∗p1
) is a

linear isometry between the inner product spaces

((kerF∗p1
)⊥, g

M
(p1) |(kerF

∗p1
)⊥)
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and
(rangeF∗p1

, g
N
(p2) |(rangeF

∗p1
)),

p2 = F (p1). Therefore Fischer stated in [12] that a Riemannian map is a map
which is as isometric as it can be. In another words, F∗ satisfies the equation

(1.5) g
N
(F∗X,F∗Y ) = g

M
(X,Y )

for X,Y vector fields tangent to H. It follows that isometric immersions and
Riemannian submersions are particular Riemannian maps with kerF∗ = {0}
and (rangeF∗)

⊥ = {0}. It is known that a Riemannian map is a subimmersion
[12] and this fact implies that the rank of the linear map F∗p : TpM −→ TF (p)N

is constant for p in each connected component of M , [2] and [12]. It is also
important to note that Riemannian maps satisfy the eikonal equation which is
a bridge between geometric optics and physical optics, [12].

The first aim of this paper is to extend Nomizu-Yano’s result to the Rie-
mannian maps. The second aim of this paper is to introduce notion of Clairaut
Riemannian maps, give an example and obtain characterizations. Thus we are
going to show that one can investigate the geometry of a Riemannian map it-
self, and domain manifold and target manifold of a Riemannian map by using
circles and Clairaut maps. Because Riemannian maps include isometric im-
mersions and Riemannian submersions as subclasses, the topics studied in this
paper have potential for further research.

2. Preliminaries

In this section, we recall fundamental formulas for Riemannian maps similar
to the Gauss-Weingarten formulas of isometric immersions. Let (M, g

M
) and

(N, g
N
) be Riemannian manifolds and suppose that F : M −→ N is a smooth

map between them. Then the differential F∗ of F can be viewed as a sec-
tion of the bundle Hom(TM,F−1TN) −→ M, where F−1TN is the pullback
bundle whose fibres at p ∈ M is (F−1TN)p = TF (p)N, p ∈ M. The bundle

Hom(TM,F−1TN) has a connection ∇ induced from the Levi-Civita connec-
tion ∇M and the pullback connections ∇F . Then the second fundamental form
of F is given by

(2.1) (∇F∗)(X,Y ) = ∇F
XF∗(Y )− F∗(∇

M
X Y )

for X,Y ∈ Γ(TM). It is known that the second fundamental form is sym-
metric. First note that in [23] we showed that the second fundamental form
(∇F∗)(X,Y ), ∀X,Y ∈ Γ((kerF∗)

⊥), of a Riemannian map has no components
in rangeF∗. More precisely, we have

(2.2) (∇F∗)(X,Y ) ∈ Γ((rangeF∗)
⊥), ∀X,Y ∈ Γ((kerF∗)

⊥).

From now on, for simplicity, we denote by ∇2 both the Levi-Civita connec-
tion of (N, g

N
) and of its pullback along F . Then according to [20], for any

vector field X on M and any section V of (rangeF∗)
⊥, where (rangeF∗)

⊥ is
the subbundle of F−1(TN) with fiber (F∗(TpM))⊥-orthogonal complement of
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F∗(TpM) for g
N

over p, we have ∇
F⊥

X V which is the orthogonal projection of

∇2
XV on (F∗(TM))⊥. In [20], the author also showed that ∇

F⊥

is a linear

connection on (F∗(TM))⊥ such that ∇
F⊥

g
N
= 0. We now define SV as

(2.3) ∇2
X
V = −S

V
F∗X +∇

F⊥

X
V,

where S
V
F∗X is the tangential component (a vector field along F ) of ∇2

X
V . It

is easy to see that SV F∗X is bilinear in V and F∗X and SV F∗X at p depends
only on Vp and F∗pXp. By direct computations, we obtain

(2.4) g
N
(S

V
F∗X,F∗Y ) = g

N
(V, (∇F∗)(X,Y ))

for X,Y ∈ Γ((kerF∗)
⊥) and V ∈ Γ((rangeF∗)

⊥). Since (∇F∗) is symmetric, it
follows that S

V
is a symmetric linear transformation of rangeF∗.

Let F be a Riemannian map from a Riemannian manifold (M, g
M
) to a

Riemannian manifold (N, g
N
). Then we define A and T as

AEF = H∇HEVF + V∇HEHF, TEF = H∇VEVF + V∇VEHF(2.5)

for vector fields E,F on M , where ∇ is the Levi-Civita connection of g
M
, V

and H denote the projections to vertical subbundle and horizontal subbundle,
respectively. In fact, one can see that these tensor fields are O’Neill’s tensor
fields which were defined for Riemannian submersions. For anyE ∈ Γ(TM), TE
and AE are skew-symmetric operators on (Γ(TM), g) reversing the horizontal
and the vertical distributions. It is also easy to see that T is vertical, TE = TVE

and A is horizontal, A = AHE . We note that the tensor field T satisfies

(2.6) TUW = TWU, ∀U,W ∈ Γ(kerF∗).

On the other hand, from (2.5) we have

∇V W = TV W + ∇̂V W,(2.7)

∇XV = AXV + V∇XV,(2.8)

∇XY = H∇XY +AXY(2.9)

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), where ∇̂V W = V∇V W .

Umbilical maps have been defined in [20] and [25]. In fact, in [20] the author
gave many definitions of umbilical maps with respect to the Riemannian metrics
of the source manifolds and target manifolds. But we note that the definition
given in [25] is same with the definition of g-umbilicity map given in [20]. We
recall that a map F : (M

m

, g
M
) −→ (N

n

, g
N
) between Riemannian manifolds

is called umbilical ([25]) if

(2.10) ∇F∗ =
1

m
g
M

⊗ τ,

where τ denotes the tension field of the map F . In [24], we showed that every
umbilical Riemannian map is totally geodesic, it means that this notion does
not work for Riemannian maps. Therefore we presented the following definition
for Riemannian maps.
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Definition 2.1 ([24]). Let F be a Riemannian map between Riemannian man-
ifolds (M, g

M
) and (N, g

N
). Then we say that F is an umbilical Riemannian

map at p1 ∈ M if

(2.11) SV F∗p1(Xp1
) = λF∗p1

(Xp1
)

for X ∈ Γ((kerF∗)
⊥) and V ∈ Γ((rangeF∗)

⊥), where λ is a differentiable func-
tion on M . If F is umbilical for every p1 ∈ M , then we say that F is an
umbilical Riemannian map.

We also showed that a Riemannian map F is an umbilical Riemannian map
if and only if

(2.12) (∇F∗)(X,Y ) = g
M
(X,Y )H2

for X,Y ∈ Γ((kerF∗)
⊥), where H2 is the mean curvature vector field of the

distribution rangeF∗.

3. A characterization of Riemannian maps in terms of circles

Let F : (M, g
M
) −→ (N, g

N
) be a Riemannian map and α : I −→ M a curve

parameterized by its arclength. Then we say that α is a horizontal curve if
α̇(t) ∈ Γ(kerF∗α(t))

⊥ for any t ∈ I. In this section, we are going to prove the
following theorem.

Theorem 3.1. Let F be a Riemannian map from a connected Riemannian

manifold (M, g
M
), dimM ≥ 2, to a Riemannian manifold (N, g

N
). For some

κ > 0, let α be a horizontal circle of radius κ on M , then F is umbilical and

the mean curvature vector field H2 is parallel if and only if for every horizontal

circle α on M the curve F ◦ α is a circle on N .

Proof. Suppose that p ∈ M and α(s), |s| < ε, is a horizontal circle on M . Then
F ◦ α : I −→ N is also a curve and for each given vector field Xs along α, we
can define a vector field F∗X along F ◦ α by

(3.1) (F∗X)(s) = F∗α(s)X(s),

here s is the arc length parameter and the vector field Xs is always the unit
tangent vector field along α. Now suppose that F ◦ α is a circle on N . Then
from (1.4) we have

(3.2) (∇F
Xs

)2F∗(Xs) + g
N
(∇F

Xs
F∗(Xs),∇

F
Xs

F∗(Xs))F∗(Xs) = 0.

On the other hand, using (2.1), (2.2) and (2.3) we derive

(∇F
Xs

)2F∗(Xs) = − S(∇F
∗
)(Xs,Xs)F∗(Xs) +∇⊥

Xs
(∇F∗)(Xs, Xs)

+ (∇F∗)(Xs,∇
1
Xs

Xs) + F∗(∇
1
2

Xs
Xs),(3.3)

where ∇1 denotes the Levi-Civita connection on M . Substituting (2.1) and
(3.3) in (3.2) and using (1.2) and (1.3) we obtain

(∇F∗)(Xs,∇
1
Xs

Xs) + g
N
((∇F∗)(Xs, Xs), (∇F∗)(Xs, Xs))F∗(Xs)
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− S(∇F
∗
)(Xs,Xs)F∗(Xs) +∇⊥

Xs
(∇F∗)(Xs, Xs) = 0(3.4)

due to α is a horizontal circle. By looking at (rangeF∗) and (rangeF∗)
⊥ com-

ponents of (3.4) we have

(3.5) (∇F∗)(Xs,∇
1
Xs

Xs) +∇⊥
Xs

(∇F∗)(Xs, Xs) = 0

and

(3.6) −S(∇F
∗
)(Xs,Xs)F∗(Xs)+g

N
((∇F∗)(Xs, Xs), (∇F∗)(Xs, Xs))F∗(Xs) = 0.

We now define

(∇̃X(∇F∗))(Y, Z) = ∇⊥
X(∇F∗)(Y, Z)− (∇F∗)(∇

1
XY, Z)− (∇F∗)(Y,∇

1
XZ)

for X,Y, Z ∈ Γ(TM). Then we can write

(3.7) (∇̃Xs
(∇F∗))(Xs, Xs) = ∇⊥

Xs
(∇F∗)(Xs, Xs)− 2(∇F∗)(∇

1
Xs

Xs, Xs).

Using (3.7) in (3.5) we arrive at

(3.8) 3(∇F∗)(∇
1
Xs

Xs, Xs) = −(∇̃Xs
(∇F∗))(Xs, Xs).

Thus we get

(3.9) (∇F∗)(X,Y ) = −
1

3κ
(∇̃Xs

(∇F∗))(Xs, Xs), ∀X,Y ∈ Γ((kerF∗)
⊥).

This equation shows that given a unit vector X ∈ TpM , (∇F∗)(X,Y ) does not
depend on a unit vector Y ∈ TpM provided Y is orthogonal to X . Changing
Y into −Y , we have

(3.10) (∇F∗)(X,Y ) = 0.

On the other hand, 1√
2
(X + Y ), 1√

2
(X − Y ) are orthogonal , hence we derive

(3.11) (∇F∗)(
1
√
2
(X + Y ),

1
√
2
(X − Y )) = 0.

Since ∇F∗ is linear, we obtain

(3.12) (∇F∗)(X,X) = (∇F∗)(Y, Y ).

Now let {X1, . . . , Xn} be an orthonormal basis in Γ((kerF∗)
⊥), then we have

(∇F∗)(X1, X1) = (∇F∗)(X2, X2) = · · · .

Thus we have

H2 = (∇F∗)(X1, X1).

Moreover, choosing X =
∑

aiXi, Y =
∑

bjXj, we get

(∇F∗)(X,Y ) =
∑

i,j

aibj(∇F∗)(Xi, Xj) = g
M
(X,Y )H2,

which shows that F is umbilical. On the other hand, from (3.5) we have

∇⊥
Xs

(∇F∗)(Xs, Xs) = 0
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due to (∇F∗)(Xs,∇
1
Xs

Xs) = 0. This implies that H2 is parallel. Conversely
suppose that F is an umbilical Riemannian map and H2 is parallel. From (2.1)
we have

g
N
(∇F

Xs
F∗(Xs),∇

F
Xs

F∗(Xs)) = g
N
((∇F∗)(Xs, Xs), (∇F∗)(Xs, Xs))

+ g
N
(F∗(∇

1
Xs

Xs), F∗(∇
1
Xs

Xs)).

Then Riemannian map F and (2.12) imply that

(3.13) g
N
(∇F

Xs
F∗(Xs),∇

F
Xs

F∗(Xs)) =‖ H2 ‖2 +g
M
(∇1

Xs
Xs,∇

1
Xs

Xs).

On the other hand, since F is an umbilical Riemannian map and H2 is parallel,
we have

∇⊥
Xs

(∇F∗)(Xs, Xs) = 0 and (∇F∗)(Xs,∇
1
Xs

Xs) = 0.

Then using (3.3) and (2.12) we get

(3.14) (∇F
Xs

)2F∗(Xs) = − ‖ H2 ‖2 F∗(Xs) + F∗(∇
1
2

Xs
Xs).

Thus from (3.13) and (3.14) we obtain

(∇F
Xs

)2F∗(Xs) + g
N
(∇F

Xs
F∗(Xs),∇

F
Xs

F∗(Xs))F∗(Xs)

= F∗(∇
1
2

Xs
Xs) + g

M
(∇1

Xs
Xs,∇

1
Xs

Xs)F∗(Xs).

Since α is a circle on M , using (1.1) and (1.2) we arrive at

(∇F
Xs

)2F∗(Xs) + g
N
(∇F

Xs
F∗(Xs),∇

F
Xs

F∗(Xs))F∗(Xs) = 0

which shows that γ = F ◦ α is a circle on N . �

We recall that a diffeomorphism F : (M, g
M
) −→ (N, g

N
) between two Rie-

mannian manifolds (M, g
M
) and (N, g

N
) is called concircular if it maps circles

in M to circles in N . This notion was defined by Yano [27] and independently
by Fialkow in the more general concept of conformal geodesics [11]. The orig-
inal definition by Yano required a priori that F is conformal. But Vogel [26]
obtained the following result.

Theorem 3.2 ((Vogel) [26], [16, p. 112]). Every concircular diffeomorphism is

necessarily conformal.

Remark 1. Above theorem shows that a diffeomorphism F between Riemannian
manifolds (M, g

M
) and (N, g

N
) which preserves circles is conformal. We note

that the Riemannian map F in Theorem 3.1 can not be a diffeomorphism.
Indeed, if F is a diffeomorphism which is a local diffeomorphism, then the
inverse function theorem implies that F∗p : TpM −→ TF (p)N , p ∈ M is a
linear isomorphism. It means that F∗p is a bijection which is not the case for
a Riemannian map.
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4. Clairaut Riemannian maps

As we mentioned in introduction, the notion of Clairaut Riemannian sub-
mersion was defined by Bishop. According to his definition, a submersion
F : M → N is a Clairaut submersion if there is a function r : M → R

+ such
that for every geodesic, making angles θ with the horizontal subspaces, r sin θ
is constant. He found the following characterization.

Theorem 4.1 ([6, 10]). Let F : (M, g
M
) → (B, g) be a Riemannian submersion

with connected fibers. Then F is a Clairaut submersion with r = ef if and

only if each fiber is totally umbilical and has mean curvature vector field H =
−gradf .

We now present the notion of Clairaut Riemannian maps as follows:

Definition 4.1. A Riemannian map F : M → N between Riemannian man-
ifolds (M, g

M
) and (N, g

N
) is called a Clairaut Riemannian map if there is a

function r : M → R
+ such that for every geodesic, making angles θ with the

horizontal subspaces, r sin θ is constant.

As we have seen above, the definition involves the notion of geodesic. There-
fore we are going to find necessary and sufficient conditions for a curve on M

to be a geodesic. From (3.1) and (2.7)-(2.9) we obtain the following conditions.

Corollary 4.1. Let F : M → N be a Riemannian map. If c : I → M is a

regular curve and U and X denote the vertical and the horizontal components

of its tangent vector field, then c is a geodesic on M if and only if

∇̂UU + TUX + V∇XU = 0

and

∇F
XF∗(X) = −F∗(TUU + 2AXU) + (∇F∗)(X,X) = 0.

From Corollary 4.1, we have the following result.

Corollary 4.2. Let F : M → N be a Riemannian map and c : I → M a

geodesic with U(t) = V ċ(t) and X(t) = Hċ(t). Then the curve β = F ◦ c is a

geodesic on N if and only if

TUX + 2AXU = 0, (∇F∗)(X,X) = 0.

Proof. Since

(∇F∗)(X,X) ∈ Γ((rangeF∗p)
⊥) and F∗(TUU + 2AXU) ∈ Γ(rangeF∗p),

the assertion follows from Corollary 4.1. �

We also have the following result.

Corollary 4.3. The projection on N of a horizontal geodesic on M is a geo-

desic if and only if

(∇F∗)(X,X) = 0, X ∈ Γ((kerF∗α(t))
⊥).



CIRCLES ALONG A RIEMANNIAN MAP AND CLAIRAUT RIEMANNIAN MAPS 261

We note that the assertion of Corollary 4.3 is valid for a Riemannian sub-
mersion without any condition.

Moreover we have the following result.

Theorem 4.2. Let F : (M, g
M
) → (N, g

N
) be a Riemannian map with con-

nected fibers. Then F is a Clairaut Riemannian map with r = ef if and only if

each fiber is totally umbilical and has mean curvature vector field H = −gradf .

Proof. Let c : I −→ M be a geodesic on M with U(t) = V ċ(t) and X(t) =
Hċ(t) and let ω(t) denote the angle in [0, π] between ċ(t) and X(t). Putting
a =‖ ċ(t) ‖2, one can obtain

(4.1) gc(t)(X(t), X(t)) = a cos2 ω(t), gc(t)(U(t), U(t)) = a sin2 ω(t).

Thus, by considering the first relation of (4.1) and taking the derivative of it
with respect to t, we get

(4.2)
d

dt
gc(t)(X(t), X(t)) = −2a cos ω(t) sinω(t)

dω(t)

dt
.

On the other hand, since F is a Riemannian map, using (2.1) we have, along
c(t),

d

dt
gc(t)(X,X) = 2g

N
(−(∇F∗)(ċ, X) +∇

F

ċ F∗(X), F∗(X)).

Since the second fundamental form of F is linear, from (2.2) we derive

d

dt
gc(t)(X,X) = 2g

N
(−(∇F∗)(U,X) +∇

F

ċ F∗(X), F∗(X)).

Then (2.1) and Riemannian map F imply

d

dt
gc(t)(X,X) = 2g

M
(∇XU,X) + 2g

N
(∇

F

ċ F∗(X), F∗(X)).

Using (2.8) we obtain

d

dt
gc(t)(X,X) = 2g

M
(AXU,X) + 2g

N
(∇

F

ċ F∗(X), F∗(X)).

Thus skew-symmetric A implies that

d

dt
gc(t)(X,X) = −2g

M
(U,AXX) + 2g

N
(∇

F

ċ F∗(X), F∗(X)).

Hence we obtain

(4.3)
d

dt
gc(t)(X,X) = 2g

N
(∇

F

ċ F∗(X), F∗(X)).

Then from (4.2) and (4.3) we have

(4.4) g
N
(∇

F

ċ F∗(X), F∗(X)) = −a cos ω(t) sinω(t)
dω(t)

dt
.
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By direct computations, F is a Clairaut Riemannian map with r = ef if and
only if d

dt
(ef◦c sinω) = 0. Multiplying this with the nonzero factor a sinω(t),

we get

(4.5) −a sinω cosω
dω

dt
=

df

dt
a sin2 ω.

Thus from (4.1), (4.4) and (4.5) we find

(4.6) g
N
(∇

F

ċ F∗(X), F∗(X)) =
df

dt
g
M
(U,U).

Since c(t) is geodesic on M , from the second equation of Corollary 4.1. we have

g
N
(−F∗(TUU + 2AXU) + (∇F∗)(X,X), F∗(X)) =

df

dt
g
M
(U,U).

Then Riemannian map F and (2.2) imply

−g
M
(TUX + 2AXU,X) =

df

dt
g
M
(U,U).

Hence we obtain

g
M
(TUU,X) =

df

dt
g
M
(U,U).

The rest of this proof is same with the calculations given in [10, p. 30]. �

We note that the above condition does not imply that the Riemannian map
itself is totally umbilical contrary to the Riemannian submersions. We now
give an example of Clairaut Riemannian maps.

Example 1. Let (B, g
B
) and (F, g

F
) be two Riemannian manifolds, f : B →

(0,∞) and π
1
: B × F → B, π

2
: B × F → F the projection maps given by

π
1
(p1, p2) = p1 and π

2
(p1, p2) = p2 for every (p1, p2) ∈ B × F . The warped

product ([7]) M = B×fF is the manifold B×F equipped with the Riemannian
structure such that

g(X,Y ) = g
B
(π

1∗
X, π

1∗
Y ) + (foπ1)

2g
F
(π

2∗
X, π

2∗
Y )

for every X and Y of M , where ∗ denotes the tangent map. The function f

is called the warping function of the warped product manifold. In particular,
if the warping function is constant, then the warped product manifold M is
said to be trivial. It is known that the first projection π

1
: B × F → B is

a Riemannian submersion whose vertical and horizontal spaces at any point
p = (p1, p2) are respectively identified with Tp2

F , Tp1
B. Moreover the fibers

of π
1
is totally umbilical with mean curvature vector field H = − 1

2f gradf . We

now consider the isometric immersion π : B −→ B ×f F , then the composite
map π◦π

1
is a Riemannian map. Moreover the projection π

1
and the map π◦π

1

have the same vertical distribution. Hence π◦π
1
is a Clairaut Riemannian map

with r =
√
f .

We also have another characterization.
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Corollary 4.4. Let F : (M, g
M
) → (N, g

N
) be a Riemannian map with con-

nected fibers. Let c : I → M be a geodesic on M with U(t) = V ċ(t) and

X(t) = Hċ(t). Then F is a Clairaut Riemannian map with r = ef if and only

if

g
N
(∇F

ċ(t)F∗(X), F∗(X)) =
df

dt
g
M
(U,U).
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