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SOME LINEARLY INDEPENDENT IMMERSIONS
INTO THEIR ADJOINT HYPERQUADRICS

CHANGRIM JANG

1. Introduction

Let z : M™ — E™ be an isometric immersion of an n-dimensional
connected Riemannian manifold into the m-dimensional Euclidean sp-
ace. Then the metric tensor on M™ is naturally induced from that
of E™. We use the same notation <, > for the metrics and iden-
tify M™ with z(M") unless stated ortherwise. Let V and V be the
Levi-Civita connections on M"™ and E™ respectively. Then, we have
so-called Gauss equation VxY = VxY + h(X,Y), where X and ¥
denote vector fields on M™ and h is the second fundamental form. The
equation of Weingarten is given by V x¢ = —85¢X + Dx&, where S is
the Weingarten map associated with a normal vector field £ to M™ and
D the normal connection in the normal bundle NM. Denote by A the
Laplacian of M™. Then the following two equations are well known:

(1.1) Az =trh= h(eie:)
i=1

for a local orthonormal frame ey,€es3,... ,e, of M";

(1.2) Az, ) = 2{Az,z) + 2n.

The immersion z is of finite type k[1] if the position vector field «
admits the following decomposition

(1.3) r=x9+ T+ -+ Tk,
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where ry is a constant vector in £™ and Ar; = Mri: A, € R and
Ai #Ajif 1 # j. For a k- type immersion z, let E; i =€ {1,2,... , k},
denote the subspace of E™ spanned by z;(p); p € M*. The immersion z
1s said to be linearly independent if the linear subspace Ey, E,.... | E,
are lincarly independent. It is said to be an orthogonal immersion
if £y,E;,...,E; are mutually orthogonal.[2,3] Lizearly independent
immersions and orthogonal immersions are strongly related with the
immersions satisfying the equation

(1.4) Az = Ar + b

for some constant m X m matrix A and some constant vector b in
E™. In [5] O.J.Garay initiated to study hypersurfuces satisfying (1.4)
for some diagonal matrix A and b = 0. And several authors studied
linearly independent immersions, orthogonal immersions and immer-
sions satisfying kinds of the equation (1.4). The followings are some
important results concerned with these objects:

THEOREM A. (2| Let x : M™
Then the immersion r is linearly independent if and only if x satisfies
(1.4) for some constant matrix A € E™*™ and be E™.

» E' be an immersion of finte type.

THEOREM B. [2] Let # : M™ — E™ be an immersion of finte type.
Then the immersion & is orthogonal if and only if r satisfies (1.4) for
g Y
some symimnetric matrix A € E™*™ and b€ E™.

THEOREM C. [24,6] Let # : M™ —- E™1 be an isometric immer-
sion satisfying (1.4) for some A and b. Then M™ is ;ninimal in E"*! or
an open part of an hypersphere or an open part of & spherical cylinder.

THEOREM D. {4] Let r : M™ —» SP*(r) C E"*? be an isometric
immersion into the (n + 1)-dimensional sphere with radius r centered
at origin, satisfying (1.4) for some A and b = 0. Then M™ is minimal
in S3 *t1(r) or an open part of an n-imensional sphere or an open part
of a product of two spheres.

Let ¢ : M — E™ be a linearly independens immersion whose
spectral decomposition is given by (1.3). Let v = ‘uy,ug,... ,u,) be
a Euclidean coordinate system on £™ with x¢ as its origin. Then one
can show that therc exists an m x m matrix A satisfying Ar = Az,



Some linearly independent immersions into their adjoint hyperquadrics 171

following the process in the proof of theorem A. And if z is nonminimal
and is fully contained in E™(i.e., M" is not contained in a hyperplane of
E™.), the non-zero matrix A is uniquely defined. Now we can introduce
the notion of adjoint hyperquadrics.

DEFINITION. [3] Let z : M™ — E™ be a non-minimal, linearly
independent and fully contained immersion. Let A be the m x m
matrix associated the immersion & defined above. Then for any point
pin M™, the equation

m

(Au,u) = Zaijuiuj = ¢p(cp = (Az,z)(p))

1!]

defines a hyperquadric @, in E™. We call the hyperquadric @, the
adjont hyperquadric of the immersion « at p. In paticular, if M™ is
contained in an adjoint hyperquadric @, of z for some point p € M™,
then all of the adjoint hyperquadrics {Q,|p € M"} give a common
adjoint hyperquadric, denoted by @. We call the hyperquadric @ the
adjoint hyperquadric of the linearly independent immersion x.

The following theorem provides a necessary and sufficient condition
for a linearly immersion to be an orthogonal immersion in terms of the
adjoint hyperquadrics.

THEOREM E. [3] Let  : M — E™ be a non-minimal linearly
independent immersion. Then M is immersed by z as a minimal sub-
manifold of its adjont hyperquadric if and only if the immersion t is
an orthogonal immersion

In this paper, we investigate some linearly independent immersions
with lower codimensions and observe that the necessary condition for
TheoremE can be weakened in these cases. Our results are as follows:

THEOREM 1. Let ¢ : M™ — E™*? a non-minimal fully contained
linearly independent immersion. Then M™ is immersed into its adjont
hyperquadric if and only if the immersion z is an orthogonal immersion.

THEOREM 2. Let x : M™ — E™*? a fully contained linearly inde-
pendent immersion and let M™ be a compact manifold. Then M™ is
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immersed into its adjont hyperquadric if and onlv if the imnersion z
1s an orthogonal immersion.

Continuously, we investigate some spherical iramersions satisfying
kinds of the equation (1.4) and obtain the followings which are gener-
alizations of Theorem D.

THEOREM 3. Let & : M"™ — S™(yr) C E'*? be an isometric
mmmersion into an (n + 1)-dimensional sphere centered at a point a in
E™3 and let x satisfy (1.4) for some constant matrix A € E(r+2)x(n+2)
and b€ E"2. Then M™ is one of the followings:

(1) a minimal hypersurface of S?*!(r);

(2) an open part of an n-dimensional sphere;

(3) an open part of a product of two spheres SP(r;) x S"7P(r,)
wherep=1,2,... n—1 r}{+7r5=r?and -f;; # "—r_gﬂ

THEOREM 4. Let v : M™ — ST (r) C E™3 be an isometric im-
mersion and r satisfy (1.4) for some constant matrix A € E(n+3)x(n+3)
and b = 0. Then r is an orthogonal immersion.

2. Proofs of Theoreml and Theorem?

Let # : M™ — E™ be an isometric immersion satisfying the equa-
tion (1.4) for some A and b. Let C denote the skew symmetric matrix
%(A —~" A). Then we have the following lemmas.

LEMMA 2.1, For every point p of M™ and orthonormal tangent
vectors ¢ (p), e2(p), ... .eq(p) at p, we have

n

> (Aci(p)iei(p)) = = (Ax(p) + b, Az(p) + b).

1=1

Proof. Let ey,eq,... ¢, be alocal orthonormal ‘rame of M™ defined
on U. Then we have

(Ar 4+ be;) =0

for 2 = 1,2,...  n. Differentiating the above equat:ons in the direction
of ¢;, we get
(Aei,e;) + (Azx + b, h(ey, e;)) = 0.
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By summation the following holds

n

) (Aeiye) + (Az +b, Z h(ei,e:)) = 0.

=1

Combining this with (1.1), we get the conclusion.

LEMMA 2.2. For every tangent vector field X of M™ and the skew
symmetric matrix C, the vector field CX is normal to M™.

Proof. Let X,Y be local tangent vector fields on M™. Then we have
(Az +b,Y) = 0.
Differentiaing this equation in the direction X, we get
(AX,)Y) + (Az + b, W(X,Y)) = 0.

Since h is symmetric, we get (AX,Y) = (AY, X). Thus (CX,Y) = 0.

LEMMA 2.3. If = satisfies the eqation (Az + b,z) = c for some
constant ¢, then 2Cx + b is normal to M™ and (Az + b,2Cz + b) = 0.

Proof. Let X be a local tangent vector field of M™. Differentiating
the eqation (Az + b, x) = c in the direction of X, we get

(AX,z) + (A + 5, X) =0

This implies (*Az,X) = 0 and (2Cz + b, X) = 0. Let e;,€2,... ,€q
be a local orthonormal frame of M™. Then we have (*Az,e;) = 0,
t =1,2,...,n. By differentiating this formula in the direction e;, we
get ({Ac;,e;) + (*Az, V. e;) = 0. Hence the following holds

> (‘Aei,ei) + (‘Az, Az +b) = 0.

i=1

Since ('Ae;,e;) = {Ae;, €;), From the above eqation and Lemma2.1 we
have that ("Az, Az +b) = (Az +b, Az +b). This implies (2Cz + b, Az +
b) =0.
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Proof of Theorem 1. Let x: M™ —s E™" 2 bea linearly independent
immersion into its adjoint hyperquadric. Then there exists a matrix
A and a constant ¢ such that Az = Az and (Ar,z) = c. Assume the
immersion r is not orthogonal. This assumption implies that the skew
symmetric matrix C = %(A —! A) is not a zero matrix. We proceed
with two cases seperately.

Case 1. (Ar,x) =c#0

In this case we know that Az is never zero and the set U ={pc¢€
M"|Cir(p) # 0} is an open dense subset of M™. ( If Cxz is ide ntically
zero on an open subset V of M™, then V is contained in kerC which is
a linear subspace of E"+2, Sin(‘(‘ rankC is at least 2, the dimension of
kerC' is at most n. This implies V is contained an n dimensional linear
subspace of E"*%. Then V is minimal in E™*? and hence Ar = 0 on
V.) Let Uy be a connected component of U. Then from Lemma2.3 we
know that the vector ficlds Az, Cr span the noraal space of U, and
they are mutually orthogonal. Let +™ be the orthogonal pro jection of
r to the normal space. Then we have

N =adr + GCx

for some differentiable funtions « and 4. But (Cz z) = 0 implies that
# = 0. Hence we know that

(2.1) T =qdr+z!,

where &7 is the tangential part of 7. For a local tangent vector field X,
we get (C'r, X) = 0 and hence (C.X,z) = 0. Lemma2.2, (2.1) and the
equation (CX,r) = 0 unplies that CX = ~Cz for some differntiable
funtion 4. Consider the unit normal vector field ]—-—-T and take its

covariant derivative in the direction of X, we get

1 1 R 1 “y
e et - G e

}Cx.

This vector field must be orthogonal to Cr. Hence we get Vy ]——T = 0.
This means W 15 a constant vector field . Therefore Cz = |Cz|E for
some constant vetor E. Let N be a local unit normal vector of U
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which is normal to Az. Then above argument implies every covariant
derivative of N vanishes. Let N’ be a local unit normal vector field
orthogonal to Az in a neighborhood of p € M™--U. Then by continuity
every covariant derivative of N must vanishes at p. So we have a global
constant normal vector field of M™. This means M™" is contained a
hyperplane of E™*2 which leads a contradiction to the assumption
that M™ is fully contained. Thus we must have C = 0. And we can
conclude that z is an orthogonal immersion.

Case 2. (Az,z) =0

Since r is non-minimal, we may assume Az # 0 locally. In this case
we can see that Czr # 0 and Az,Cr span the normal space of M™.
Since (Az,z) = 0 and (Cz,z) = 0,z is tangential. The integral curve
of r is can be expressed as z(s) = e’a for a constant vector a which is
a part of a ray from origin. On this integral curve, Aa and Ca span the
normal space of M™. Hence we know that every point of this integral
curve has parallel tangent space. Appealing to lemma 2.1 we get

(Az(s), Az(s)) = constant.

This is a contradiction. So we must have C = 0. This implies z is an
orthogonal immersion. The converse follows from theoremE.

Proof of Theorem 2. Let x : M™® — E™*? be a linearly indepen-
dent immersion of an n-dimensional compact manifold into its adjoint
hyperquadric. Then there exist a matrix A and a constant ¢ such that
Ar = Ax and (Azr,z) = ¢. From (1.2) and (z, Az) = ¢ we can see
that A(x,x) = 2¢ + 2n. By Hopf’s lemma we get (z,r) = r? for some
positive constant r and (Az,z) = —n. Hence M™ is immersed into
S3*%(r) by z. By theorem4 which will be proved in the next section
we know that A is symmetric and hence z is an orthogonal immersion.
The converse follows from theoremE.

3. Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3. Since M™ is contained in S7+!(r), we know

that (r — a,z — a) = r?. Instead of the immersion z, Consider the
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immersion y : M" — E"*? given by y = 2 —a. Then M™ is iinmersed
into S7*!(r) by y and the following holds

Ay =Ar = Ay~ b (b = Aa+ 1)
So without loss of gencrality we may assume the nanifold M” is im-
mersed into S (r). In this case it follows from the eqation (1.2) and

A(r,r) = 0 that (Ar + b,r) = —n. And hence we get 2Cr + b is a
normal vector field of M™ and (2Cz + b, Az + b) = 0(by Lemma2.3).

Suppose 2Cr + b = 0 in an open subset V of M™. Then we have
(2Cx + b,r) = 0. And hence

(3.1) (r.b)y = 0in V.

Then A{r,b) = (Ar,b) = (Ax + b, r) = 0. This imolies

(3.2) (x," Ab) == — (b, b).

From (3.1) and (3.2) we can conclude ' = 0 and b = 0(Otherwise V is
a minimal submanifold of E™*2). In this case referring to theoremD,
we get the desired classification. If b or C is nonzero , then the above
argument implies the set {p € M"|2Cx(p) + b # 0} is a dense open
subset of M™. Hence we may assume that Ar +b and 2Cx + b are local
normal vectors of M™ which are mutually orthogonal. Since «x is also a
normal vector field of M™, there exist differentiable funtions . 7 such
that
r=a(Ar+b) 4+ H2Czx + b).

Let ¢y, ¢2,... e, be alocal orthonormal frame of 74", Differentiating
above equations in the direction ¢,. we get

i = (e;a)Ar + b) + ade; + (e,8)(2Cx + V) + B2Ce;.
Hence we get
0i; = {ei,65) = a(Ae;, ;)

This means that the shape operator associated with Ar + b is —%I,
where I is the identity transformation. From Lemma2.2 | we know
that the shape operator associated with 2Cr 4 b is the zero map. This
argument implies that the set {p ¢ M"|2Cz + b # 0} is a totally
umbilical submanifold. By continuity we can conclade M™ is an open
part of n-dimensional sphere.

For the proof of theorem4 we need following two lemmas. We assume

the radius r of S(')”Lz(r) is 1 for simplicity.
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LEMMA 3.1. If the skew symmetric matrix C = (A -" A) is a
nonzero matrix and Ar # —nz on M"™ | then M™ is contained in a
hyperplane of E™13,

Proof. If Cz = 0 on the open subset V of M™, then V is contained
in a (n + 1) dimensional linear subspace of E™"*®. Hence V is an open
part of an n dimensional sphere centered at origin. So Ar = —nz
holds on V. This is a contradiction. So we know that the set U =
{p € M"|Cz # 0} is an open dense subset of M" and, =, Az + nz
and Cr are normal vectors in U which are mutually orthogonal from
(1.2) and Lemma 2.3. We will only show that in every component
of U, the equation holds Cz = pE for some constant vector E €
E™3 and a funtion g. Then by similar argument to that of proof of
theoreml we can see that M" is contained in a hyperplane of E"*3,
Let ¢1,€2,... ,€e, be a local orthonormal frame of U. Then we have
from Lemma2.2 and (Ce;,z) =0

(3.3) Ce; = a;(Az + nz) + 3;Cz,i € {1,2,... ,n}

for some differentiable o; and 3;. If one of a; is nonzero, without loss
of generality we may assume a; # 0. Then we have from (3.3)

Clez — a261) = (B2 — %ﬁl)cx

aq

an anp
Clen — —e1) = (,Bn - —ﬂl)C‘T
@ a
Let €),... , el be local orthonormal vectors spanned by e; — %fe], ceey
en — g2c1. Then we have a new orthonormal frame e}, €5, ... , e}, such

that
Ce} = oj(Az + nx) + BiCxz

Cei=pBICr, 1=23,...,n

for some differentiable functions af, 3!. We will use the notations e;, ay,
Bi instead of e}, af, 3!. So the following holds for ¢;, oy, 8,

(3.4) Ceiy = ay(Ax + nz) + 51Cx, a1 #0
(3.5) Ce; =p;Cz, 1=2,3,.. ,n.
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From (3.5) we get
Cﬁlc? = (e142)Cx + 5;Ce;.
The right hand side of this is normal, hence
CV. ¢3 =Chiey,ez) + CV, e,

1s normal. So we have Ch(ey,ep) is normal. Let h(eq,e) = kjz +
kol Ar + nz) + k3Cx for some funtions ky,ky and k3. But we see
that k; = k3 = 0 from simple calculations. So we have Ch(e,,es) =
koC(Ar + nz). From (3.4) we get (C(Az + nz),¢;) # 0. So we must
have k; = 0. This implies v,lcg is tangential. Similar computations
imply the following general facts:

(3.6) h(eiye;) =0 for i,7=1,...,n and #j;

(3.7) hieg,e;) = —x for 1:=:2,....n;

{3.8) <vﬂc],cl) =0, thus Vg, =0,0,7=2,... n
From (3.7) and (1.1) we have
(3.9) h(ep,e9) = Az + (n — 1)x.
This implies (Az, h(ey,¢1)) = (Az. Az) — n(n — 1). Thus
(Ar, Ar) = —(Aey,e1) + n(n —1).
Differentiating this equation in the direction e; for ¢ = 2,... ,n, we

have
2(Ar, Ac;) = —(AV, ¢y, ¢1) — (ve;el,Am).

By (3.8), the right hand side of this equation is zero. So we have
(3.10) (Ar, A,y =0 for 1=2,... .

Since (Aci,x) = 0 and (Ae;,Cz) = —(Az,Ce;) = O for i = 2,... ,n,
(3.10) unplies

(3.11) D, Ar=0 for 1=2,...,n.



Some linearly independent immersions into their adjoint hyperquadrics 179

Now we will prove that V., e; = 0. By coddazi equation, we have
(Veh)(er,e1) = (Ve h)(ese3) for i=2,...,n
By (3.6),(3.8),(3.9) and this equation, we obtain
D, Az = —h(V, ei,e1) — h(ei, Ve, 1), 1=2,...,n.
From which and (3.11) we get
—h(Ve,eie1) — h(ei,Ve,e1) =0, 1=2,... ,n.

From this and (3.6), we find

—(Ve,ei,er)h(er,er) — (Ve er,ei)h(eie) =0, i=2,... ,n.
This implies
(3.12) Ve, €1 =0.

(3.8) and (3.12) implies Dy = span{e;} and D, = span{es,... ,e,} are
two complementary integrable distributions. Hence there exists a local

coordinate (s, z3,... ,z,)of U such that e; = 2% and span{es,... ,en}
= span{;g—z—z—, e ,a—f"— . Hence from (3.7),(3.8),(3.9),(3.11) and
(3.12) we have
(3.13) V 9 =Az+(n-1)z,V s 9
3s Os ¥ 0s
g 3}
(3.14) 52 = ——naxi.

Since the curvature tensor R of E™*? is identically zero, we get from

(3.13)

d 0.0 = = O 0
0= R 525 =V Vg Ve VB
=-Vo {Am+(n—1)x}
6 0

So we get

0 d
8:::,- = —(n - 1)‘5;:
This is a contradiction to (3.14). Therefore we must have a; = 0 in

(3.4). Consequently there exist a constant vector E and a funtion p
such that Cz = pE.

A
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LEMMA 3.2. Let U, be the set {p € |Az(p) = —nz(p)}. If U,
has nonempty interior and C' is an nonzero matrix, then M™ satisfies
Az = —nr globally. Hence M™ is a minimal submanifold of SJ+%(1).

Proof. Suppose U, = {p € M" Az(p) # —nzx(p)} is nonempty. If
Cr = 0 on an open subset V of Uy, then V is contained in ker(C'. Since
the dimension of kerC is at most 1 + 1, V' is contained in an (n + 1)-
dimensional linear subspace of E™**. Subsequently V is contained in
an n-dimensional sphere centered at origin. This implies Ar = -nx
on V. Hence the set W = {p € Uy|C'z(p) # 0} is an open dense subset
of U5, By theoremd and lemmad.! we know that W is locally an n-
dimensional sphere of which center is not origin or a product of two
spheres. In every case the vector field Ax is parallel in W and by some
choices of a local orthonormal frame e, eq,...,¢,. we know that

(3.15) Ac; = kye,

for some coustants k, # —n, 1 =1,2,... ,n. The assumption U; has
nonewpty interior implies A has at least an (n + 1) dimensional eigen
space with —n as its eigen value. And (3.15) imolies that 4 has at
least n 4+ 1 eigen values (counting with multiplicities) different from
—n. This 15 a contradiction. So we can conclude that Uy is cinpty.

Proof of Theorem 4. If ' = 0, then the conclusion holds directly.
Suppose C # 0 and Ar # —nr at some point p € M". Then the set
U= {p€ M"Ar(p) # —nx(p)} s an open dense subset of M" by
lemmald.l. In this case, lemma3. 1 unplies that every component of U
1s contained in a hyperplane. By theorem3 we can see that the vector
field Ax is parallel on U. And thus (Az, Az) 1s constant on M" by
continuity. Since this value is different from n?, we see that U = M™.
Appealing to lemma3.1 and theoremd again we can get the conclusion.
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