ON THE TRANSVERSAL CONFORMAL CURVATURE TENSOR ON HERMITIAN FOLIATIONS

HONG KYUNG PAK

Recently, many mathematicians([NT], [Ka], [TV], [CW], etc.) studied foliated structures on a smooth manifold with the viewpoint of transversal differential geometry. In this paper, we shall discuss certain hermitian foliations \mathcal{F} on a riemannian manifold with a bundle-like metric, that is, their transversal bundles to \mathcal{F} have hermitian structures. We shall show the following theorem;

THEOREM A. Let \mathcal{F} be a 1-dimensional regular geodesic kähler foliation of codimension 2n (n>2) on a compact simply-connected riemannian manifold (M,g) with positive sectional curvature. Then we have

- (a) if B is parallel then the leaf space M/\mathcal{F} is biholomorphic to a complex projective space $\mathbb{C}P^n$,
- (b) if, in particular, B vanishes everywhere then it is holomorphically isometric to $\mathbb{C}P^n$ with a Fubini-Study metric.

And applying Theorem A to Sasakian manifolds, we have easily the following theorem which somewhat generalizes [JLOP], in fact, their contact conformal curvature tensor restricted to the transversal bundle may be considered as our tensor B.

THEOREM B. If the transversal conformal curvature tensor of a (2n+1)-dimensional fibred riemannian space M (n>2) with Sasakian structure vanishes everywhere then the leaf space M/\mathcal{F} is a kähler manifold of constant holomorphic sectional curvature.

We shall be in C^{∞} -category and all manifolds are assumed to be paracompact, Hausdorff spaces. And we use the Einstein summation

Received December 14, 1990.

convention and adopt ranges of indices as follows:

$$a,b,c,\dots = p+1,\dots,p+n, \quad \bar{a},\bar{b},\bar{c},\dots = p+n+1,\dots,p+2n$$

 $\alpha,\beta,\gamma,\dots = p+1,\dots,p+2n, \quad i,j,k,\dots = 1,\dots,p.$

1. Hermitian foliations and its transversal conformal curvature tensor

Let (M, \mathcal{F}, g) be an oriented riemannian manifold of dimension m := p + 2n with a riemannian foliation \mathcal{F} of dimension p. By means of the riemannian metric g, we can decompose TM as follows;

$$TM = \mathcal{F} \oplus \mathcal{H}, \qquad \mathcal{H} \simeq TM/\mathcal{F}.$$

- (1.1) A hermitian foliation \mathcal{F} of codimension 2n is defined by the following data;
- (1.1.1) \mathcal{H} has a hermitian structure (h, J), i.e. J is a complex structure with respect to h satisfying h(JX, JY) = h(X, Y) for $X, Y \in \Gamma(\mathcal{H})$,
- (1.1.2) J and h are holonomy invariant, i.e. $L_V J = 0$ and $L_V h = 0$ for all $V \in \Gamma(\mathcal{F})$.

Here and hereafter, $\Gamma(\)$ denotes the space of sections of () and L_Y the transversal Lie derivative operator for an element Y in the space $\mathcal B$ of basic vector fields.

REMARK. Every riemannian foliation \mathcal{F} whose transversal bundle \mathcal{H} is equipped with a holonomy invariant complex structure J induces a holonomy invariant hermitian metric h on \mathcal{H} . Indeed, \mathcal{H} admits a holonomy invariant riemannian metric $g_{\mathcal{H}}$. Set for $X,Y\in\Gamma(\mathcal{H}),\,h(X,Y):=g_{\mathcal{H}}(JX,JY)+g_{\mathcal{H}}(X,Y)$. Then clearly h(JX,JY)=h(X,Y). Since $L_VJ=0$ for all $V\in\Gamma(\mathcal{F}),\,(L_Vh)(X,Y)=(L_Vg_{\mathcal{H}})(JX,JY)+(L_Vg_{\mathcal{H}})$ (X,Y)=0. Thus h is the desired one.

Let $\phi(X,Y) := h(X,JY)$ for $X,Y \in \Gamma(\mathcal{H})$. $L_V \phi = 0$ for all $V \in \Gamma(\mathcal{F})$. Thus ϕ is a basic real 2-form on \mathcal{H} . The basic forms are defined by

$$\Lambda_{\mathcal{B}}^* := \{ \omega \in \Lambda^* M \mid i_V \omega = 0, \ L_V \omega = 0 \ \text{ for all } V \in \Gamma(\mathcal{F}) \}.$$

The exterior derivative d restricts to $d_{\mathcal{B}}: \Lambda_{\mathcal{B}}^* \to \Lambda_{\mathcal{B}}^{*+1}$. If, in particular $d_{\mathcal{B}}\phi = 0$, we call \mathcal{F} a kähler foliation.

Example of hermitian but not kähler foliations. Let $E := \Gamma_0 \backslash N$ be the Iwasawa manifold with complex structure \check{J} i.e. N is the complex Lie group of complex matrices of the form

$$\begin{pmatrix} 1 & z^1 & z^3 \\ & 1 & z^2 \\ & & 1 \end{pmatrix},$$

and Γ_0 is the subgroup of N of those matrices whose entries are Gauss integers. Letting $z^a := x^a + iy^a$ (a = 1, 2, 3), we have on N a basis $\{\theta^a = \frac{1}{2}(dx^a - idy^a), \bar{\theta}^a = \frac{1}{2}(dx^a + idy^a)\}$ of left invariant 1-forms. Then $\dot{h} := \theta^{\alpha}\bar{\theta}^{\alpha}$ is a left invariant hermitian metric on N. Let $\Gamma_1 \supset \Gamma_0$ be the subgroup of N of matrices of the form

$$\begin{pmatrix} 1 & x^1 + i(y^1 + s{y'}^1) & x^3 + s{x'}^3 + i(y^3 + s{y'}^3) \\ & 1 & x^2 + iy^2 \\ & 1 \end{pmatrix},$$

where $s \in Q^c$ and $x^a, {x'}^a, {y'}^a, {y'}^a \in Z$. Γ_1 can be considered as a uniform subgroup of $U = (\mathbf{R}^9, \circ)$ whose matricial form is

$$\begin{pmatrix} 1 & x^3 & x^7 & x^9 & x^1 & x^2 & x^6 & x^8 \\ & 1 & -x^5 & x^4 & 0 & 0 & 0 & 0 \\ & & 1 & 0 & 0 & 0 & 0 & 0 \\ & & & 1 & 0 & 0 & 0 & 0 \\ & & & & 1 & 0 & x^4 & x^5 \\ & & & & & 1 & -x^5 & x^4 \\ & & & & & & 1 & 0 \\ & & & & & & 1 \end{pmatrix},$$

where the group operation o is defined by

$$(x^{1}, \dots, x^{9}) \circ (y^{1}, \dots, y^{9}) := (x^{a} + y^{a}, x^{6} + y^{6} + x^{1}y^{4} - x^{2}y^{5},$$
$$x^{7} + y^{7} - x^{3}y^{5}, x^{8} + y^{8} + x^{1}y^{5} + x^{2}y^{4}, x^{9} + y^{9} + x^{3}y^{4}).$$

And a homomorphism $u: U \to N$ given by

$$(x^1, \dots, x^9) \to (x^1 + i(x^2 + sx^3), x^4 + ix^5, x^6 + sx^7 + i(x^8 + sx^9))$$

is a surjective submersion with connected fibres and a foliation $\tilde{\mathcal{F}}$ by the fibres of u is Γ_1 -invariant. Moreover the canonical projection $\tilde{u}: (U, \tilde{\mathcal{F}}) \to M := \Gamma_1 \backslash U$ is a Galois covering mapping, i.e. we have a foliation \mathcal{F} on M of dimension 3 whose leaves \mathcal{L} are given by $\tilde{u}(\tilde{\mathcal{L}}) = \mathcal{L}$, where $\tilde{\mathcal{L}}$ is a leaf of $\tilde{\mathcal{F}}$. Let $\mathcal{H} \simeq TM/\mathcal{F}$ by taking a riemannian metric g on M. Then the maximal integral submanifold of \mathcal{H} corresponds to the hermitian manifold $(E, \check{J}, \check{h})$ of real dimension 6. Thus by the transversal lift satisfying the cocycle condition, we have a hermitian structure (J, h) on \mathcal{H} . Therefore, \mathcal{F} is a hermitian foliation, and it can not be made kähler.

Now the complex structure J induces a splitting of the complexified transversal bundle $\mathcal{H}^{\mathbf{C}}$ as the standard way;

$$\mathcal{H}^{\mathbf{C}} \,:= \mathcal{H} \otimes_{\mathbf{R}} \mathbf{C} = \mathcal{H}^{1,0} \oplus \mathcal{H}^{0,1}.$$

Then we have the usual decomposition of complex differential basic forms;

(1.2)
$$\Lambda_{\mathcal{B}}^{r} = \sum_{r=s+t} \Lambda_{\mathcal{B}}^{s,t},$$

and so the decomposition of d_{β} ;

$$d_{\mathcal{B}} = \partial_{\mathcal{B}} + \bar{\partial}_{\mathcal{B}},$$

where $\partial_{\mathcal{B}}: \Lambda_{\mathcal{B}}^{s,t} \to \Lambda_{\mathcal{B}}^{s+1,t}, \ \bar{\partial}_{\mathcal{B}}: \Lambda_{\mathcal{B}}^{s,t} \to \Lambda_{\mathcal{B}}^{s,t+1}.$

Let (z^1, \ldots, z^n) be a local transversal coordinate system and $\{dz^{\alpha}\}$ a local frame of $(\mathcal{H}^{\mathbf{C}})^*$ (:= the dual of $\mathcal{H}^{\mathbf{C}}$). Since \mathcal{F} is bundle-like, we can choose a local unitary moving frame $\{\omega^{\alpha}\}$ on $(\mathcal{H}^{\mathbf{C}})^*$ such that $\omega^{\alpha} \in \Lambda_{\mathcal{B}}^1$. Let $h := h_{\alpha\beta}\omega^{\alpha}\omega^{\beta}$. Since h is J-invariant, we have $h_{ab} = h_{\bar{a}\bar{b}} = 0$. Thus ϕ is locally written by $\phi = ih_{a\bar{b}}\omega^{a} \wedge \bar{\omega}^{b}$.

Consider the exact sequence defining \mathcal{F} of real vector bundles;

$$0 \to \mathcal{F} \to TM \xrightarrow{\mathcal{H}} \mathcal{H} \to 0.$$

Then we have an exact sequence of complex vector bundles with respect to a complex structure J^M on $T^{\mathbf{C}}M$ (:= the complexification of TM) such that $J^M|\mathcal{H}^{\mathbf{C}} = J$;

$$0 \to \mathcal{F}^{\mathbf{C}} \to T^{\mathbf{C}}M \xrightarrow{\mathcal{H}} \mathcal{H}^{\mathbf{C}} \to 0.$$

There exists in $(T^{\mathbf{C}}M, g)$ a canonical associated linear connection ∇^c (called the second complex connection) uniquely defined by the conditions ([Va]);

- (V1) if $X \in \Gamma(\mathcal{F}^{\mathbf{C}})$ (resp. $\Gamma(\mathcal{H}^{\mathbf{C}})$) then $\nabla_Y^c X \in \Gamma(\mathcal{F}^{\mathbf{C}})$ (resp. $\Gamma(\mathcal{H}^{\mathbf{C}})$) for any $Y \in \Gamma(T^{\mathbf{C}}M)$,
- (V2) if $X, Y, Z \in \Gamma(\mathcal{F}^{\mathbf{C}})$ (resp. $\Gamma(\mathcal{H}^{\mathbf{C}})$) then $(\nabla_Z^c g)(X, Y) = 0$,
- (V3) $\nabla_X^c J^M = 0$ for all $X \in \Gamma(T^C M)$,
- (V4) $\tau(X,Y)|_{\mathcal{F}^{\mathbf{C}}(\text{resp. }\mathcal{H}^{\mathbf{C}})} = 0$ if at least one of the arguments in $\Gamma(\mathcal{F}^{\mathbf{C}})$ (resp. $\Gamma(\mathcal{H}^{\mathbf{C}})$),
- (V5) if $X, Y \in \Gamma(\mathcal{F}^{\mathbf{C}})$ (resp. $\Gamma(\mathcal{H}^{\mathbf{C}})$) then $\tau(J^{M}X, Y)|_{\mathcal{F}^{\mathbf{C}}(\text{resp. }\mathcal{H}^{\mathbf{C}})} = \tau(X, J^{M}Y)|_{\mathcal{F}^{\mathbf{C}}(\text{resp. }\mathcal{H}^{\mathbf{C}})}$, where τ is the torsion tensor of ∇^{c} given by $\tau(X, Y) := \nabla_{X}^{c}Y \nabla_{Y}^{c}X [X, Y]$ for $X, Y \in \Gamma(T^{\mathbf{C}}M)$.

We may define a partial connection $\widehat{\nabla} : \Gamma(\mathcal{F}) \times \Gamma(\mathcal{H}^{\mathbf{C}}) \to \Gamma(\mathcal{H}^{\mathbf{C}})$ by

(1.3)
$$\widehat{\nabla}_{V}X := \mathcal{H}[V, X] \quad \text{for} \quad V \in \Gamma(\mathcal{F}), \ X \in \Gamma(\mathcal{H}^{\mathbf{C}}).$$

Note that $\widehat{\nabla}$ is well-defined ([BB]). Thus we define an adapted connection ∇ in $\mathcal{H}^{\mathbf{C}}$ for \mathcal{F} by for $X \in \Gamma(\mathcal{H}^{\mathbf{C}})$

(1.4)
$$\nabla_Y X := \begin{cases} \widehat{\nabla}_Y X & \text{for } Y \in \Gamma(\mathcal{F}) \\ \mathcal{H} \nabla^c_Y X & \text{for } Y \in \Gamma(\mathcal{H}^{\mathbf{C}}). \end{cases}$$

Let $\{Z_{\alpha}\}$ be the local vector fields associated to $\{\omega^{\alpha}\}$ by h-duality. Then $Z_{\alpha} \in \mathcal{B}$. Let $(\omega_{\beta}^{\alpha})$ be the connection form of ∇ . Then by properties of ∇^{c} and (1.2), we have

$$(1.5) \qquad \omega_b^a = h^{a\bar{c}}(\partial_{\mathcal{B}})h_{b\bar{c}}, \ \omega_b^a = -\bar{\omega}_a^b, \ \omega_i^a = \omega_a^i = 0, \ \omega_j^i = 0,$$

and its torsion tensor τ^{∇} satisfies

$$(1.6) \quad \tau^{\nabla}(Z_{\alpha}, JZ_{\beta}) = \tau^{\nabla}(JZ_{\alpha}, Z_{\beta}), \quad i_{V}\tau^{\nabla} = 0 \text{ for all } V \in \Gamma(\mathcal{F}).$$

Thus ∇ plays transversally a role as the hermitian connection on an ordinary hermitian manifold. Let $\Omega^{\alpha}_{\beta} := -K^{\nabla^{\alpha}_{\beta\gamma\delta}}$ be the curvature form. Note that Ω^{α}_{b} is a basic 2-form of type (1,1).

We define the transversal conformal curvature tensor B to \mathcal{F} by the same way of Kitahara-Matsuo-Pak ([KMP]);

$$(1.7) \quad B_{a\bar{b}c\bar{d}} := K^{\nabla}{}_{a\bar{b}c\bar{d}} + \frac{1}{n} (h_{a\bar{b}} T^{\nabla}{}_{c\bar{d}} + S^{\nabla}{}_{a\bar{b}} h_{c\bar{d}})$$

$$- \frac{nr^{\nabla} + (n^2 - 2)s^{\nabla}}{2n^2(n^2 - 1)} h_{a\bar{b}} h_{c\bar{d}} + \frac{nr^{\nabla} - s^{\nabla}}{2n(n^2 - 1)} h_{a\bar{d}} h_{c\bar{b}},$$

where $K^{\nabla}_{a\bar{b}c\bar{d}} = h_{a\bar{e}}K^{\nabla^{\bar{e}}_{bc\bar{d}}}$ and R^{∇} , S^{∇} , T^{∇} are distinct transversal Ricci curvature tensors locally given by

$$R^{\nabla}{}_{a\bar{b}} := -h^{c\bar{d}}K^{\nabla}{}_{a\bar{d}c\bar{b}}, \ S^{\nabla}{}_{a\bar{b}} := -h^{c\bar{d}}K^{\nabla}{}_{a\bar{b}c\bar{d}}, \ T^{\nabla}{}_{a\bar{b}} := -h^{c\bar{d}}K^{\nabla}{}_{c\bar{d}a\bar{b}},$$

and r^{∇} , s^{∇} , t^{∇} distinct transversal scalar curvature tensors by

$$r^{\nabla}:=2h^{a\bar{b}}R^{\nabla}_{a\bar{b}},\ s^{\nabla}:=2h^{a\bar{b}}S^{\nabla}_{a\bar{b}}=t^{\nabla}:=2h^{a\bar{b}}T^{\nabla}_{a\bar{b}}.$$

PROPOSITION 1. A hermitian foliation \mathcal{F} is kähler if and only if ∇ coincides with the transversal Levi-Civita connection D in \mathcal{H} , or equivalently $D_X J = 0$ for all $X \in \Gamma(\mathcal{H})$ (for definition of D, see e.g. [TY], [NT]).

Proof. By the uniqueness of D, it suffices to prove that ∇ is torsionfree. We take a local unitary basic frame $\{Z_{\alpha}\}$. By definition we have $\tau^{\nabla}(Z_{\alpha}, Z_{\beta}) = \nabla_{Z_{\alpha}} Z_{\beta} - \nabla_{Z_{\beta}} Z_{\alpha} = (\Gamma^{\gamma}_{\alpha\beta} - \Gamma^{\gamma}_{\beta\alpha}) Z_{\gamma}$, where $\Gamma^{\alpha}_{\beta\gamma} := \omega^{\alpha}_{\beta}(Z_{\gamma})$. Together with the conjugate relation, it follows by (1.2), (1.6) that ∇ is torsionfree if and only if $\Gamma^{a}_{bc} = \Gamma^{a}_{cb}$, $\bar{\Gamma}^{a}_{bc} = \bar{\Gamma}^{a}_{cb}$. By (1.5), ∇ is torsionfree if and only if $(\partial_{\mathcal{B}})_{b}h_{c\bar{a}} = (\partial_{\mathcal{B}})_{c}h_{b\bar{a}}$, i.e. $\partial_{\mathcal{B}}\phi = 0$ and by taking conjugates $\bar{\partial}_{\mathcal{B}}\phi = 0$. Thus ∇ is torsionfree if and only if $d_{\mathcal{B}}\phi = 0$. The second assertion follows from the general formula $2h((\nabla_{X}J)Y,Z) = d_{\mathcal{B}}\phi(X,JY,JZ) - d_{\mathcal{B}}\phi(X,Y,Z)$ for $X,Y,Z \in \Gamma(\mathcal{H})$. The proof is similar to the usual ones in hermitian geometry.

Let $R^D_{XYZW} := h(R^D(Z, W)Y, X)$ be the transversal curvature tensor with respect to D and S^D , c^D its respective transversal Ricci, scalar curvature tensors for $X, Y, Z, W \in \Gamma(\mathcal{H})$. B can be expressed in terms of the transversal curvature data with respect to D as follows;

(1.8)

$$\begin{split} B_{XYZW} &:= R^D{}_{XYZW} + \frac{1}{2n} \{h(X,W)S^D(Y,Z) \\ &- h(Y,W)S^D(X,Z) + S^D(X,W)h(Y,Z) - S^D(Y,W)h(X,Z) \\ &- \phi(Y,Z)\rho^D(X,W) + \phi(X,Z)\rho^D(Y,W) - \rho^D(Y,Z)\phi(X,W) \\ &+ \rho^D(X,Z)\phi(Y,W) - 2\rho^D(X,Y)\phi(Z,W) - 2\phi(X,Y)\rho^D(Z,W) \} \\ &+ \frac{(n+2)c^D}{4n^2(n+1)} \{\phi(X,Z)\phi(Y,W) - \phi(Y,Z)\phi(X,W) \\ &\qquad \qquad + 2\phi(X,Y)\phi(Z,W) \} \\ &- \frac{(3n+2)c^D}{4n^2(n+1)} \{h(Y,Z)h(X,W) - h(X,Z)h(Y,W) \}, \end{split}$$

where $\rho^D(X,Y) := S^D(X,JY)$.

Let \mathcal{F} be a hermitian foliation on (M, g) and (\mathcal{H}, J, h) be as in (1.1). We say that a diffeomorphism f on M is transversally conformal if at each point $x \in M$ the restriction $f_*|_{\mathcal{H}_x} : \mathcal{H}_x \to T_{f(x)}M$ satisfies the following conditions;

- (C1) f_* is transverse to \mathcal{F} , i.e. $f_*(\mathcal{H}_x) \oplus \mathcal{F}_{f(x)} = T_{f(x)}M$,
- (C2) $\tilde{h}_x := f^* h_{f(x)}$ is a conformal change of h_x , i.e. $\tilde{J}_x = J_x$ and $\tilde{h}_x = e^{2\sigma} h_x$ for some real-valued basic function σ on M.

 $(\mathcal{H}, \tilde{J}, \tilde{h})$ defines a hermitian foliation $\tilde{\mathcal{F}}$ on M of the same dimension as \mathcal{F} . Indeed, we first note that the leaves of $\tilde{\mathcal{F}}$ are given by the connected components of $f^{-1}(\mathcal{L})$ for $\mathcal{L} \subset \mathcal{F}$. Clearly $L_V \tilde{h} = 0$ for all $V \in \Gamma(\tilde{\mathcal{F}})$. Hence \tilde{h} is a holonomy invariant hermitian metric with respect to \tilde{J} . Finally $\tilde{g} := g_{\mathcal{F}} + \tilde{h}$ is a bundle-like riemannian metric on M. We call $\tilde{\mathcal{F}}$ the conformal change of \mathcal{F} by f.

REMARK. An example of a transversal conformal mapping is the following. Let \mathcal{F} be a hermitian foliation of codimension two. Then an

arbitrary holonomy invariant hermitian metric on $\mathcal{H}^{\mathbf{C}}$ can be locally written as $h = \lambda dz d\bar{z}$, $\lambda > 0$, for a local complex isothermal coordinate system (z). Let $(x_{\alpha}^{1}, \ldots, x_{\alpha}^{p})$ be a local coordinate system along the leaves of \mathcal{F} . Let $f_{\alpha\beta}: M \to M$ be a local coordinate change defined by $(x_{\alpha}^{i}, z) \to (x_{\beta}^{i} = x_{\alpha}^{i}, w = f_{\alpha\beta}(z))$, which induces a conformal change of h constant along the leaves. Thus by the cocycle condition we have a global diffeomorphism f on M transversally conformal.

By the same arguments of [KMP], we have immediately the following lemmas.

LEMMA 2. B is invariant for any conformal change of a hermitian foliation \mathcal{F} of codimension 2n > 4.

LEMMA 3. Let \mathcal{F} be a kähler foliation of codimension 2n > 6.

- (a) the transversal Ricci contraction S_B of B is parallel if and only if the transversal Ricci tensor S^D is parellel,
- (b) B vanishes everywhere if and only if \mathcal{F} is of constant transversal holomorphic sectional curvature.

PROPOSITION 4. Let \mathcal{F} be a kähler foliation of codimension $2n \geq 6$. Then B is parallel if and only if \mathcal{F} is transversally symmetric in the sense of Tondeur-Vanhecke ([TV]).

Proof. By (1.8), a direct computation gives for $X \in \Gamma(\mathcal{H})$

$$R^{D}_{X(JX)X(JX)}$$

$$=B_{X(JX)X(JX)}-\frac{2}{n}S^{D}(X,X)h(X,X)+\frac{(3n+4)c^{D}}{2n^{2}(n+1)}h(X,X)^{2}.$$

If B is parallel then by Lemma 3 the transversal Ricci tensor S^D , so the transversal scalar curvature tensor c^D is parallel. Since D is metrical with respect to h, we have $D_X R^D_{X(JX)X(JX)} = 0$, and vice verse.

FACT 5 ([TV]). If \mathcal{F} is a 1-dimensional bundle-like geodesic, transversally symmetric foliation, the ambient space (M,g) is locally homogeous. If moreover (M,g) is complete and simply-connected, it is a naturally reductive homogeneous space.

2. Proof of Theorem A

Since \mathcal{F} is regular, the leaf space $(M/\mathcal{F}, J, h, \phi)$ is eqipped with a kähler manifold structure such that $\pi := M \to M/\mathcal{F}$ is a locally trivial fibration. If B is parallel then by Proposition 4 and Fact 5, the ambient space (M,g) is a homogeneous space. Thus the leaf space $(M/\mathcal{F}, J, h, \phi)$ is a compact homogeneous kähler manifold. By the O'Neill curvature formula for submersion, the transversal sectional curvature to \mathcal{F} is positive, which implies the positivity of the transversal bisectional curvature $H^D(p,p')$ by the identity;

$$H^{D}(p,p') = R^{D}_{XYXY} + R^{D}_{X(JY)X(JY)}.$$

It is well-known ([KO]) that a complex n-dimensional compact homogeneous kähler manifold with positive bisectional curvature is biholomorphic to $\mathbb{C}P^n$. Thus (a) is proved. The assertion (b) follows from the Lemma 3.

REMARK. If the sectional curvature K_M of M is strictly negative, M can not admit a 1-dimensional kähler foliation. If K_M is nonpositive, M is a local riemannian product (cf. [Ra]).

3. Proof of Theorem B

Let M be a (2n+1)-dimensional fibred riemannian space with Sasakian structure (φ, g, ξ, η) . For each point in M, there is a local coordinate system (x, y^1, \ldots, y^{2n}) such that

$$\eta = dx + \sum_{a=1}^{n} (-y^{n+a}) dy^{a},$$

and the orbits of ξ are locally given by $y^{\alpha} = c^{\alpha}(c^{\alpha} \text{ constants})$. Then M admits a foliation \mathcal{F} generated by the orbits of ξ . Let $\nu_a := \partial/\partial y^a + (y^{n+a})\xi$ and $\nu_{n+a} := \varphi\partial/\partial y^a$. Then $\{\xi,\nu_a,\nu_{n+a}\}$ forms a local basis with the dual basis $\{\eta,dy^a,dy^{n+a}:=dy^a\circ\varphi\}$. Clearly $g(\nu_{\alpha},\xi)=\eta(\nu_{\alpha})=0$. Since ξ is a Killing vector field, $g:=\eta\otimes\eta+g_{\alpha\beta}dy^{\alpha}dy^{\beta}$ is a bundle-like riemannian metric. Let $J:=\varphi|_{\mathcal{H}}$ and $h:=g|_{\mathcal{H}}=g_{\alpha\beta}dy^{\alpha}dy^{\beta}$, where $\mathcal{H}\simeq TM/\mathcal{F}$. Then h(JX,JY)=h(X,Y) for $X,Y\in\Gamma(\mathcal{H})$ and $L_{\xi}J=L_{\xi}h=0$. Let ∇^M (resp. D) be the Levi-Civita

(resp. transversal Levi-Civita) connection on M (resp. \mathcal{H}). By a direct computation we have for $X,Y,Z\in\Gamma(\mathcal{H})$

$$h((D_XJ)Y,Z)=\mathcal{H}g((\nabla_X^M\varphi)Y,Z)=\eta(Y)h(X,Z)-h(X,Y)\eta(Z)=0.$$

Hence \mathcal{F} is a 1-dimensional regular geodesic kähler foliation. Therefore Theorem B follows from Lemma 3.

REMARK. If the transversal bundle \mathcal{H} is integrable then the leaf space M/\mathcal{F} is the base space N and the transversal Levi-Civita connection projects to the Levi-Civita connection ∇^N on N. Moreover, the contact conformal curvature tensor C_0 defined in [JLOP] restricted to \mathcal{H} coincides with the transversal conformal curvature tensor B. Indeed, note that $\phi(X,Y) = d\eta(X,Y) = -\eta[X,Y] = 0$ for $X,Y \in \Gamma(\mathcal{H})$. Since C_0 is constructed by using the method of Boothby-Wang fibration $\pi: M \to N$, the curvature tensor R^M (resp. R^N) on M (resp. N) with respect to ∇^M (resp. ∇^N) satisfies for $X,Y,Z,W \in \Gamma(\mathcal{H})$

$$R^{M}_{XYZW} = R^{N}_{X_{\bullet}Y_{\bullet}Z_{\bullet}W_{\bullet}} \circ \pi$$

where $(\)_*:=\pi_*(\).$ Thus we have $C_{0,XYZW}=B_{XYZW}.$

References

- [BB]. P. Baum and R. Bott, Singularities of holomorphic foliations, J. Diff. Geom. 7(1972), 279-342.
- [CW]. L. A. Cordero and R. A. Wolak, Examples of foliations with foliated geometric structures, Pac. J. of Math. 142 (1990), 265-276.
- [JLOP]. J. C. Jeong, J. D. Lee, G. H. Oh and J. S. Pak, On the contact conformal curvature tensor, Bull. Korean Math. Soc. 27 (1990), 133-142.
 - [Ka]. A. El Kacimi-Alaoui, Examples of foliations and problems in transverse complex analysis, PUB. IRMA, LILLE, 1988.
- [KMP]. H. Kitahara, K. Matsuo and J. S. Pak, A conformal curvature tensor field on hermitian manifolds, J. Korean Math. Soc. 27(1990), 7-17.
 - [KO]. S. Kobayashi and T. Ochiai, Complex homogeneous kähler manifolds with positive tangent bundle, Differential geometry in honor of K. Yano, Kinokuniya, Tokyo, 1972, 221-232.
 - [NT]. S. Nishikawa and Ph. Tondeur, Transversal infinitesimal automorphisms for harmonic kähler foliations, Tohoku Math. J. 40 (1988), 465-471.
 - [Ra]. A. Ranjan, Structural equations and integral formula for foliated manifolds, Geom. Dedicata 20 (1986), 85-91.

On the transversal conformal curvature tensor on hermitian foliations

- [TV]. Ph. Tondeur and L. Vanhecke, Transversally symmetric riemannian foliations, Tohoku Math. J. 42 (1990), 307-317.
- [Va] I. Vaisman, From the geometry of hermitian foliate manifolds, Bull. Math. Soc. Sci. Math. R. S. Roumanie 17 (1973), 71-100.

DEPARTMENT OF MATHEMATICS, KANAZAWA UNIVERSITY, 920, KANAZAWA, JAPAN