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H-SLANT SUBMERSIONS

Kwang-Soon Park

Abstract. In this paper, we define the almost h-slant submersion and
the h-slant submersion which may be the extended version of the slant

submersion [11]. And then we obtain some theorems which come from
the slant submersion’s cases. Finally, we construct some examples for the
almost h-slant submersions and the h-slant submersions.

1. Introduction

Given a C∞-submersion F from a Riemannian manifold (M, gM ) onto a Rie-
mannian manifold (N, gN ), there are several kinds of submersions according to
the conditions on it: e.g. Riemannian submersion ([5], [10]), slant submer-
sion ([3], [11]), almost Hermitian submersion [12], quaternionic submersion [6],
etc. As we know, Riemannian submersions are related with physics and have
their applications in the Yang-Mills theory ([2], [13]), Kaluza-Klein theory ([1],
[7]), supergravity and superstring theories ([8], [9]), etc. And the quaternionic
Kähler manifolds have applications in physics as the target spaces for nonlinear
σ-models with supersymmetry [4]. The paper is organized as follows. In Sec-
tion 2 we recall some notions needed for this paper. In Section 3 we give the
definitions of the almost h-slant submersion and the h-slant submersion and
obtain some interesting properties about them. In Section 4 we construct some
examples for the almost h-slant submersions and the h-slant submersions.

2. Preliminaries

Let (M,E, g) be an almost quaternionic Hermitian manifold, where M is a
4n-dimensional differentiable manifold, g is a Riemannian metric on M , and
E is a rank 3 subbundle of End(TM) such that for any point p ∈ M with its
some neighborhood U , there exists a local basis {J1, J2, J3} of sections of E on
U satisfying for all α ∈ {1, 2, 3}

J2
α = −id, JαJα+1 = −Jα+1Jα = Jα+2,
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g(JαX, JαY ) = g(X,Y ) for all vector fields X,Y on M,

where the indices are taken from {1, 2, 3}modulo 3. The above basis {J1, J2, J3}
is said to be a quaternionic Hermitian basis. We call (M,E, g) a quaternionic
Kähler manifold if there exist locally defined 1-forms ω1, ω2, ω3 such that for
α ∈ {1, 2, 3}

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2 for any vector field X on M,

where the indices are taken from {1, 2, 3} modulo 3. If there exists a global
parallel quaternionic Hermitian basis {J1, J2, J3} of sections of E on M , then
(M,E, g) is said to be hyperkähler. Furthermore, we call (J1, J2, J3, g) a hy-
perkähler structure on M and g a hyperkähler metric. Let (M, gM ) and (N, gN )
be Riemannian manifolds and F : M 7→ N a C∞-submersion. The map F is
said to be Riemannian submersion if the differential F∗ preserves the lengths
of horizontal vectors [6]. Let (M, gM , J) be an almost Hermitian manifold. A
Riemannian submersion F : (M, gM , J) 7→ (N, gN ) is called a slant submersion
if the angle θ = θ(X) between JX and the space ker(F∗)p is constant for any
nonzero X ∈ TpM and p ∈ M [11]. We call θ a slant angle. For X ∈ Γ(kerF∗),
we have

JX = ϕX + ωX,

where ϕX and ωX are the vertical and horizontal components of JX, respec-
tively. For Z ∈ Γ((kerF∗)

⊥), we get

JZ = BZ + CZ,

where BZ and CZ are the vertical and horizontal components of JZ, respec-
tively [11]. Let (M,EM , gM ) and (N,EN , gN ) be almost quaternionic Hermit-
ian manifolds. A map F : M 7→ N is called a (EM , EN )-holomorphic map if
given a point x ∈ M , for any J ∈ (EM )p there exists J ′ ∈ (EN )f(x) such that

F∗ ◦ J = J ′ ◦ F∗.

A Riemannian submersion F : M 7→ N which is a (EM , EN )-holomorphic map
is called a quaternionic submersion. Moreover, if (M,EM , gM ) is a quater-
nionic Kähler manifold (or a hyperkähler manifold), then we say that F is a
quaternionic Kähler submersion (or a hyperkähler submersion) [6].

Let (M, gM ) and (N, gN ) be Riemannian manifolds and F : (M, gM ) 7→
(N, gN ) a smooth map. The second fundamental form of F is given by

(∇F∗)(X,Y ) := ∇F∗XF∗Y − F∗(∇XY ) for X,Y ∈ Γ(TM),

where we denote conveniently by ∇ the Levi-Civita connections of the metrics
gM and gN . Recall that F is said to be harmonic if trace(∇F∗) = 0 and F is
called a totally geodesic map if (∇F∗)(X,Y ) = 0 for X,Y ∈ Γ(TM).
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3. H-slant submersions

Definition 3.1. Let (M,E, gM ) be an almost quaternionic Hermitian man-
ifold and (N, gN ) a Riemannian manifold. A Riemannian submersion F :
(M,E, gM ) 7→ (N, gN ) is called an almost h-slant submersion if given a point
p ∈ M with its some neighborhood U , there exists a quaternionic Hermitian
basis {I, J,K} of sections of E on U such that for R ∈ {I, J,K} the an-
gle θR = θR(X) between RX and the space ker(F∗)q is constant for nonzero
X ∈ ker(F∗)q and q ∈ U .

We call such a basis {I, J,K} an almost h-slant basis.

Definition 3.2. Let (M,E, gM ) be an almost quaternionic Hermitian man-
ifold and (N, gN ) a Riemannian manifold. A Riemannian submersion F :
(M,E, gM ) 7→ (N, gN ) is called a h-slant submersion if given a point p ∈ M with
its some neighborhood U , there exists a quaternionic Hermitian basis {I, J,K}
of sections of E on U such that for R ∈ {I, J,K} the angle θR = θR(X) be-
tween RX and the space ker(F∗)q is constant for nonzero X ∈ ker(F∗)q and
q ∈ U , θ = θI = θJ = θK .

We call such a basis {I, J,K} a h-slant basis and the angle θ h-slant angle.
Let F : (M,E, gM ) 7→ (N, gN ) be an almost h-slant submersion. Then for
X ∈ Γ(kerF∗), we have

RX = ϕRX + ωRX,

where ϕRX and ωRX are the vertical and horizontal parts of RX, respectively,
for R ∈ {I, J,K}. For Z ∈ Γ((kerF∗)

⊥), we get

RZ = BRZ + CRZ,

where BRZ and CRZ are the vertical and horizontal components of RZ, re-
spectively, for R ∈ {I, J,K}.

Note that we denote the projection morphisms on the distributions kerF∗
and (kerF∗)

⊥ by V and H, respectively. Define the tensor T and A by

AEF = H∇HEVF + V∇HEHF,

TEF = H∇VEVF + V∇VEHF

for vector fields E,F on M , where ∇ is the Levi-Civita connection of gM .

Theorem 3.1. Let F be an almost h-slant submersion from an almost quater-
nionic Hermitian manifold (M,E, gM ) onto a Riemannian manifold (N, gN ).
Then we get

ϕ2
RX = − cos2 θRX for X ∈ Γ(kerF∗) and R ∈ {I, J,K},

where {I, J,K} is an almost h-slant basis with the slant angles {θI , θJ , θK}.

Proof. By Theorem 3.1 of [11], we have the result. □
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Lemma 3.1. Let F be an almost h-slant submersion from a hyperkähler man-
ifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is an almost h-slant basis with the slant angles {θI , θJ , θK}. If ωR is parallel,
then we have TϕRXϕRX = − cos2 θRTXX for X ∈ Γ(kerF∗) and R ∈ {I, J,K}.

Proof. By Lemma 3.1 of [11], we get the result. □

Lemma 3.2. Let F be a h-slant submersion from a hyperkähler manifold
(M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K) is
a h-slant basis with the h-slant angle θ = 0. Then we have

H∇RXRX = −H∇XX and [RX,X] ∈ Γ(kerF∗)

for X ∈ Γ(kerF∗) and R ∈ {I, J,K}.

Proof. Since θ = 0, by Lemma 3.1, we easily get

H∇RXRX = −H∇XX

for X ∈ Γ(kerF∗) and R ∈ {I, J,K}. For X ∈ Γ(kerF∗), Z ∈ Γ((kerF∗)
⊥),

and R ∈ {I, J,K}, we have

gM (H∇RXRX,Z)Z = −gM (∇RXX,RZ)

= −gM (∇XRX + [RX,X], RZ)

= gM (−H∇XX +HR[RX,X], Z)

so that we obtain R[RX,X] ∈ Γ(kerF∗), which implies [RX,X] ∈ Γ(kerF∗)
since θ = 0. □

Remark 3.1. Let F be a hyperkähler submersion from a hyperkähler manifold
(M, I, J,K, gM ) onto an almost quaternionic Hermitian manifold (N,E, gN ).
Then it is easy to see the following [6]:

(a) the fibers are hyperkähler manifolds.
(b) the manifold (N,E, gN ) is also hyperkähler.
(c) the map F is a h-slant submersion with the h-slant angle θ = 0.

Theorem 3.2. Let F be an almost h-slant submersion from a hyperkähler man-
ifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is an almost h-slant basis. If ωR is parallel for some R ∈ {I, J,K}, then F is
a harmonic map.

Proof. Wemay assume that ωI is parallel. Since (∇F∗)(Z1, Z2) = 0 for Z1, Z2 ∈
Γ((kerF∗)

⊥), we only need to show that
∑2n

i=1(∇F∗)(ei, ei) = 0, where {ei}2ni=1

is an orthonormal basis of kerF∗.
Using Theorem 3.1, we can choose an orthonormal basis {ei}2ni=1 of kerF∗

such that e2j = sec θIϕIe2j−1 for 1 ≤ j ≤ n.
Hence,

2n∑
i=1

(∇F∗)(ei, ei) = −
2n∑
i=1

F∗(Teiei)
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= −
n∑

j=1

F∗(Te2j−1e2j−1 + Tsec θIϕIe2j−1 sec θIϕIe2j−1).

Since ωI is parallel, by Lemma 3.1, we obtain the result. □

Corollary 3.1. Let F be an almost h-slant submersion from a hyperkähler
manifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J ,
K) is an almost h-slant basis with the slant angles {θI , θJ , θK} not all non-
zeroes. Then F is a harmonic map.

Proof. We may assume θI = 0. Then it implies ωI = 0 so that ωI is parallel.
By Theorem 3.2, we get the result. □

Theorem 3.3. Let F be an almost h-slant submersion from a hyperkähler man-
ifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is an almost h-slant basis with the slant angles {θI , θJ , θK} all non-zeroes. Then
the following conditions are equivalent:

(a) the distribution kerF∗ defines a totally geodesic foliation on M ,
(b) gM (H∇XωIϕIY, Z) = gM (H∇XωIY,CIZ) + gM (TXωIY,BIZ)

for X, Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥),

(c) gM (H∇XωJϕJY, Z) = gM (H∇XωJY,CJZ)+gM (TXωJY,BJZ)
for X, Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)

⊥),
(d) gM (H∇XωKϕKY, Z) = gM (H∇XωKY,CKZ) + gM (TXωKY,BKZ)

for X, Y ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)
⊥).

Proof. Given a complex structure R ∈ {I, J,K}, for X,Y ∈ Γ(kerF∗) and
Z ∈ Γ((kerF∗)

⊥), we have

gM (∇XY,Z) = gM (∇XϕRY,RZ) + gM (∇XωRY,RZ)

= − gM (∇Xϕ2
RY, Z)− gM (∇XωRϕRY, Z)

+ gM (∇XωRY,BRZ) + gM (∇XωRY,CRZ).

Using Theorem 3.1, we obtain

gM (∇XY, Z) = cos2 θRgM (∇XY, Z)− gM (H∇XωRϕRY, Z)

+ gM (TXωRY,BRZ) + gM (H∇XωRY,CRZ)

so that

sin2 θRgM (∇XY, Z) = − gM (H∇XωRϕRY, Z) + gM (TXωRY,BRZ)

+ gM (H∇XωRY,CRZ)

Hence, we get

(a) ⇔ (b), (a) ⇔ (c), and (a) ⇔ (d).

Therefore, we have the result. □
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Theorem 3.4. Let F be an almost h-slant submersion from a hyperkähler man-
ifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is an almost h-slant basis with the slant angles {θI , θJ , θK} all non-zeroes. Then
the following conditions are equivalent:

(a) the distribution (kerF∗)
⊥ defines a totally geodesic foliation on M ,

(b) gM (H∇Z1Z2, ωIϕIX) = gM (AZ1BIZ2 +H∇Z1CIZ2, ωIX)
for X ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)

⊥),
(c) gM (H∇Z1

Z2, ωJϕJX) = gM (AZ1
BJZ2 +H∇Z1

CJZ2, ωJX)
for X ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)

⊥),
(d) gM (H∇Z1

Z2, ωKϕKX) = gM (AZ1
BKZ2 +H∇Z1

CKZ2, ωKX)
for X ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)

⊥).

Proof. For X ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)
⊥), we have

gM (∇Z1Z2, X) = gM (∇Z1(IZ2), IX)

= gM (∇Z1(IZ2), ϕIX) + gM (∇Z1(IZ2), ωIX)

= cos2 θI · gM (∇Z1Z2, X)− gM (∇Z1Z2, ωIϕIX)

+ gM (AZ1BIZ2 +H∇Z1CIZ2, ωIX)

so that

sin2 θI · gM (∇Z1Z2, X) = − gM (H∇Z1Z2, ωIϕIX)

+ gM (AZ1BIZ2 +H∇Z1CIZ2, ωIX).

Hence, we get (a) ⇔ (b). Similarly, we can obtain (a) ⇔ (c) and (a) ⇔ (d).
Therefore, we get the result. □

Theorem 3.5. Let F be an almost h-slant submersion from a hyperkähler man-
ifold (M, I, J,K, gM ) onto a Riemannian manifold (N, gN ) such that (I, J,K)
is an almost h-slant basis with the slant angles {θI , θJ , θK} all non-zeroes. Then
the following conditions are equivalent:

(a) F is totally geodesic,
(b) gM (TXωIY,BIZ1) + gM (H∇XωIY,CIZ1) = gM (H∇XωIϕIY, Z1),

gM (AZ1BIZ2 +H∇Z1CIZ2, ωIX) = −gM (H∇Z1ωIϕIX,Z2)
for X,Y ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)

⊥),
(c) gM (TXωJY,BJZ1) + gM (H∇XωJY,CJZ1) = gM (H∇XωJϕJY, Z1),

gM (AZ1BJZ2 +H∇Z1CJZ2, ωJX) = −gM (H∇Z1ωJϕJX,Z2)
for X,Y ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)

⊥),
(d) gM (TXωKY,BKZ1) + gM (H∇XωKY,CKZ1) = gM (H∇XωKϕKY, Z1),

gM (AZ1BKZ2 +H∇Z1CKZ2, ωKX) = −gM (H∇Z1ωKϕKX,Z2)
for X,Y ∈ Γ(kerF∗) and Z1, Z2 ∈ Γ((kerF∗)

⊥).

Proof. Given a complex structure R ∈ {I, J,K}, for X,Y ∈ Γ(kerF∗) and
Z,Z1, Z2 ∈ Γ((kerF∗)

⊥), we have

gN ((∇F∗)(X,Y ), F∗Z) = gM (∇XRϕRY, Z)− gM (∇XωRY,RZ)
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= gM (∇Xϕ2
RY, Z) + gM (∇XωRϕRY, Z)

− gM (∇XωRY,BRZ)− gM (∇XωRY,CRZ)

= − cos2 θRgM (∇XY,Z) + gM (H∇XωRϕRY, Z)

− gM (TXωRY,BRZ)− gM (H∇XωRY,CRZ)

so that

sin2 θRgN ((∇F∗)(X,Y ), F∗Z) = gM (H∇XωRϕRY,Z)− gM (TXωRY,BRZ)

− gM (H∇XωRY,CRZ).

Similarly, we obtain

sin2 θRgN ((∇F∗)(X,Z1), F∗Z2) = − gM (H∇Z1ωRϕRX,Z2)

− gM (AZ1BRZ2 +H∇Z1CRZ2, ωRX).

Hence, we get

(a) ⇔ (b), (a) ⇔ (c), and (a) ⇔ (d).

Therefore, we obtain the result. □

Remark 3.2. Let F be a h-slant submersion from a 4n-dimensional hyperkähler
manifold (M, I, J,K, gM ) onto a 3n-dimensional Riemannian manifold (N, gN )
such that (I, J,K) is a h-slant basis with the h-slant angle θ = π

2 . Since

R(kerF∗) ⊥ kerF∗ for R ∈ {I, J,K},

given a local orthonormal frame {e1, . . . , en} of kerF∗, the set {e1, . . . , en, I(e1),
. . . , I(en), J(e1), . . . , J(en),K(e1), . . . ,K(en)} is a local orthonormal frame of
TM so that {I(e1), . . . , I(en), J(e1), . . . , J(en),K(e1), . . . ,K(en)} is a local or-
thonormal frame of (kerF∗)

⊥.
Let

en+i := I(ei), e2n+i := J(ei), e3n+i := K(ei) for i ∈ {1, . . . , n}.

Let

ẽj := F∗ej for n+ 1 ≤ j ≤ 4n.

Since F is a Riemannian submersion, we know

F∗([X,Y ]) = [F∗X,F∗Y ] and F∗(∇XY ) = ∇F∗XF∗Y

for X,Y ∈ Γ((kerF∗)
⊥) [11], where we denote conveniently by ∇ the Levi-

Civita connections of the metrics gM and gN .
Assume that

∇ejei =
4n∑
k=1

Γk
jiek

for some Christoffel symbols Γk
ji, 1 ≤ i, j, k ≤ 4n.

Clearly,

Γk
ji = −Γi

jk for 1 ≤ i, j, k ≤ 4n.
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Since ∇ejRek = R∇ejek for R ∈ {I, J,K} and j, k ∈ {1, . . . , 4n}, we have

Γl
jn+k = −Γn+l

jk , Γn+l
jn+k = Γl

jk, Γ2n+l
jn+k = −Γ3n+l

jk , Γ3n+l
jn+k = Γ2n+l

jk ,

Γl
j2n+k = −Γ2n+l

jk , Γn+l
j2n+k = Γ3n+l

jk , Γ2n+l
j2n+k = Γl

jk, Γ3n+l
j2n+k = −Γn+l

jk ,

Γl
j3n+k = −Γ3n+l

jk , Γn+l
j3n+k = −Γ2n+l

jk , Γ2n+l
j3n+k = Γn+l

jk , Γ3n+l
j3n+k = Γl

jk

for 1 ≤ k, l ≤ n and 1 ≤ j ≤ 4n.
Hence,

∇ẽj ẽi = F∗(∇ejei)

=
4n∑

l=n+1

Γl
jiẽl

=



n∑
l=1

(Γl
jkẽn+l − Γ3n+l

jk ẽ2n+l + Γ2n+l
jk ẽ3n+l), i = n+ k

n∑
l=1

(Γ3n+l
jk ẽn+l + Γl

jkẽ2n+l − Γn+l
jk ẽ3n+l), i = 2n+ k

n∑
l=1

(−Γ2n+l
jk ẽn+l + Γn+l

jk ẽ2n+l + Γl
jkẽ3n+l), i = 3n+ k

for 1 ≤ k ≤ n.

4. Examples

Example 4.1. Define a map F : R4 7→ R3 by

F (x1, . . . , x4) = (x1 sinα− x3 cosα, x2, x4).

Then the map F is a h-slant submersion with the h-slant angle θ = π
2 .

Example 4.2. Let F : R4 7→ R3 be a Riemannian submersion. Then the map
F is a h-slant submersion with the h-slant angle θ = π

2 .

We can check it as follows: Given coordinates (x1, x2, x3, x4) on R4, we can
naturally choose the complex structures I, J , and K on R4 defined by

I(
∂

∂x1
) =

∂

∂x2
, I(

∂

∂x2
) = − ∂

∂x1
, I(

∂

∂x3
) =

∂

∂x4
, I(

∂

∂x4
) = − ∂

∂x3
,

J(
∂

∂x1
) =

∂

∂x3
, J(

∂

∂x2
) = − ∂

∂x4
, J(

∂

∂x3
) = − ∂

∂x1
, J(

∂

∂x4
) =

∂

∂x2
,

K(
∂

∂x1
) =

∂

∂x4
,K(

∂

∂x2
) =

∂

∂x3
,K(

∂

∂x3
) = − ∂

∂x2
,K(

∂

∂x4
) = − ∂

∂x1
.

Since F is a Riemannian submersion, the dimension of the space ker(F∗)p is
equal to 1 for any p ∈ R4. Using the properties ⟨RX,X⟩ = 0 for X ∈ TpR4

and R ∈ {I, J,K}, where ⟨, ⟩ denotes the Euclidean metric on R4, we have the
result.
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Example 4.3. Let (M, I, J,K, gM ) be a 4n-dimensional hyperkähler manifold
and (N, gN ) a (4n− 1)-dimensional Riemannian manifold. Let F : (M, I, J,K,
gM ) 7→ (N, gN ) be a Riemannian submersion. Then the map F is a h-slant
submersion with the h-slant angle θ = π

2 .

Example 4.4. Define a map F : R8 7→ R6 by

F (x1, . . . , x8) = (x1 sinα− x3 cosα, x2, x4, x5 sinβ − x7 cosβ, x6, x8).

Then the map F is a h-slant submersion with the h-slant angle θ = π
2 .

Example 4.5. Let (M1, I1, J1,K1, g1) be a 4m-dimensional hyperkähler mani-
fold and (M2, I2, J2,K2, g2) 4n-dimensional hyperkähler manifold. Let (N1, g

′
1)

be a (4m − 1)-dimensional Riemannian manifold and (N2, g
′
2) a (4n − 1)-

dimensional Riemannian manifold. Let Fi : (Mi, Ii, Ji,Ki, gi) 7→ (Ni, g
′
i) be

a Riemannian submersion for i ∈ {1, 2}. Consider the product map F1 × F2 :
M1 ×M2 7→ N1 ×N2 given by

(F1 × F2)(x, y) = (F1(x), F2(y)) for x ∈ M1 and y ∈ M2.

Then the map F1 × F2 is a h-slant submersion with the h-slant angle θ = π
2 .

Example 4.6. Let (M,E, g) be an almost quaternionic Hermitian manifold.
Let π : TM 7→ M be the natural projection. Then the map π is a h-slant
submersion with the h-slant angle θ = 0 [6].

Example 4.7. Let (M,EM , gM ) and (N,EN , gN ) be almost quaternionic Her-
mitian manifolds. Let F : M 7→ N be a quaternionic submersion. Then the
map F is a h-slant submersion with the h-slant angle θ = 0 [6].

Example 4.8. Define a map F : R4 7→ R2 by

F (x1, . . . , x4) =

(
x1√
2
− x3√

2
,
x1√
2
− x4√

2

)
.

Then the differential F∗ does not preserves the lengths of horizontal vectors so
that F is not a Riemannian submersion. But the map F has the h-slant angle

θ with cos θ =
√
3
3 .

Example 4.9. Define a map F : R8 7→ R4 by

F (x1, . . . , x8) =

(
x1√
2
− x3√

2
, x4,

x5√
2
− x7√

2
, x6

)
.

Then the map F is an almost h-slant submersion with the slant angles {π
4 ,

π
2 ,

π
4 }.

Example 4.10. Define a map F : R4 7→ R2 by

F (x1, . . . , x4) = (x1 cosα− x3 sinα, x2 sinβ − x4 cosβ).

Then the map F is an almost h-slant submersion with the slant angles {θI , π
2 ,

θK} such that cos θI = | sin(α+ β)| and cos θK = | cos(α+ β)|.
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