DOI QR코드

DOI QR Code

CLAIRAUT ANTI-INVARIANT SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS

  • Received : 2019.02.05
  • Accepted : 2019.03.13
  • Published : 2019.12.25

Abstract

We investigate the new Clairaut conditions for anti-invariant submersions whose total manifolds are cosymplectic. In particular, we prove the fibers of a proper Clairaut Lagrangian submersion admitting horizontal Reeb vector field are one dimensional and classify such submersions. We also check the existence of the proper Clairaut anti-invariant submersions in the case of the Reeb vector field is vertical. Moreover, illustrative examples for both trivial and proper Clairaut anti-invariant submersions are given.

Keywords

References

  1. M. A. Akyol, Y. Gunduzalp, Semi-invariant semi-Riemannian submersions, Commun. Fac. Sci. Univ. Ank. Sr. A1 Math. Stat. 67 (1) (2018), 80-92.
  2. M. A. Akyol, R. Sari, On semi-slant ${\xi}^{\bot}$-Riemannian submersions, Mediterr. J. Math. 14 (6) (2017), Art. 234, 20 pp. https://doi.org/10.1007/s00009-016-0832-3
  3. S. Ali, T. Fatima, Generic Riemannian submersions, Tamkang J. Math. 44 (4) (2013), 395-409. https://doi.org/10.5556/j.tkjm.44.2013.1211
  4. A. Beri, I., Kupeli Erken, and C. Murathan, Anti-invariant Riemannian submersions from Kenmotsu manifolds onto Riemannian manifolds, Turk. J. Math. 40 (3) (2016), 540-552. https://doi.org/10.3906/mat-1504-47
  5. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Birkhauser Boston-Basel-Berlin (2002).
  6. R. L. Bishop, Clairaut submersions, Differential Geometry(in Honor of Kentaro Yano) Kinokuniya Tokyo (1972), 21-31.
  7. F. Dillen, S. Nolker, Semi-parallelity, multi-rotation surfaces and the helix-property, J. Reine Angew. Math. 435 (1993), 33-63.
  8. I. Kupeli Erken, C. Murathan, On slant Riemannian submersions for cosymplectic manifolds, Bull. Korean Math. Soc. 51 (66) (2014), 1749-1771. https://doi.org/10.4134/BKMS.2014.51.6.1749
  9. I. Kupeli Erken, C. Murathan, Anti-invariant Riemannian submersions from Sasakian manifolds, arXiv:1302.4906.
  10. M. Falcitelli, S. Ianus and A.M. Pastore, Riemannian submersions and related topics, World Scientific River Edge NJ (2004).
  11. A. Gray, Pseudo-Riemannian almost product manifolds and submersion, J. Math. Mech. 16 (1967), 715-737.
  12. Y. Gunduzalp, Anti-invariant Riemannian submersions from almost product Riemannian manifolds, Math. Sci. and Appl. E-notes 1 (2018), 58-66.
  13. S. Hiepko, Eine innere Kennzeichnung der verzerrten Producte, Math. Ann., 241 (3) (1979), 209-215. https://doi.org/10.1007/BF01421206
  14. J. W. Lee, Anti-invariant ${\xi}^{\bot}$-Riemannian submersions from almost contact manifolds,Hacettepe J. Math. Stat. 42 (3) (2013), 231-241.
  15. J. W. Lee and B. Sahin, Pointwise slant submersions, Bull. Korean Math. Soc., 51 (2014), 1115-1126. https://doi.org/10.4134/BKMS.2014.51.4.1115
  16. C. Murathan, I. Kupeli Erken, Anti-invariant Riemannian submersions from cosymplectic manifolds, Filomat 29 (7) (2015), 1429-1444. https://doi.org/10.2298/FIL1507429M
  17. Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981) 239-250. https://doi.org/10.2996/kmj/1138036371
  18. B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966), 458-469. https://doi.org/10.1307/mmj/1028999604
  19. F. Ozdemir, C. Sayar and H.M. Tastan, Semi-invariant submersions whose total manifolds are locally product Riemannian, Quaest. Math. 40 (7) (2017), 909926. https://doi.org/10.2989/16073606.2017.1335657
  20. K.S. Park, R. Prasad, Semi-slant submersions, Bull. Korean Math. Soc. 50 (3) (2013), 951-962. https://doi.org/10.4134/BKMS.2013.50.3.951
  21. R.Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedicata 48 (1993), 15-25. https://doi.org/10.1007/BF01265674
  22. C. Sayar, F. Ozdemir and H. M. Tastan, Pointwise semi-slant submersions whose total manifolds are locally product Riemannian manifolds, International Journal of Maps in Mathematics 1 (1) (2018), 91-115.
  23. B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (3) (2010), 437-447. https://doi.org/10.2478/s11533-010-0023-6
  24. B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canadian. Math. Bull. 56 (1) (2013), 173-182. https://doi.org/10.4153/CMB-2011-144-8
  25. B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie 54 (102) (2011), No. 1, 93-105.
  26. B. Sahin, Riemannian submersions, Riemannian maps in Hermitian geometry, and their applicaitons, Elsiever (2017).
  27. A. Shahid, F. Tanveer, Anti-invariant Riemannian submersions from nearly Kahlerian manifolds, Filomat 27 (7) (2013), 1219-1235. https://doi.org/10.2298/FIL1307219A
  28. H. M. Tastan, On Lagrangian submersions, Hacettepe J. Math. Stat. 43 (6) (2014), 993-1000.
  29. H. M. Tastan, Lagrangian submersions from normal almost contact manifolds, Filomat 31 (12) (2017), 3885-3895. https://doi.org/10.2298/FIL1712885T
  30. H. M. Tastan, B. Sahin and S. Yanan, Hemi-slant submersions, Mediterr. J. Math. 13 (4) (2016), 2171-2184. https://doi.org/10.1007/s00009-015-0602-7
  31. H. M. Tastan and S. Gerdan, Clairaut anti-invariant submersions from Sasakian and Kenmotsu manifolds, Mediterr. J. Math. 14 (2017), 17 pages. DOI 10.1007/s00009-017-1028-1.
  32. B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1) (1976), 147-165. https://doi.org/10.4310/jdg/1214433303
  33. K. Yano, M. Kon, Structures on manifolds, World Scientific Singapore (1984).