SOME EINSTEIN PRODUCT MANIFOLDS

Joon-Sik Park and Kyung-Suk Moon

Abstract

In this paper, we get conditions for the natural projectorns of some product manifolds with varying metrics of two Riemannian manifolds to be harmome, and necessary and sufficient conditions for some prodict mamfolds with the harmonc natural projections of two Einstein manifolds to be Enistem manifolds.

1. Introduction

For complete Riemannian manifolds (M, g), (N, h), a smooth map $\phi: M \longrightarrow N$ is said to be harmonic if $\operatorname{tr} \nabla(d f)=0$, namely, the tension field $\tau(\phi)$ vanishes identically (cf. [2]).

On the other hand, harmonic maps ϕ between compact Riemannian manifolds (M, g) and (N, h) are the extrema of the energy functional $E(\phi)=\frac{1}{2} \int_{M}\|\mathrm{~d} \phi\|^{2} \mathrm{~d} v_{g}$. This suggests a variational approach to finding harmonc mappings.

A Riemannian metric g is called Einstein if its Ricci tensor satisfies $R \imath c(g)=k g$ for some constant k.

In this paper we get necessary and sufficient conditions for some product manifolds ($B \times F, g+f \bar{g}$) of two Einstcin manifolds (B, g) and (F, \bar{g}) by f to be Einstein manifolds(cf. [1]) And under assumptions that the natural projections $\pi . B \times F \longrightarrow B$ and $\sigma: B \times F \longrightarrow F$ are harmonic, we obtain the complete conditions for product manifolds with varying metrics(warped product manifolds, twisted manifolds, and doubly warped product manifolds) of two Einstein manifolds

[^0](B, g) and (F, \bar{g}) by f to be Einstein manifolds(cf. Proposition 2.4, 3.4, 4.4, and Theorem 2.6, 3.6, 4.6).

2. The warped product manifold

Let (B, g) (resp. (F, \bar{g})) be an n-dimensional (resp. p-dimensional) Riemannian manifold and f a positive smooth function on B. The warped product manofold $M=B \times{ }_{f} F$ is the differentiable product manifold $B \times F$ equipped with the metric \tilde{g} defined by $\tilde{g}:=g+f^{2} \bar{g}$, i.e.,

$$
\begin{equation*}
\tilde{g}(X, Y)=g\left(\pi_{*} X, \pi_{*} Y\right)+f^{2} \tilde{g}\left(\sigma_{*} X, \sigma_{*} Y\right) \tag{2.1}
\end{equation*}
$$

for each tangent vector X, Y on M. From now on in this paper, π (resp. σ) is the canonical projection of M onto B (resp. F). The curvature tensor \widetilde{R} of (M, \tilde{g}) is given by $\widetilde{R}(X, Y) Z=\widetilde{\nabla}_{X} \widetilde{\nabla}_{Y} Z-\widetilde{\nabla}_{Y} \widetilde{\nabla}_{X} Z-$ $\widetilde{\nabla}_{[X, Y]} Z,(X, Y, Z \in \mathfrak{X}(M))$, where $\widetilde{\nabla}$ is the Levi-Civita connection of (M, g).

For a local coordinate system (u^{a}) of B, the metric tensor g has the components $g_{a b}$, where $g_{a b}=g\left(\frac{\partial}{\partial u^{a}}, \frac{\partial}{\partial u^{b}}\right)$. Similarly, for a local coordinate system (u^{x}) of F, \bar{g} has the components $\bar{g}_{x y}$.

Throughout this paper, the indices a, b, c, \ldots (resp. x, y, z, \ldots) run over $\{1,2, \ldots, n\}$ (resp. $\{n+1, n+2, ., n+p\}$) and the indices i, \jmath, k, \ldots run over the range $\{1,2, \ldots, n+p\}$, and the summation convention is used with respect to those systems of indices. Then, for the local coordinate system (u^{2}) of $M=B \times{ }_{f} F, \tilde{g}$ has the components $\tilde{g}_{2 j}$.

If $f=1$, then $B \times{ }_{f} F$ reduces to a Reemannian product manifold. B is called the base of $M=B \times{ }_{f} F, F$ a fibre and f a warping function.

In this paper, we denote by ∇_{b} (resp. $\bar{\nabla}_{x}$) the components of the covariant derivative with respect to g (resp. \bar{g}) and $\left\{\begin{array}{c}a \\ b\end{array}\right\}$ (resp. $\overline{\left\{\begin{array}{l}x \\ y \\ z\end{array}\right\}}$) the Christoffel symbols of g (resp. \bar{g}) on (B, g) (resp. (F, \bar{g})).

The following Lemmas are easily obtained.

Lemma 2.1. The Christoffel symbols $\left.\widetilde{\left\{_{2}^{k}\right\}}\right\}$ of the Livn-Civita con-
nectıon $\widetilde{\nabla}$ on the warped product mantfold M are given as follows:

where $f_{b}:=\partial f / \partial u^{b}$ and $\left(g^{a b}\right):=\left(g_{a b}\right)^{-1}$.
Lemma 2.2. Let R, \bar{R} and \widetilde{R} be the curvature tensors of (B, g), (F, \tilde{g}) and the warped product manvfold (M, \tilde{g}) respectively. Then

$$
\left\{\begin{array}{l}
\widetilde{R}_{a b c}^{d}=R_{a b c}^{d}, \quad \widetilde{R}_{a y c}^{w}=f^{-1} \delta_{y}^{w} \nabla_{a} f_{c}, \tag{2.3}\\
\widetilde{R}_{a y z}^{d}=-f g^{d c} \bar{g}_{y z} \nabla_{a} f_{c}, \\
\widetilde{R}_{x y z}^{w}=\bar{R}_{x y z}^{w}+\|d f\|_{g}^{2}\left(\bar{g}_{x z} \delta_{y}^{w}-\bar{g}_{y z} \delta_{x}^{w}\right),
\end{array}\right.
$$

and the others $\widetilde{R}_{\imath \jmath k}{ }^{l}$ of (M, g) are zero, where $\|d f\|_{g}^{2}=f_{a} f_{b} g^{a b}$.
We get from Lemma 2.1 and 2.2
Lemma 2.3. Let S, \bar{S} be \widetilde{S} be the Ricci tensors of $(B, g),(F, \bar{g})$ and the warped product manufold (M, \bar{g}) respectvely. Then

$$
\left\{\begin{array}{l}
\widetilde{S}_{a b}=S_{a b}-p f^{-1} \nabla_{a} f_{b}, \quad \widetilde{S}_{a x}=0 \tag{24}\\
\widetilde{S}_{x y}=\bar{S}_{x y}+f \tilde{g}_{x y} \Delta_{g} f+(1-p)\|d f\|_{g}^{2} \bar{g}_{x y}
\end{array}\right.
$$

where $\Delta_{g} f:=-g^{d a} \nabla_{a} f_{d}$.
Using (2 1) and Lemma 2.3, we get
Proposition 2.4. Let (B, g) and (F, \bar{g}) be n-dimensional and p dimensional Einstein manifolds with Einstein constants k_{1}, k_{2} respectively. Then, the warped product manufold $\left(M=B \times{ }_{f} F, \tilde{g}\right)$ is an Einstein manıfold with Einstein constant k of and only if

$$
\left\{\begin{array}{l}
\left(k_{1}-k\right) g_{a b}-p f^{-1} \nabla_{a} f_{b}=0, \tag{2.5}\\
k_{2}-k f^{2}+f \Delta_{g} f+(1-p)\|d f\|_{g}^{2}=0 .
\end{array}\right.
$$

The tension field $\tau(\phi)$ of a C^{∞}-map ϕ between two Riemannian manifolds (M, g) and (N, h) can be expressed using the local coordinates (x^{2}) on M and (y^{α}) on N as follows(cf. [2]).

$$
\begin{equation*}
\tau(\phi)=g^{\imath j}\left(\phi_{\imath \jmath}{ }^{\alpha}-\phi_{k}{ }^{\alpha} \Gamma_{\imath \jmath}{ }^{k}+\phi_{\imath}{ }^{\beta} \phi_{\jmath}{ }^{\gamma} \widetilde{\Gamma}_{\beta \gamma}{ }^{\alpha}\right) \frac{\partial}{\partial y^{\alpha}} . \tag{2.6}
\end{equation*}
$$

Here $\Gamma_{\imath j}{ }^{k}, \widetilde{\Gamma}_{\beta \gamma}{ }^{\alpha}$ are Cristoffel symbols on (M, g), (N, h) respectively and $\phi_{j}{ }^{\alpha}$ is the matrix representation of $d \phi$ with respect to the chosen frame fields, and $\left(g^{2 \jmath}\right):=\left(g_{2 \jmath}\right)^{-1}$ and $\phi_{2 \jmath}{ }^{\alpha}:=\partial \phi_{3}{ }^{\alpha} / \partial x^{i}$.

The following can be obtained by using Lemma 2.1 and (2.6).
Lemma 2.5. Let π (resp. σ) be the canonzcal projection of the warped product manufold (M, \tilde{g}) onto (B, g) (resp. (F, \bar{g})). Then σ is harmonic, and π is harmonic iff f is a constant.

By virtue of Proposition 2.4 and Lemma 2.5, we get
Theorem 2.6. Let (B, g) and (F, \bar{g}) be Einstein manifolds with Einstein constants k_{1}, k_{2} respectively, and π a harmonic mapping. Then, the warped product manifold ($M=B \times{ }_{f} F, \tilde{g}$) is an Einstein manıfold weth Einstern constant k of and only of
(2.12) $k=k_{1}=f^{-2} k_{2}$.

3. The twisted manifold

Let (B, g) (resp. $(F, \bar{g}))$ be an n-dimensional (resp. p-dimensional) Riemannian manifold and f a positive smooth function on $B \times F$. The twisted manıfold $M=B \times{ }_{f} F$ is the differentiable product manifold $B \times F$ equipped with the metric \tilde{g} defined by $\tilde{g}:=g+f^{2} \tilde{g}$, i.e.,

$$
\begin{equation*}
\tilde{g}(X, Y)=g\left(\pi_{*} X, \pi_{*} Y\right)+f^{2} \bar{g}\left(\sigma_{*} X, \sigma_{*} Y\right) \tag{3.1}
\end{equation*}
$$

for each tangent vector X, Y on M.

The following Lemmas are easily obtained.
Lemma 3.1. The Christoffel symbols $\widetilde{\left\{_{2}{ }_{3}{ }_{3}\right\}}$ of the Levv-Civita connection $\tilde{\nabla}$ on the twisted manrfold M are given as follows:

Lemma 3.2. The relatuons of the local components of the curvature tensors of $(B, g),(F, \bar{g})$ and the twisted manifold (M, \tilde{g}) are as follows

$$
\left\{\begin{array}{l}
\widetilde{R}_{a b c}^{d}=R_{a b c}^{d}, \quad \widetilde{R}_{a y c}{ }^{w}=f^{-1} \delta_{y}{ }^{w} \widetilde{\nabla}_{a} f_{c}, \tag{3.3}\\
\widetilde{R}_{a y z}{ }^{d}=-f g^{d c} \bar{g}_{y z} \widetilde{\nabla}_{a} f_{c}, \\
\widetilde{R}_{a y z}{ }^{w}=f^{-1}\left(\delta_{y}{ }^{w} \widetilde{\nabla}_{a} f_{z}-\bar{g}^{x w} \bar{g}_{y z} \widetilde{\nabla}_{a} f_{x}\right), \\
\widetilde{R}_{x y c}{ }^{w}=f^{-1}\left(\delta_{y}{ }^{w} \widetilde{\nabla}_{c} f_{x}-\delta_{x}{ }^{w} \widetilde{\nabla}_{c} f_{y}\right), \\
\widetilde{R}_{x y z}^{d}=f g^{b d}\left(\bar{g}_{x z}, \widetilde{\nabla}_{y} f_{b}-\bar{g}_{y z} \widetilde{\nabla}_{x} f_{b}\right), \\
\widetilde{R}_{x y z}^{w}=\bar{R}_{x y z}^{w}+\|\mathrm{d} f\|_{\bar{g}}{ }^{w} \delta_{x}{ }^{w} \bar{g}_{z y}-\|\mathrm{d} f\|_{\bar{g}}{ }^{2} \delta_{y}{ }^{w} \bar{g}_{z x} \\
\quad+f^{-1}\left(\delta_{y}{ }^{w} \widetilde{\nabla}_{z} f_{x}-\delta_{x}{ }^{w} \widetilde{\nabla}_{z} f_{y}+\bar{g}^{w u} \bar{g}_{z x} \widetilde{\nabla}_{u} f_{y}-\bar{g}^{w u} \bar{g}_{z y} \widetilde{\nabla}_{u} f_{x}\right),
\end{array}\right.
$$

and the others of (M, \tilde{g}) are zero, where $\partial_{a}:=\partial / \partial u^{a}$.
We obtain from Lemma 3.1 and 3.2
Lemma 3.3. Let S, \bar{S} and \widetilde{S} be the Rucct tensors of $(B, g),(F, \bar{g})$ and the twisted manifold (M, \tilde{g}) respectively Then
(3.4) $\left\{\begin{aligned} \widetilde{S}_{a b}= & S_{a b}-p f^{-1} \widetilde{\nabla}_{a} f_{b}, \quad \widetilde{S}_{a x}=(1-p) f^{-1} \widetilde{\nabla}_{a} f_{x}, \\ \widetilde{S}_{x y}= & \bar{S}_{x y}+(p-1)\|d f\|_{\tilde{g}} \bar{g}_{x y}+(2-p) f^{-1} \widetilde{\nabla}_{y} f_{x} \\ & +f \tilde{g}_{x y} \Delta_{\tilde{g}} f .\end{aligned}\right.$

Using (3.1) and Lemma 3.3, we get
Proposition 3.4. Let (B, g) and (F, \tilde{g}) be n-dimensional and p (≥ 2)-dimensional Einstein manifolds with Einstein constants k_{1}, k_{2} respectively. Then, the twisted manıfold ($M=B \times{ }_{f} F, \tilde{g}$) is an Einstein manafold with Einstein constant k if and only of

$$
\left\{\begin{array}{l}
\left(k_{1}-k\right) g_{a b}-p f^{-1} \widetilde{\nabla}_{a} f_{b}=0, \quad f^{-1} f_{a} f_{x}=\partial_{a} f_{x} \tag{3.5}\\
\left\{\left(k_{2}-k f^{2}\right) \dot{+(p-1)\|d f\|_{\bar{g}}{ }^{2}}\right. \\
\left.\quad+f \Delta_{\tilde{g}} f\right\} \bar{g}_{x y}+(2-p) f^{-1} \tilde{\nabla}_{y} f_{x}=0
\end{array}\right.
$$

The following can be obtained by using (2.6) and Lemma 3.1.
Lemma 3.5. Let π (resp. σ) be the canonical projection of the twnsted manifold (M, \tilde{g}) onto (B, g) (resp. (F, \bar{g})). Then π is harmonac iff $f_{c}=0(c=1,2, \ldots, n)$. Moreover, if $p=2, \sigma$ ss harmonic, and if $p>2, \sigma$ us harmonic iff $f_{z}=0(z=n+1, n+2, \ldots, n+p)$.

By virtue of Proposition 3.4 and Lemma 3.5, we get
Theorem 3.6. Let (B, g) and (F, \bar{g}) be Einstein manzfolds with Einstern constants k_{1}, k_{2} respectively. Assume f is a harmonic functıon, π is a harmonic map, and $\operatorname{dimF}=2$. Then, the twisted manifold ($M=B \times{ }_{f} F, \tilde{g}$) is an Einstern manufold with Einstern constant k if and only of
(3.6) $\left\{\begin{array}{l}k=k_{1}, \\ \|d f\|_{\tilde{g}}{ }^{2}=k f^{2}-k_{2} .\end{array}\right.$

4. The doubly warped product manifold

Let (B, g) (resp. (F, \bar{g})) be an n-dimensional (resp. p-dimensional) Remannian manifold and f (resp. h) a positive smooth function on
B (resp. F). The doubly warped product manıfold $M=B \times_{(h, f)} F$ is the differentiable product manifold $B \times F$ equipped with the metric \tilde{g} defined by $\tilde{g}:=h^{2} g+f^{2} \bar{g}$, i.e.,

$$
\begin{equation*}
\tilde{g}(X, Y)=h^{2} g\left(\pi_{*} X, \pi_{*} Y\right)+f^{2} \bar{g}\left(\sigma_{*} X, \sigma_{*} Y\right) \tag{4.1}
\end{equation*}
$$

for each tengent vector X, Y on M, where π (resp. σ) is the canonical projection of M onto B (resp. F).

The following Lemmas are easily obtained.
Lemma 4.1. The Christoffel symbols $\overline{\left\{_{2}^{k}\right\}}$ of the Levn-Civita connection $\widetilde{\nabla}$ on the doubly warped product manıfold M are given as follows:

Lemma 4.2. Let R, \bar{R} and \widetilde{R} be the curvature tensors of (B, g), (F, \bar{g}) and the doubly warped product manvfold (M, \tilde{g}) respectively.

Then

$$
\left\{\begin{array}{l}
\widetilde{R}_{a b c}^{d}=R_{a b c}^{d}+f^{-2}\|d h\|_{\bar{g}}^{2}\left(\delta_{b}^{d} g_{c a}-\delta_{a}^{d} g_{c b}\right), \tag{4.3}\\
\widetilde{R}_{a b c}^{w}=h f^{-3} h_{z} \bar{g}^{w z}\left(f_{a} g_{b c}-f_{b} g_{a c}\right), \\
\widetilde{R}_{a b z}^{d}=(h f)^{-1} h_{z}\left(f_{b} \delta_{a}^{d}-f_{a} \delta_{b}^{d}\right), \\
\widetilde{R}_{a y c}^{d}=(h f)^{-1} h_{y}\left(f_{c} \delta_{a}^{d}-f_{e} g_{a c} g^{d c}\right), \\
\widetilde{R}_{a y c}^{w}=f^{-1} \delta_{y}^{w} \nabla_{a} f_{c}+h f^{-2} g_{a c} \bar{g}^{z w} \bar{\nabla}_{y} h_{z}, \\
\widetilde{R}_{a y z}^{d}=-f h^{-2} g^{d c} \bar{g}_{y z} \nabla_{a} f_{c}-h^{-1} \delta_{a}^{d} \bar{\nabla}_{y} h_{z} \\
\widetilde{R}_{a y z}^{w}=(h f)^{-1} f_{a}\left(h_{x} \bar{g}^{w x} \bar{g}_{y z}-h_{z} \delta_{y}^{w}\right), \\
\widetilde{R}_{x y c}^{w}=(h f)^{-1} f_{c}\left(h_{y} \delta_{x}^{w}-h_{x} \delta_{y}^{w}\right), \\
\widetilde{R}_{x y z}^{d}=f h^{-3} f_{a} g^{d a}\left(h_{x} \bar{g}_{y z}-h_{y} \bar{g}_{x z}\right) \\
\widetilde{R}_{x y z}^{w}=\bar{R}_{x y z}^{w}-h^{-2}\|d f\|_{g}^{2}\left(\bar{g}_{y z} \delta_{x}^{w}-\bar{g}_{x z} \delta_{y}^{w}\right),
\end{array}\right.
$$

and the others $\widetilde{R}_{\imath \jmath k}^{l}$ of (M, g) are zero.
The following Lemma can be obtained by using Lemma 4.2.
Lemma 4.3. Let S, \bar{S} and \widetilde{S} be the Rucci tensors of $(B, g),(F, \bar{g})$ and the doubly warped product manafold (M, \tilde{g}) respectuvely. Then
(4.4) $\left\{\begin{array}{l}\widetilde{S}_{a b}=S_{a b}+(1-n) f^{-2}\|d h\|_{\bar{g}}^{2} g_{a b}+h f^{-2} g_{a b} \Delta_{\bar{g}} h-p f^{-1} \nabla_{a} f_{b}, \\ \widetilde{S}_{a x}=(n+p-2)(h f)^{-1} h_{x} f_{a}, \\ \widetilde{S}_{x y}=\bar{S}_{x y}+(1-p) h^{-2}\|d f\|_{g}^{2} \bar{g}_{x y}+f h^{-2} \bar{g}_{x y} \Delta_{g} f-n h^{-1} \bar{\nabla}_{x} h_{y} .\end{array}\right.$

We get from (4.1) and Lemma 4.3
Proposition 4.4. Let (B, g) and (F, \bar{g}) be n-dimensıonal and p dimensional Einstein manufolds with Einstein constants k_{1}, k_{2} respectively. Then, the doubly warped product manıfold $\left(M=B \times_{(h, f)} F, \tilde{g}\right) \imath s$ an Einstern manifold with Einstein constant k if and only of

$$
\left\{\begin{array}{l}
\left(k_{1}-k h^{2}\right) g_{a b}+(1-n) f^{-2}\|d h\|_{\bar{g}}^{2} g_{a b}+h f^{-2} g_{a b} \Delta_{\bar{g}} h \tag{4.5}\\
-p f^{-1} \nabla_{a} f_{b}=0, \quad h_{x} f_{a}=0 \\
\left(k_{2}-k f^{2}\right) \bar{g}_{x y}+(1-p) h^{-2}\|d f\|_{g}^{2} \bar{g}_{x y} \\
\quad+f h^{-2} \bar{g}_{x y} \Delta_{g} f-n h^{-1} \bar{\nabla}_{x} h_{y}=0
\end{array}\right.
$$

Using (2.6) and Lemma 4.1, we have
Lemma 4.5. Let π (resp. σ) be the canonical projection of the doubly warped product manıfold (M, \tilde{g}) onto (B, g) (resp. (F, \bar{g})). Then σ is harmonuc uff h is constant, and π is harmonic iff f is a constant.

By virtue of Proposition 4.4 and Lemma 4.5, we get
Theorem 4.6. Let (B, g) and (F, \bar{g}) be Einstein manifolds with Einstein constants k_{1}, k_{2} respectively, and π and σ harmonic maps.

Then, the doubly warped product manıfold $\left(M=B \times_{(h, f)} F, \tilde{g}\right)$ is an Einstein manıfold with Einstein constant k of and only if
(4.6) $k=h^{-2} k_{1}=f^{-2} k_{2}$.

- References

[1] A L Besse, Etnstein Manvfolds, Springer-Verlag, Berlin, 1987
[2] J Eells and L Lemare, Selected Topics in Harmonic Maps, CBMS Regional Conf, 1981
[3] S Kobayashı and K. Nomzu, Foundatıons of Differentıal Geometry, z, u, Wiley, Now York, 1963, 1969
[4] H Urakawa, Stabality of harmonic maps and eqgenvalues of Laplaczan, Trans Arner Math Soc 301 (1987), 557-589
[5] M Wang and W Ziller, On normal homogeneous Fanstein mantfolds, Ann Scı Ecole Norm Sup 18 (1985)

Department of Mathemathics
Pusan University of Foreign Studies
55-1, Uam-dong, Nam-Ku, Pusan
608-738, Korea
E-maul: iohpark@taejo.pufs.ac.kr

[^0]: Received June 19, 2002. Revised December 20, 2002
 2000 Mathematics Subject Classification 53C43
 Key words and phrases harmonic maps, Einstem mamfolds

