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POINTWISE SLANT SUBMERSIONS

Jae Won Lee and Bayram Sahin

Abstract. The purpose of this paper is to study pointwise slant submer-
sions from almost Hermitian manifolds which extends slant submersion
in a natural way. Several basic results in this point of view are proven in
this paper.

1. Introduction

As a generalization of slant submanifolds, pointwise slant submanifolds were
first defined by Etayo [10] under the name of quasi-slant submanifolds and
such submanifolds have been recently studied in details by Chen and Garay
[7]. Chen and Garay obtain simple characterizations, give a method how to
construct such submanifolds in Euclidean space and investigate geometric and
topological properties of pointwise slant submanifolds. Since slant submanifolds
include holomorphic submanifolds and totally real submanifolds, the class of
pointwise slant submanifolds is a general notion for the theory of submanifolds
of almost Hermitian manifolds.

On the other hand, Riemannian submersions between Riemannian manifolds
were studied by O’Neill [19] and Gray [12]. Riemannian submersions have sev-
eral applications in mathematical physics. Indeed, Riemannian submersions
have their applications in the Yang-Mills theory ([2, 24]), Kaluza-Klein theory
([3, 15]), supergravity and superstring theories ([16, 18]), etc. Later such sub-
mersions were considered between manifolds with differentiable structures, see:
[11]. As an analogue of holomorphic submanifolds, Watson defined almost Her-
mitian submersions between almost Hermitian manifolds and he showed that
the base manifold and each fiber have the same kind of structure as the total
space, in most cases [23]. We now recall the notion of almost Hermitian sub-
mersion. Let M be a complex m-dimensional almost Hermitian manifold with
Hermitian metric gM and almost complex structure JM and N be a complex n-
dimensional almost Hermitian manifold with Hermitian metric gN and almost
complex structure JN . A Riemannian submersion F : M −→ N is called an
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almost Hermitian submersion (or holomorphic submersion) if F is an almost
complex mapping, i.e., F∗JM = JNF∗. The main result of this notion is that
the vertical and horizontal distributions are JM -invariant. On the other hand,
Riemannian submersions from almost Hermitian manifolds onto Riemannian
manifolds have been studied by many authors under the assumption that the
vertical spaces of such submersions are invariant with respect to the complex
structure. For instance, Escobales [9] studied Riemannian submersions from
complex projective space onto a Riemannian manifold under the assumption
that the fibers are connected, complex, totally geodesic submanifolds. One can
see that this assumption implies that the vertical distribution is invariant. We
note that almost Hermitian submersions have been extended to the almost con-
tact manifolds [8], [13], locally conformal Kähler manifolds [17] and quaternion
Kähler manifolds [14].

In [20], the second author introduced anti-invariant Riemannian submersions
from almost Hermitian manifolds onto Riemannian manifolds as follows. LetM
be a complex m-dimensional almost Hermitian manifold with Hermitian metric
g
M

and almost complex structure J and N be a Riemannian manifold with
Riemannian metric g

N
. Suppose that there exists a Riemannian submersion

F : M −→ N such that the integral manifold of the distribution kerF∗ is anti-
invariant with respect to J , i.e., J(kerF∗) ⊆ (kerF∗)

⊥. Then we say that F

is an anti-invariant Riemannian submersion. Recently, the second author also
introduced the notion of slant submersions from almost Hermitian manifolds
onto arbitrary Riemannian manifolds [21] as follows: Let F be a Riemannian
submersion from an almost Hermitian manifold (M1, g1, J1) onto a Riemannian
manifold (M2, g2). If for any non-zero vector X ∈ Γ(kerF∗), the angle θ(X)
between JX and the space kerF∗ is a constant, i.e. it is independent of the
choice of the point p ∈ M1 and choice of the tangent vector X in kerF∗, then
we say that F is a slant submersion. In this case, the angle θ is called the slant
angle of the slant submersion.

In this paper, we study pointwise slant submersions from almost Hermitian
manifolds which include slant submersions. As a result of this, they also cover
holomorphic submersions and anti-invariant submersions [20]. In Section 2,
we recall basic facts for Riemannian submersions and almost Hermitian man-
ifolds. In Section 3, we define pointwise slant Riemannian submersions and
give a method for obtaining examples of such submersions. We also obtain a
characterization of pointwise slant submersions and check the relation between
slant submanifolds and pointwise slant submanifolds. We also investigate the
harmonicity of such maps and find necessary and sufficient conditions for the
fibers to be totally geodesic submanifolds. Then we give necessary and sufficient
conditions for pointwise slant Riemannian submersions to be totally geodesic.
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2. Preliminaries

Let (M̄, g, J) be an almost Hermitian manifold. This means that M̄ admits
a tensor field J of type (1, 1) on M̄ such that

(2.1) J2 = −I, g(JX, JY ) = g(X,Y ), X, Y ∈ Γ(TM̄).

An almost Hermitian manifold M̄ is called Kähler manifold if

(2.2)
(

∇̄XJ
)

Y = 0, X, Y ∈ Γ(TM̄),

where ∇̄ is the operator of Levi-Civita covariant differentiation.
Let (Mm, gM ) and (Nn, gN ) be Riemannian manifolds, where dimM = m,

dimN = n and m > n. A Riemannian submersion F : M −→ N is a map from
M onto N satisfying the following axioms:

(S1) F has the maximal rank.
(S2) The differential F∗ preserves the lengths of horizontal vectors.

For each q ∈ N , F−1(q) is an (m− n)-dimensional submanifold of M . The
submanifolds F−1(q) are called fibers. A vector field on M is called vertical
if it is always tangent to fibers. A vector field on M is called horizontal if it
is always orthogonal to fibers. A vector field X on M is called basic if X is
horizontal and F -related to a vector field X∗ on N , i.e., F∗Xp = X∗F (p) for
all p ∈ M . Note that we denote the projection morphisms on the distributions
kerF∗ and (kerF∗)

⊥ by V and H, respectively.
We recall the following lemma from O’Neil [19].

Lemma 2.1. Let F : M −→ N be a Riemannian submersion between Rie-

mannian manifolds and X,Y be basic vector fields of M . Then

(a) gM (X,Y ) = gN (X∗, Y∗) ◦ F .

(b) the horizontal part [X,Y ]H of [X,Y ] is a basic vector field and corre-

sponds to [X∗, Y∗], i.e., F∗([X,Y ]) = [X∗, Y∗].
(c) [V,X ] is vertical for any vector field V of kerF∗.
(d) (∇M

X Y )H is the basic vector field corresponding to ∇N
X∗

Y∗.

The geometry of Riemannian submersions is characterized by O’Neil’s ten-
sors T and A defined for vector fields E, F on M by

AEF = H∇HEVF + V∇HEHF ,(2.3)

TEF = H∇VEVF + V∇VEHF ,(2.4)

where∇ is the Levi-Civita connection of gM . It is easy to see that a Riemannian
submersion F : M −→ N has totally geodesic fibers if and only if T vanishes
identically. For any E ∈ Γ(TM), T is vertical, TE = TVE and A is horizontal,
AE = AHE . We note that the tensor T and A satisfy

TUW = TWU, U,W ∈ Γ(kerF∗),(2.5)

AXY = −AY X =
1

2
V [X,Y ], X, Y ∈ Γ((kerF∗)

⊥).(2.6)
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On the other hand, from (2.3) and (2.4), we have

∇V W = TV W + ∇̂V W,(2.7)

∇V X = H∇V X + TV X,(2.8)

∇XV = AXV + V∇XV,(2.9)

∇XY = H∇XY +AXY(2.10)

for X,Y ∈ Γ((kerF∗)
⊥) and V,W ∈ Γ(kerF∗), where ∇̂V W = V∇V W . If X

is basic, then H∇V X = AXV . Note that we will also use the symbols V and
H to denote the distributions kerF∗ and (kerF∗)

⊥, respectively.
Finally, we recall the notion of harmonic maps between Riemannian mani-

folds. Let (M, gM ) and (N, gN ) be Riemannian manifolds and supposed that
F : M −→ N is a smooth map. Then the differential F∗ of F can be viewed a
section of the bundle Hom(TM,F−1TN) → M , where F−1TN is the pullback
bundle which has fibers (F−1TN)p = TF (p)N , p ∈ M . Hom(TM,F−1TN) has

a connection ∇ induced from the Levi-Civita connection ∇M and the pullback
connection ∇F . Then the second fundamental form of F is given by

(2.11) (∇F∗)(X,Y ) = ∇F
X (F∗(Y ))− F∗(∇

M
X Y )

forX,Y ∈ Γ(TM). It is known that the second fundamental form is symmetric.
We note that if F is a Riemannian submersion between Riemannian manifolds,
then we have

(2.12) (∇F∗)(X,Y ) = 0

for X,Y ∈ Γ((kerF∗)
⊥). A smooth map F : (M, gM ) −→ (N, gN ) is said to be

harmonic if trace(∇F∗) = 0. On the other hand, the tension field of F is the
sectionτ(F ) of Γ(F−1TN) defined by

(2.13) τ(F ) = divF∗ =

m
∑

i=1

(∇F∗)(ei, ei),

where {e1, . . . , em} is the orthonormal frame on M . Then it follows that F is
harmonic if and only if τ(F ) = 0 (for details, see [1]).

3. Pointwise slant submersions

In this section, we are going to define pointwise slant submersions and in-
vestigate the geometry of such submersions.

Definition 3.1. Let F be a Riemannian submersion from an almost Hermitian
manifold (M, gM , J) onto a Riemannian manifold (N, gN ). If, at each given
point p ∈ M , the Wirtinger angle θ(X) between JX and the space (kerF∗)p is
independent of the choice of the nonzero vector X ∈ (kerF∗), then we say that
F is a pointwise slant submersion. In this case, the angle θ can be regarded
as a function on M , which is called the slant function of the pointwise slant
submersion.
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Definition 3.2. A point p in a pointwise slant submersion is called totally real

if its slant function θ = π
2 at p. Similarly, a point p is called a complex point if

its slant function θ = 0 at p.

Note. A pointwise slant submersion is called slant in the sense of [21] if its slant
function θ is globally constant, i.e., θ is also independent of the choice of the
point on M . In this case, the constant θ is called the slant angle of the slant
submersion. A pointwise slant submersion F is called totally real if every point
of M is a totally real point.

We now give an example for pointwise slant submersions.

Example 3.1. Let (R4, g0) be the standard Euclidean space with the stan-
dard metric g0. Consider {J0, J1} a pair of almost complex structures on R

4

satisfying J0J1 = −J1J0, where

J0(a, b, c, d) = (−c,−d, a, b),

J1(a, b, c, d) = (−b, a, d,−c).

For any real-valued function f : R
4 −→ R, we define new almost complex

structure Jf on R
4 by

Jf = (cos f)J0 + (sin f)J1.

Then R
4
f = (R4, Jf , g0) is an almost Hermitian manifold.

Consider a Riemannian submersion F : R
4
f −→ R

2 by F (x1, x2, x3, x4) =

(x1−x2√
2

, x3−x4√
2

). Then F is a pointwise slant submersion with the slant function

f .

Note. In fact, as Chen and Garay emphasized in [7] for pointwise slant subman-
ifolds, if a Riemannian submersion is invariant [22] or holomorphic [23] with
respect to J1, then it will always produce a pointwise slant submersion with the
slant function f . This shows that there are many pointwise slant submersions.

Now, we assume that F is a Pointwise slant Riemannian submersion from
an almost Hermitian manifold (M, gM , J) onto Riemannian manifold (N, gN ).
Then for V ∈ Γ(kerF∗), we have

(3.1) JV = ϕV + ωV,

where ϕV (ωV , resp.) is vertical (horizontal, resp.) of JV . Also for X ∈
Γ((kerF∗)

⊥), we have

(3.2) JX = BX + CX,

where BX (CX , resp.) is vertical (horizontal, resp.) of JX . We denote the
orthogonal complementary distribution to ω(kerF∗) in (kerF∗)

⊥ by µ. That
is,

(kerF∗)
⊥ = ω(kerF∗)⊕ µ.
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It is easy to see that µ is an invariant subbundle of (kerF∗)
⊥ with respect to

J . Using (2.7), (2.8), (3.1) and (3.2), we obtain

(∇V ω)W = CTV W − TV ϕW,(3.3)

(∇V ϕ)W = BTV W − TV ωW,(3.4)

where ∇ is the Levi-Civita connection on M and

(∇V ω)W := H∇V ωW − ω∇̂V W,

(∇V ϕ)W := ∇̂V ϕW − ϕ∇̂V W

for V,W ∈ Γ(kerF∗). We say that ω is parallel with respect to the Levi-Civita
connection ∇ on kerF∗ if its covariant derivative with respect to ∇ vanishes,
i.e., (∇V ω)W = 0 for V,W ∈ Γ(kerF∗).

The proof of the following result is the same as slant immersions (see [7]),
therefore we omit its proof.

Theorem 3.1. Let F be a Riemannian submersion from an almost Hermit-

ian manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then F is a

pointwise slant submersion if and only if there exists a real-valued function θ

defined on kerF∗ such that

ϕ2 = −
(

cos2 θ
)

I.

A pointwise slant submersion is said to be proper if it has neither complex
points nor totally real points.

Corollary 3.2. Let F be a pointwise proper slant submersion from an almost

Hermitian manifold (Mm, gM , J) onto a Riemannian manifold (Nn, gN) with

the slant function θ. If e1, e2, . . . , em−n are locally orthonormal basis for kerF∗,
then

{csc θωe1, csc θωe2, . . . , csc θωem−n}

is a local orthonormal basis of ω(kerF∗).

The following result is a consequence from Theorem 3.2 and Corollary 3.3.

Corollary 3.3. Let F be a pointwise proper slant submersion from an almost

Hermitian manifold (M, gM , J) onto a Riemannian manifold (N, gN ). Then

the distributions µ and kerF∗ ⊕ ω(kerF∗) are even dimensional.

The following proposition gives a characterization of pointwise slant sub-
mersions

Proposition 3.4. F is a pointwise slant submersion from an almost Hermitian

manifold (M, gM , J) onto a Riemannian manifold (N, gN ) if and only if ϕ :
kerF∗ −→ kerF∗ preserves orthogonality, ϕ carries each pair of orthogonal

vectors into orthogonal vectors.
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Proof. Denote by S(kerF∗) the unit kernel bundle of kerF∗. Then consider the
function θ : S(kerF∗) −→ R on the unit kernel bundle S(kerF∗). With respect
to the induced metric, Sp(kerF∗) is the unit sphere in kerF∗p centered at o.

At a given point p ∈ M , we have

gM (ϕX,ϕX) = cos2 θ(X)

for any unit vector X ∈ kerF∗p. For each unit vector Y tangent to kerF∗p at
X ∈ kerF∗p (X⊥Y ), using gM (ϕX, (∇Y ϕ)X) = 0, we have

2gM (ϕX,ϕY ) = 2gM (ϕX,ϕ(∇Y X)) = 2gM(ϕX,∇Y (ϕX)− (∇Y ϕ)X)

= 2gM (ϕX,∇Y (ϕX)) = Y gM (ϕX,ϕX) = −(Y θ) sin 2θ(X).

In the long run, ϕ carries each pair of orthogonal vector in kerF∗p into a pair of
orthogonal vectors in kerF∗p if and only if the slant function θ is independent
of X ∈ kerF∗p. �

Proposition 3.5. Let F be a pointwise slant submersion from a Kähler man-

ifold (M, gM , J) onto a Riemannian manifold (N, gN ). F is slant submersion

if and only if

TXωϕX = TϕXωX

for X ∈ Γ(kerF∗).

Proof. Let F be a pointwise slant submersion from a Kähler manifold (M,gM ,J)
onto a Riemannian manifold (N, gN ) with the slant function θ. For any unit
vector field X ∈ Γ(kerF∗), we may put

ϕX = (cos θ)X∗,

where X∗ is a unit vector field orthogonal of X . Then for Y ∈ Γ(kerF∗), we
have

∇Y (JX) = ∇Y ((cos θ)X∗) +∇Y (ωX)

= − (sin θ) (Y θ)X∗ + (cos θ)
(

TY X
∗ + ∇̂Y X

∗
)

(3.5)

+H∇Y (ωX) + TY (ωX) .

On the other hand, we also have

∇Y (JX) = J (∇Y X)

= BTY X + CTY X + ϕ∇̂Y X + ω∇̂Y X.(3.6)

Comparing the vertical components of (3.5) and (3.6)

(3.7) − (sin θ) (Y θ)X∗ + (cos θ) ∇̂Y X
∗ + TY (ωX) = BTYX + ϕ∇̂Y X.

Therefore, by taking the inner product of (3.7) with X∗, we have

− (sin θ) (Y θ) + gM (TX∗ωX, Y ) = gM (Y, TXωX∗).

Consequently, the pointwise slant sumbersion is slant if and only if

TX∗ωX = TXωX∗. �
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Corollary 3.6. Let F be a pointwise slant submersion from a Kähler manifold

(M, gM , J) onto a Riemannian manifold (N, gN ). If F has totally geodesic

fibers, it is slant.

Proof. If F has totally geodesic fibers, T vanishes identically. Thus the proof
follows from Proposition 3.6. �

Let F be a Remannian submersion from a Riemannian manifold (M, gM )
onto a Riemannian manifold (N, gN ). Recall that a Riemannian submersion is
called a Riemannian submersion with totally umbilical fibers if

TXY = gM (X,Y )H

for X,Y ∈ Γ(kerF∗), where H is the mean curvature vector field of the fiber.

Corollary 3.7. Let F be a pointwise proper slant submersion with totally um-

bilical fibers from a Kähler manifold (M2n, gM , J) onto a Riemannian manifold

(Nn, gN ). If F has no totally geodesic fibers, then it is always non-slant.

Proof. Assume that F is a pointwise proper slant submersion with totally um-
bilical fibers. Then we have

TXY = gM (X,Y )H

for X,Y ∈ Γ(kerF∗). Therefore, we have

gM (TXωϕX, Y ) = −gM (X,Y )gM (ωϕX,H),(3.8)

gM (TϕXωX, Y ) = −gM (ϕX, Y )gM (ωX,H).(3.9)

If the submersion is slant, then Proposition 3.6 and (3.8)-(3.9) imply that

gM (ωϕX,H)X = gM (ωX,H)ϕX.

Since gM (X,ϕX) = 0,

gM (ωϕX,H) = gM (ωX,H) = 0,

which implies H ∈ Γ(µ). On the other hand, we note that dim(kerF∗) =
2n − n = n. Thus using Corollary 3.3, we have dim ((kerF∗)⊕ ω(kerF∗)) =
2(2n − n) = 2n. Therefore, we get dim(µ) = 2n − 2n = 0, which contradicts
that H vanishes identically. �

We now investigate certain properties of pointwise slant submersions. The
following theorem proposes a new condition for Riemannian submersions to be
harmonic. We first recall that if F : (M1, g1) −→ (M2, g2) is a map between
Riemannian manifolds (M1, g1) and (M2, g2), then the adjoint map ∗F ∗ of F∗
is characterized by g1(x,

∗F ∗p1
y) = g2(F∗p1

x, y) for x ∈ Tp1
M1, y ∈ TF (p1)M2

and p1 ∈ M1. Considering Fh
∗ at each p1 ∈ M1 from a linear transformation

Fh
∗p1

: ((kerF∗)
⊥(p1), g1p1((kerF∗)⊥(p1))) −→ (rangeF∗(p2), g2p2(rangeF∗)(p2))),
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we will denote the adjoint of Fh
∗ by ∗Fh

∗p1
. Let ∗F ∗p1

be the adjoint of F∗p1
:

(Tp1
M1, g1p1

) −→ (Tp2
M2, g2p2

). Then the linear transformation

(∗F ∗p1
)h : rangeF∗(p2) −→ (kerF∗)

⊥(p1)

defined by (∗F ∗p1
)hy = ∗F ∗p1

y, where y ∈ Γ(rangeF∗p1
), p2 = F (p1), is an

isomorphism and (Fh
∗p1

)−1 = (∗F ∗p1
)h = ∗(Fh

∗p1
).

Theorem 3.8. Let F be a pointwise slant submersion from Kaehler manifold

(M1, g1, J) onto a Riemannian manifold (M2, g2) and have no complex points.

Then F is harmonic if and only if

trace∗F∗((∇F∗)((.), ωϕ(.))) − traceωT(.)ω(.) + traceC ∗F∗(∇F∗)((.), ω(.)) = 0.

Proof. From (2.7), (2.1), (2.2), (3.1) and (3.2) we have

g1(TUU,X) = −g1(∇UJϕU,X) + g1(∇UωU, JX)

for U ∈ Γ(V) and X ∈ Γ(H). Then Theorem 3.1, (3.1) and (2.8) imply

g1(TUU,X) = − g1(sin 2θU(θ)U,X) + g1(cos
2 θ∇UU,X)

− g1(∇UωϕU,X) + g1(TUωU,BX)

+ g1(∇UωU, CX).

Using (2.11) we arrive at

sin2 θg1(TUU,X) = g2((∇F∗)(U, ωϕU), F∗(X)) + g1(TUωU,BX)

− g2((∇F∗)(U, ωU), F∗(CX)).

Then from (3.2) we get

sin2 θg1(TUU,X) = g1(
∗F∗((∇F∗)(U, ωϕU)), X)− g1(ωTUωU,X)

+ g1(C
∗F∗((∇F∗)(U, ωU)), X).

Thus the proof follows from a fact that a Riemannian submersion is harmonic
if and only if its fibers are minimal submanifolds in M1. �

Next result gives a necessary and sufficient condition for fibers of a pointwise
slant submersion to be totally geodesic submanifolds.

Theorem 3.9. Let F be a pointwise slant submersion from a Kaehler manifold

(M1, g1, J) onto a Riemannian manifold (M2, g2). Then the fibers are totally

geodesic submanifolds in M1 if and only if

g2(∇
2
X′F∗(ωU), F∗(ωV )) = − sin2 θg1([U,X ], V ) + sin 2θX(θ)g1(U, V )

+ g1(AXωϕU, V )− g1(AXωU, ϕV ),

where X and X ′ are F -related vector fields and ∇2 is the Levi-Civita connection

on M2.
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Proof. Since T is skew symmetric with respect to g1 and ∇ is a torsion free
connection on M1, using (2.8) we have

g1(TUV,X) = −g1([U,X ], V )− g1(∇XU, V )

for U, V ∈ Γ(V) and X ∈ Γ(H). Then from (3.1), (3.2), (2.1) and (2.2) we
obtain

g1(TUV,X) = − g1([U,X ], V ) + g1(∇Xϕ2U + ωϕU, V )

− g1(∇XωU, ϕV )− g1(∇XωU, ωV ).

Thus Theorem 3.1, (2.10) and (2.12) imply

g1(TUV,X) = − g1([U,X ], V ) + sin 2θX(θ)g1(U, V )− cos2 θg1(∇XU, V )

+ g1(AXωϕU, V )− g1(AXωU, ϕV )

− g2(∇
2
X′F∗(ωU), F∗(ωV )).

Since ∇ is a torsion free connection, using skew symmetry property of T and
(2.7) we get

sin2 θg1(TUV,X) = − sin2 θg1([U,X ], V ) + sin 2θX(θ)g1(U, V )

+ g1(AXωϕU, V )− g1(AXωU, ϕV )

− g2(∇
2
X′F∗(ωU), F∗(ωV ))

which gives the assertion. �

Finally we give a result for pointwise slant submersions to be totally geodesic
maps. We recall that a differentiable map F between Riemannian manifolds
(M1, g1) and (M2, g2) is called a totally geodesic map if (∇F∗)(X,Y ) = 0 for
all X,Y ∈ Γ(TM1). A geometric interpretation of a totally geodesic map is
that it maps every geodesic in the total manifold into a geodesic in the base
manifold in proportion to arc lengths.

Theorem 3.10. Let F be a pointwise slant submersion from Kaehler manifold

(M1, g1, J) onto a Riemannian manifold (M2, g2). Then F is a totally geodesic

map if and only if

g2(∇
2
X′F∗(ωU), F∗(ωV )) = − sin2 θg1([U,X ], V ) + sin 2θX(θ)g1(U, V )

+ g1(AXωϕU, V )− g1(AXωU, ϕV )(3.10)

and

(3.11)

g1(AXωU,BY ) = −
[

−g2(∇
F

XF∗(ωϕU), F∗(Y )) + g2(∇
F

XF∗(ωU), F∗(CY ))
]

,

where X and X ′ are F -related vector fields and ∇
F

is the pull-back connection

along F .
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Proof. By definition, it follows that F is totally geodesic if and only if (∇F∗)(X ,
Y ) = 0 for X,Y ∈ Γ(H), (∇F∗)(X,V ) = 0 for V ∈ Γ(V) and (∇F∗)(U, V ) = 0
for U ∈ Γ(V). From (2.12), it follows that (∇F∗)(X,Y ) = 0. Also from
Theorem 3.9, it follows that (∇F∗)(U, V ) = 0 if and only if (3.10) is satisfied.
On the other hand, since F is a Riemannian submersion, using (2.11) we have

g2((∇F∗)(X,U), F∗(Y )) = −g1(∇XU, Y ).

Then from Theorem 3.1, (2.1), (2.2), (3.1), (3.2) and (2.10) we obtain

g2((∇F∗)(X,U), F∗(Y )) = − sin 2θX(θ)g1(U, Y )− cos2 θg1(∇XU, Y )

+ g1(∇XωϕU, Y )− g1(AXωU,BY )

− g1(∇XωU, CY ).

Thus using (2.11) and (2.12) we get

sin2 θg2((∇F∗)(X,U), F∗(Y ))

= −
[

−g2(∇
F

XF∗(ωϕU), F∗(Y )) + g2(∇
F

XF∗(ωU), F∗(CY ))
]

− g1(AXωU,BY )

which completes proof. �
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