• Title/Summary/Keyword: Riemannian

Search Result 543, Processing Time 0.022 seconds

SOME EINSTEIN PRODUCT MANIFOLDS

  • Park, Joon-Sik;Moon, Kyung-Suk
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.235-243
    • /
    • 2002
  • In this paper, we get conditions for the natural projections of some product manifolds with varying metrics of two Riemannian manifolds to be harmonic, and necessary and sufficient conditions for some product manifolds with the harmonic natural projections of two Einstein manifolds to be Einstein manifolds.

  • PDF

SOME LINEARLY INDEPENDENT IMMERSIONS INTO THEIR ADJOINT HYPERQUADRICS

  • Jang, Chang-Rim
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.169-181
    • /
    • 1996
  • Let $x : M^n \longrightarrow E^m$ be an isometric immersion of an n-dimensional connected Riemannian manifold into the m-dimensional Euclidean space. Then the metric tensor on $M^n$ is naturally induced from that of $E^m$.

  • PDF

ON THE TRANSVERSAL CONFORMAL CURVATURE TENSOR ON HERMITIAN FOLIATIONS

  • Pak, Hong-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.231-241
    • /
    • 1991
  • Recently, many mathematicians([NT], [Ka], [TV], [CW], etc.) studied foliated structures on a smooth manifold with the viewpoint of transversal differential geometry. In this paper, we shall discuss certain hermitian foliations F on a riemannian manifold with a bundle-like metric, that is, their transversal bundles to F have hermitian structures.

  • PDF

A GLOBAL STUDY ON SUBMANIFOLDS OF CODIMENSION 2 IN A SPHERE

  • Hyun, Jong-Ik
    • The Pure and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.173-179
    • /
    • 1996
  • M be an ($n\geq3$)-dimensional compact connected and oriented Riemannian manifold isometrically immersed on an (n + 2)-dimensional sphere $S^{n+2}$(c). If all sectional curvatures of M are not less than a positive constant c, show that M is a real homology sphere.

  • PDF

EINSTEIN WARPED PRODUCT SPACES

  • KIM, DONG-SOO
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.107-111
    • /
    • 2000
  • We study Einstein warped product spaces. As a result, we prove the following: if M is an Einstein warped product space with base a compact 2-dimensional surface, then M is simply a Riemannian product space.

  • PDF

COMPARISON OF EINSTEIN MANIFOLDS WITH THORPE MANIFOLDS

  • Kim, Ho-Bub;Kim, Jae-Man
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.85-90
    • /
    • 2000
  • On Riemannian manifolds of dimension 4 the Einstein condition is equivalent to the Thorpe condition. In this paper, we construct a few metrics which we Einstein but not Thorpe, and vice versa in dimensions larger than 4.

  • PDF