References
- Besse, A.L., Einstein Manifolds, Springer, Berlin, 1987.
- Chaki, M.C. and Roy Chowdhury, A.N., On conformally recurrent spaces of second order, J. Austral. Math. Soc. 10 (1969), 155-161. https://doi.org/10.1017/S1446788700006984
- Ewert-Krzemieniewski, S., On conformally birecurrent Ricci-recurrent manifolds, Colloq. Math. 62 (1991), 299-312. https://doi.org/10.4064/cm-62-2-299-312
- Ewert-Krzemieniewski, S., On manifolds with curvature condition of recurrent type of the second order, Period. Math. Hungar. 34 (1998), 185-194.
- Garai, R.K., On conharmonically recurrent spaces of second order, Yokohama Math. J. 21 (1973), 89-96.
-
Leyson, D.T. and Lemence, R.S., On
$W_4$ -atness of some classes of generalizations of Einstein manifolds, Int. Journal of Math. Analysis 8 (2014), 881-889. https://doi.org/10.12988/ijma.2014.4240 - Lichnerowicz, A., Courbure, nombres de betti, et espaces symetrique, Proc. of the Intern. Cog. of Mat. 2 (1952), 216-223.
- Pokhariyal, G.P., Curvature tensors and their relativistic signicance III, Yoko-hama Math. J. 21 (1973), 115-119.
- Thompson, A.H., On conformally flat 2-recurrent Riemannian spaces, Quart. J. Math. Oxford Ser. 20 (1969), 505-510. https://doi.org/10.1093/qmath/20.1.505
-
Tripathi, M.M. and Gupta, P.,
$\Im$ -curvature tensor on a semi-Riemannian man-ifold, J. Adv. Math. Stud. 4(1) (2011), 117-129.
Cited by
- ON PSEUDO W4-SYMMETRIC MANIFOLDS vol.38, pp.1, 2016, https://doi.org/10.5831/HMJ.2016.38.1.39