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ON THE TRANSVERSAL CONFORMAL CURVATURE
TENSOR ON HERMITIAN FOLIATIONS

HonGg KYUNG PAK

Recently, many mathematicians([NT], [Ka], [TV], [CW], etc.) stud-
ied foliated structures on a smooth manifold with the viewpoint of
transversal differential geometry. In this paper, we shall discuss certain
hermitian foliations F on a riemannian manifold with a bundle-like met-
ric, that is, their transversal bundles to F have hermitian structures.
We shall show the following theorem;

THEOREM A. Let F be a l-dimensional regular geodesic kihler fo-
liation of codimension 2n (n > 2) on a compact simply-connected rie-
mannian manifold (M, g) with positive sectional curvature. Then we
have

(a) if B is parallel then the leaf space M/F is biholomorphic to a
complex projective space CP™",

(b) if, in particular, B vanishes everywhere then it is holomorphi-
cally isometric to CP™ with a Fubini-Study metric.

And applying Theorem A to Sasakian manifolds, we have easily the
following theorem which somewhat generalizes [JLOP], in fact, their
contact conformal curvature tensor restricted to the transversal bundle
may be considered as our tensor B.

THEOREM B. If the transversal conformal curvature tensor of a
(2n + 1)-dimensional fibred riemannian space M (n > 2) with Sasakian
structure vanishes everywhere then the leaf space M /F is a kihler man-
ifold of constant holomorphic sectional curvature.

We shall be in C™®-category and all manifolds are assumed to be
paracompact, Hausdorff spaces. And we use the Einstein summation
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convention and adopt ranges of indices as follows;

a,b,c,...:p—{-l’... D+ n, d,B,E,...=p+n+1,... ,p+2n
a,ﬂ,7,...=p+1,... P+2n, 4,5 k,o=1,-- P

1. Hermitian foliations and its transversal conformal cur-
vature tensor

Let (M, F, g) be an oriented riemannian manifold of dimension m :=
P + 2n with a riemannian foliation F of dimension p- By means of the
riemannian metric ¢, we can decompose T'M as follows;

TM=F@®H, H~TM/F.

(1.1) A hermitian foliation F of codimension 2n is defined by the
following data;
(1.1.1) M has a hermitian structure (h,J), 1.e. J is a complex structure
with respect to h satisfying h(JX,JY) = R(X,Y) for X|Y €
D(H),
(1.1.2) J and h are holonomy invariant, i.e. LyJ = 0 and Lyh = 0
for all V € I(F).
Here and hereafter, I'( ) denotes the space of sections of ()and Ly
the transversal Lie derivative operator for an element Y in the space B
of basic vector fields.

REMARK. Every riemannian foliation F whose transversal bundle H
is equipped with a holonomy invariant complex structure J induces a
holonomy invariant hermitian metric 4 on A, Indeed, H admits a holo-
nomy invariant riemannian metric g3. Set for X,V ¢ I'(H), h(X,Y) :=
gn(JX,JY) + gn(X, Y). Then clearly h(JX, JY) = h(X,Y). Since
LyJ =0forall V e T(F), (Lvh)Y(X,Y) = (Lygn)(JX, JY)+(Lvgy)
(X,Y) = 0. Thus h is the desired one.

Let ¢(X,Y) := h(X,JY) for X,Y € T(H). Lyv¢ =0 forall V e
I(F). Thus ¢ is a basic real 2-form on H. The basic forms are defined
by

g;:{wéA*MlivaO, LVLU:O for all VEF(f)}
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The exterior derivative d restricts to dg : A — A*“. If, in particular
dg¢ = 0, we call F a kahler foliation.

Example of hermitian but not kéhler foliations. Let E
To\N be the Iwasawa manifold with complex structure Jie Nis the
complex Lie group of complex matrices of the form

1 2! 23
1 22,
1

and Ty is the subgroup of N of those matrices whose entries are Gauss
integers. Letting z¢ := z® + iy* (¢ = 1,2,3), we have on N a basis
{8 = 1(dz® — idy*),8* = 3(dz® + idy®)} of left invariant 1-forms.
Then k := 8%8° is a left invariant hermitian metric on N. Let T'y D T’
be the subgroup of N of matrices of the form

1 ' 4y +sy'') 2+ sz’ +i(y® + sy’)
1 x4+ z'y2 ,
1

where s € Q° and z%,2'*,y?,y'* € Z. I'1 can be considered as a uniform
subgroup of U = (R?, 0) whose matricial form is

(1 2 27 2 ' 2? ozt :1:3\
1 —z% 2* 0 0 0 0
1 0O 0 0 0 0
1 0 0 0 0
1 0 A I
1 —z% 2!
1 0
\ 1/

where the group operation o is defined by

(:r],... ,xg)o(yl,... ,yg)'— (z* +y*%, x6+y6+x1y4—$2y5,
2Ty — 25,2 4yt +a'y® +:cy4,$9+y9+a:3y4).
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And a homomorphism u : U — N given by
('...,2%) = (@' + i(x? + s2%), 2% +i2%,2% + s2™ + i(2® + s2%))

is a surjective submersion with connected fibres and a foliation F by
the fibres of u is T;-invariant. Moreover the canonical projection @ :
(U, .7?) — M :=T1\U is a Galois covering mapping, i.e. we have a fo-
liation F on M of dimension 3 whose leaves £ are given by (L) = L,
where £ is a leaf of . Let H ~ TM /F by taking a riemannian metric ¢
on M. Then the maximal integral submanifold of H corresponds to the
hermitian manifold (E, J, h) of real dimension 6. Thus by the transver-
sal lift satisfying the cocycle condition, we have a hermitian structure
(J,h) on M. Therefore, F is a hermitian foliation, and 1t can not be
made kahler.

Now the complex structure J induces a splitting of the complexified
transversal bundle HC as the standard way;

HC ;= H@r C =H" ¢ H!,

Then we have the usual decomposition of complex differential basic
forms;

(12) Ag= ) A¥,

r==g+41

and so the decomposition of dg;
dg = 0 + 0O,

where 85 : Ay' — Attt Bg Ayt — Ay

Let (2',...,z™) be a local transversal coordinate system and {dz?%}
a local frame of (H®)* (:= the dual of H€). Since F is bundle-like,
we can choose a local unitary moving frame {w®} on (HC)* such that
w® € Ag. Let h := hapw®w?. Since h is J-invariant, we have h,, =
hap = 0. Thus ¢ is locally written by ¢ = thjw® A @P.

Consider the exact sequence defining F of real vector bundles;

H
0 —F —>TM —H —0.
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Then we have an exact sequence of complex vector bundles with respect
to a complex structure J¥ on TCM (:= the complexification of TM)
such that JM|HC = J;

0— 7 5 T%m 25 HC 0.

There exists in (T°M, g) a canonical associated linear connection V°
(called the second complex connection) uniquely defined by the condi-
tions ([Val);
(V1) if X € T(FC) (resp. T(H®)) then V$ X € T(FC) (resp. ['(HC))
for any Y € T(T° M),
(V2) if X,Y,Z € ['(FO) (resp. [(HC)) then (V5g)(X,Y) =0,
(V3) VJM =0 for all X € T(T°M),
(V4) 7(X,Y)|rc(resp. ey = 0 if at least one of the arguements in
[(F©) (resp. T(HC)),
(V5) if X,Y € T(FO) (resp. T(HC)) then r(JM X, Y)| 5 (resp. HC) =
(X, JMY)I;C(,esp_ xc), where 7 is the torsion tensor of V¢
given by 7(X,Y) := V&Y -V$ X —[X, Y] for X,Y € I(TCM).

We may define a partial connection ¥V : T(F) x I(HC) — T'(HC) by
(1.3) VvX :=H[V,X] for V eD(F), X e(H°).

Note that V¥ is well-defined ([BB]). Thus we define an adapted connec-
tion V in HC for F by for X € T(HC)
VyX forY € T(F)

1.4 VyX =
(14) Y { HVSL X for Y € [(HO).

Let {Z4} be the local vector fields associated to {w®} by h-duality.
Then Z, € B. Let (w3) be the connection form of V. Then by properties
of V¢ and (1.2), we have

(15) wg = haE(aB)hbfa wl‘: = —"‘_)37 w:'l = w(il =0, w;' =0,

v

and its torsion tensor 7V satisfies

(1.6) 7Y(Za, JZ8) = 7Y(JZa, Z), iyT® =0forall V € T(F).
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Thus V plays transversally a role as the hermitian connection on an
ordinary hermitian manifold. Let Q7 = —I\"V;73 be the curvature
form. Note that Qf is a basic 2-form of type (1,1).

We define the transversal conformal curvature tensor B to F by the
same way of Kitahara-Matsuo-Pak ([KMP));

1
(17) Bal—)ci = KvchJ + ;(haETvci + Sval;hc:i)
nr¥ 4+ (n? — 2)3V nry — sV

— hooh g —°
2n%(n? — 1) ablied + 2n(n? - 1)

hacfhc?)a

where KV ;.5 = haéKvic,; and RV, SV, TV are distinct transversal
Ricei curvature tensors locally given by

v o cd v v . cd v v . ced v
R ab = —h“K adchy S ab —h“K abed T ab = —h“K cdab>

v

and 1V, sV, tV distinct transversal scalar curvature tensors by

rV = 2h“5Rva5, sV =208V =1tV .= 2RV ;.

PROPOSITION 1. A hermitian foliation F is kahler if and only if V
coincides with the transversal Levi-Civita connection D in H, or equiv-
alently DxJ = 0 for all X € T'(H) (for definition of D, see e.g. [TY],
[NT]).

Proof. By the uniqueness of D, it suffices to prove that V is tor-
sionfree. We take a local unitary basic frame {Z4}. By definition
we have 7V(Z,,25) = Vg 25 — VzsZa = (L5 — T},)2,, where

3y = wg(Z,). Together with the conjugate relation, it follows by
(1.2), (1.6) that V is torsionfree if and only if I'§, = I'%,, T'¢, = I'%,. By
(1.5), V is torsionfree if and only if (08)vhca = (08)chba, i.e. Ogd = 0
and by taking conjugates dg¢ = 0. Thus V is torsionfree if and only
if dg¢ = 0. The second assertion follows from the general formula
2h((Vx )Y, Z) = dgd(X,JY,JZ) — dgd(X,Y, Z) for X,Y,Z € T(H).

The proof is similar to the usual ones in hermitian geometry.
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Let RP xyzw := h(RP(Z, W)Y, X) be the transversal curvature ten-
sor with respect to D and SP, c? its respective transversal Ricci, scalar
curvature tensors for X,Y,Z,W € I'(H). B can be expressed in terms
of the transversal curvature data with respect to D as follows;

(1.8)
D 1 Dy o
Bxyzw := R xvzw + o~ {h(X,W)57(Y, 2)
~ (Y, W)SP(X,Z) + SP(X, W)h(Y, Z) - SP(Y, W)h(X, Z)
- ¢(Y, Z)pP(X, W) + (X, Z)p" (Y, W) - pP(Y, 2)$(X, W)
+ p7(X, 2)$(Y, W) = 20°(X,Y)§(2, W) - 28(X, Y)p"(2, W)}

+ M{é(){ Z2YHY, W) — (Y, Z)(X, W)
4n?(n+1) ? ’ ) s
+26(X,Y)$(Z, W)}
(3n + 2)cP
- m{h(Y, Z)M(X, W) — h(X, Z)h(Y, W)},

where pP(X,Y) := SP(X,JY).

Let F be a hermitian foliation on (M, ¢) and (H, J, h) be as in (1.1).
We say that a diffeomorphism f on M is transversally conformal if at
each point z € M the restriction f.|x, : H, — Ty,)M satisfies the
following conditions;

(C1) f. is transverse to F,i.e. fu(H.)® Fpo) = Tf(I)M

(C2) h, = f*hf(r) is a conformal change of h,, i.e. J, = J, and

h, = €27}, for some real-valued basic function o on M.

(H,J,h) defines a hermitian foliation F on M of the same dimen-
sion as F. Indeed, we first note that the leaves of F are given by the
connected components of f~ Y(L) for £ C F. Clearly Lvh = 0 for all
Ve F(f ) Hence k is a holonomy invariant hermitian metric with re-

spect to J. Finally g := g7 + k is a bundle-like riemannian metric on
M. We call F the conformal change of F by f.

REMARK. An example of a transversal conformal mapping is the
following. Let F be a hermitian foliation of codimension two. Then an
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arbitrary holonomy invariant hermitian metric on H€ can be locally
written as h = Adzdz, A > 0, for a local complex isothermal coordinate
system (z). Let (z},...,2%) be a local coordinate system along the
leaves of F. Let fog : M — M be a local coordinate change defined by
(z,2) — (zf = z&,w = fap(z)), which induces a conformal change of
h constant along the leaves. Thus by the cocycle condition we have a
global diffeomorphism f on M transversally conformal.

By the same arguments of [KMP], we have immediately the following
lemmas.

LEMMA 2. B is invariant for any conformal change of a hermitian
foliation F of codimension 2n > 4.

LEMMA 3. Let F be a kahler foliation of codimension 2n > 6.
(a) the transversal Ricci contraction Sg of B is parallel if and only
if the transversal Ricci tensor SP is parellel,
(b) B vanishes everywhere if and only if F is of constant transversal
holomorphic sectional curvature.

PROPOSITION 4. Let F be a kahler foliation of codimension 2n > 6.
Then B is parallel if and only if F is transversally symmetric in the
sense of Tondeur-Vanhecke ([TV]).

Proof. By (1.8), a direct computation gives for X € I'(H)

RDX(JX)X(JX)
(3n + 4)cP

2
= Bx(sx)x(Jx) — 'T'L'SD(X,X)h(X»X) T oI+ 1)

h(X,X)2.
If B is parallel then by Lemma 3 the transversal Ricci tensor SP, so the
transversal scalar curvature tensor ¢ is parallel. Since D is metrical
with respect to h, we have Dx RDX(JX)X(JX) = 0, and vice verse.

Fact 5 ([TV]). If F is a 1-dimensional bundle -like geodesic, transv-
ersally symmetric foliation, the ambient space (M, g) is locally homo-
geous. If moreover (M,g) is complete and simply-connected, it is a
naturally reductive homogeneous space.
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2. Proof of Theorem A

Since F is regular, the leaf space (M/F,J, h,¢) is eqipped with a
kahler manifold structure such that 7 := M — M/F is a locally trivial
fibration. If B is parallel then by Proposition 4 and Fact 5, the ambient
space (M, g) is a homogeneous space. Thus the leaf space (M/F, J, k, ¢)
is a compact homogeneous kéhler manifold. By the O’Neill curvature
formula for submersion, the transversal sectional curvature to F is posi-
tive, which implies the positivity of the transversal bisectional curvature
HP(p,p') by the identity;

HP(p,p") = RPxyxvy + RP x ovyx(1v)-

It is well-known ([KO}) that a complex n-dimensional compact homo-
geneous kihler manifold with positive bisectional curvature is biholo-
morphic to CP™. Thus (a) is proved. The assertion (b) follows from
the Lemma 3.

REMARK. If the sectional curvature K s of M is strictly negative, M
can not admit a 1-dimensional kahler foliation. If K s is nonpositive,
M is a local riemannian product (cf. [Ra)).

3. Proof of Theorem B

Let M be a (2n+1)-dimensional fibred riemannian space with Sasak-
1an structure (yp, g, €, ). For each point in M, there is a local coordinate
system (z,y',... ,y*") such that

n=det+ ) (—y"t)dye,

and the orbits of £ are locally given by y® = ¢®(c® constants). Then M
admits a foliation F generated by the orbits of €. Let v, := 8/dy® +
(y"*%)¢ and vut. = ©8/8y®. Then {&,v4,Vnta} forms a local ba-
sis with the dual basis {n,dy®,dy™*® := dy® o ¢}. Clearly g(vq,£) =
7(va) = 0. Since € is a Killing vector field, ¢ := n® n + Japdy*dy®

is a bundle-like riemannian metric. Let J := ¢|y and h := g|y =
Japdy“dy”®, where H ~ TM/F. Then h(J X, JY)=h(X,Y)for X|Y €
I'(H) and L¢J = L¢h = 0. Let VM (resp. D) be the Levi-Civita
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(resp. transversal Levi-Civita) connection on M (resp. H). By a di-
rect computation we have for X,Y, Z € I'(H)

W(Dx 1YY, Z) = Hg((VX )Y, Z) = n(Y)h(X, Z) - h(X,Y)5(Z) = 0.

Hence F is a 1-dimensional regular geodesic kihler foliation. Therefore
Theorem B follows from Lemma 3.

REMARK. If the transversal bundle M is integrable then the leaf
space M/F is the base space N and the transversal Levi-Civita con-
nection projects to the Levi-Civita connection VV on N. Moreover,
the contact conformal curvature tensor Cy defined in [JLOP) restricted
to H coincides with the transversal conformal curvature tensor B. In-
deed, note that ¢(X,Y) = dn(X,Y) = —p[X,Y] =0 for X,Y € I'(H).
Since Cj is constructed by using the method of Boothby-Wang fibration
T: M — N, the curvature tensor RM (resp. RV) on M (resp. N) with
respect to VM (resp. VN) satisfies for XY, Z,W € I'(H)

M N
RY xyzw = R x,v,z,w, o 7.
where (), := m.( ). Thus we have Co xyzw = Bxyzw.
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