References
- F. Dobarro and E. Lami Dozo, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S., 58 (1983), pp. 295-408.
- P. E. Ehrlich, Yoon-Tac Jung and Seon-Bu Kim, Constant scalar curvature on warped product manifolds, Tsukuba J. Math., 20 no.1 (1996), pp. 239-256. https://doi.org/10.21099/tkbjm/1496162996
- Yoon-Tae Jung, Partial differential equations on semi-Riemannian manifolds, J. Math. Anal. Appl., 241 (2000), pp. 238-253. https://doi.org/10.1006/jmaa.1999.6640
- Y-T Jung, Y-J Kim, S-Y Lee, and C-G Shin, Scalar curvature on a warped product manifold, Korean Annales of Math., 15 (1998), pp. 167-176.
- Y-T Jung, Y-J Kim, S-Y Lee, and C-G Shin. Partial differential equations and scalar curvature on semi-Riemannain manifolds(I), J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math., 5 (1998), no. 2, pp. 115-122.
- Y-T Jung, Y-J Kim, S-Y Lee, and C-G Shin, Partial differential equations and scalar curvature on semi-Riemannain manifolds(II), J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 6 (1999). no. 2, pp. 95-101.
- Yoon-Tae Jung and Soo-Young Lee, Conformal deformation on a semi - Rie-mannian manifold (I), Bull. Korean Math. Soc., 38 (2001), no. 2, pp. 223-230.
- J.L. Kazdan and F.W. Warner, Scalar curtvature and conformal deformation of Riemannian structure, J. Diff. Geo., 10 (1975), pp. 113-134. https://doi.org/10.4310/jdg/1214432678
- J.L. Kazdan and F.W. Warner, Existence and conformal deformation of metrics with prescribed Guassian and scalar curvature, Ann. of Math., 101 (1975), pp. 317-331. https://doi.org/10.2307/1970993
- J.L. Kazdan and F.W. Warner, Curvature functions for compact 2 - manifolds. Ann. of Math., 99 (1974 ), pp. 14-74. https://doi.org/10.2307/1971012
Cited by
- THE EXISTENCE OF WARPING FUNCTIONS ON RIEMANNIAN WARPED PRODUCT MANIFOLDS vol.26, pp.3, 2013, https://doi.org/10.14403/jcms.2013.26.3.525