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ON HOMOGENEOUS SQUARE EINSTEIN METRICS

Shaoqiang Deng and Xingda Liu

Abstract. We prove that a homogeneous square Einstein Finsler metric
is either Riemannian or flat.

1. Introduction

Finsler geometry has proven to be very useful in many scientific fields, in-
cluding general relativity, biology and medical imaging. However, due to the
complexity of the related topics, the study of general Finsler metrics is rather
complicated. Recently, the study of some special classes of Finsler metrics is
considerably active, including Randers metrics, (α, β)-metrics, and square met-
rics, etc. On the other hand, the study of Einstein metrics has always been one
of the central topics in Riemann-Finsler geometry. Meanwhile, the related top-
ics in this direction are also generally rather involved. For example, up to now,
the problem whether there exists an Einstein Finsler metric on an arbitrary
manifold, first openly asked by S. S. Chern, is still unsolved.

In this short note we prove the following:

Theorem 1.1. Let F = (α+β)2

α be a homogeneous square Finsler metric on

a reductive coset space G/K with dimG/K ≥ 2. If F is Einstein, then it is

either Riemannian or flat.

2. Preliminaries

2.1. Square metrics

A square metric on a smooth manifold M is a Finsler metric of the form

F = (α+β)2

α , where α is a Riemannian metric, and β is a 1-form on M . It is
known that F is positive definite if and only if ‖ βx ‖α< 1, ∀x ∈ M (see [7]).
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Let G/K be a coset space of a Lie group G, where K is a closed subgroup of
G. Recall that G/K is called a reductive homogeneous space if the Lie algebra
g of G has a decomposition

(2.1) g = k⊕m, (direct sum of subspaces)

where k is the Lie algebra ofK, and m is a subspace of g satisfying the condition
Ad(k)m ⊆ m for any k ∈ K. In the literature, (2.1) is called a reductive
decomposition. Note that any homogeneous Finsler metric can be viewed as
an invariant Finsler metric on certain coset space.

Now assume that G/K is equipped with a G-invariant square metric F =
(α+β)2

α . Note that in this case, given any x ∈ M , the inner product on Tx(M)
induced by α defines a linear isomorphism between the tangent space Tx(M)
and the cotangent space T ∗

x (M). In particular, if β is a smooth 1-form on M ,

then there exists a unique smooth vector field ˜X such that β(Y ) = 〈 ˜X |x, Y 〉
for any Y ∈ Tx(M) and x ∈ M . We first prove the following:

Lemma 2.1. Let F = (α+β)2

α be a G-invariant square metric on a reductive

coset space G/K, with the reductive decomposition g = k ⊕ m. Then α is a

G-invariant Riemannian metric and the vector field ˜X corresponding to the

1-form β is a G-invariant vector field.

Proof. Since the restriction of the Riemannian metric α to m is the inner
product 〈·, ·〉, there exists a vector X in m which is dual to 〈·, ·〉, such that

F (y) =
(
√

〈y,y〉+〈X,y〉)2√
〈y,y〉

, ∀y ∈ m. Since F is G-invariant, for any k ∈ K, and

y ∈ m, we have F (Adk(y)) = F (y). Then we have

(2.2)
(
√

〈Ad(k)y,Ad(k)y〉+ 〈X,Ad(k)y〉)2
√

〈Ad(k)y,Ad(k)y〉
=

(
√

〈y, y〉+ 〈X, y〉)2
√

〈y, y〉
.

Substituting y with −y in (2.2), we obtain
(2.3)

(
√

〈−Ad(k)y,−Ad(k)y〉+ 〈X,−Ad(k)y〉)2
√

〈−Ad(k)y,−Ad(k)y〉
=

(
√

〈−y,−y〉+ 〈X,−y〉)2
√

〈−y,−y〉
.

Subtracting (2.3) from (2.2), we get 〈X,Ad(k)y〉 = 〈X, y〉. On the other hand,
taking the summation of (2.3) and (2.2), we obtain

√

〈Ad(k)y,Ad(k)y〉+ 〈X,Ad(k)y〉2
√

〈Ad(k)y,Ad(k)y〉
=
√

〈y, y〉+ 〈X, y〉2
√

〈y, y〉
.

It follows from the above equation and the equation 〈X,Ad(k)y〉 = 〈X, y〉 that
(

√

〈Ad(k)y,Ad(k)y〉 −
√

〈y, y〉
)

(

〈X, y〉2
√

〈Ad(k)y,Ad(k)y〉
√

〈y, y〉
− 1

)

= 0.
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If there exists y 6= 0 such that
√

〈Ad(k)y,Ad(k)y〉 >
√

〈y, y〉, then by the
Cauchy-Schwartz inequality and the assumption that F is positive definite, we
have 〈X, y〉2 ≤ 〈X,X〉〈y, y〉 ≤ 〈y, y〉. Thus

〈X, y〉2
√

〈Ad(k)y,Ad(k)y〉
√

〈y, y〉
− 1 < 0.

This then implies that
√

〈Ad(k)y,Ad(k)y〉 =
√

〈y, y〉, which is a contradic-

tion. Therefore we have
√

〈Ad(k)y,Ad(k)y〉 ≤
√

〈y, y〉. Note that the above
inequality is valid for any y and k. Thus

√

〈y, y〉 =
√

〈Ad(k−1)Ad(k)y,Ad(k−1)Ad(k)y〉
≤
√

〈Ad(k)y,Ad(k)y〉.

Therefore we have
√

〈Ad(k)y,Ad(k)y〉 =
√

〈y, y〉 for any k ∈ K any y ∈ m.
Then we also have Ad(k)X = X for any k ∈ K, completing the proof of the
lemma. �

Let u1, u2, . . . , un be an orthonormal basis with respect to α in m. Then we
can define a local coordinates on a neighborhood U of o via the map:

exp(x1u1) exp(x
2u2) · · · exp(xnun))K 7→ (x1, . . . , xn).

Set gK = (x1, . . . , xn) ∈ U . Then we have

∂

∂xi
|gK

=
d

dt
|t=0(exp(x

1u1) · · · exp(xi−1ui−1) exp(t+ xiui) exp(x
i+1ui+1) · s exp(xnun))K

=
d

dt
|t=0

(

exp(tex
1adu1 · · · exi−1adui−1(ui))gK

)

.

Denote ex
1adu1 · · · exi−1adui−1(ui) = fa

i ua. Then we have ∂
∂xi |gK = fa

i ûa|gK ,
where ûa denotes the fundamental vector field defined by

ûa|gK =
d

dt
exp(tua)gK|t=0.

Let Γl
ij be the Christoffel symbols of the Levi-Civita connection of α under

the coordinate system. Then by [3], we have

Γl
ij(o) =

1

2
(−〈[ui, uj ]m, ul〉+ 〈[ul, ui]m, uj〉+ 〈[ul, uj]m, ui〉) for i > j.

The G-invariant vector field ˜X dual to the 1-form β is generated by X in m.

Denote X = cun, (|c| < 1) and ˜X |gH = c ∂
∂xn |gH . Then we have the following:

bi = β(
∂

∂xi
) = 〈 ˜X,

∂

∂xi
〉 = c〈 ∂

∂xn
,

∂

∂xi
〉 = cani,

bi|j =
∂bi
∂xj

− blΓ
l
ij = cΓk

njaki,
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rij =
1

2
(bi|j + bj|i) =

c

2
(Γk

njaki + Γk
niakj),

sij =
1

2
(bi|j − bj|i) =

c

2
(Γk

njaki − Γk
niakj),

sj = bisij = ailblsij = csnj .

Let Ck
ij be the structure constants defined by the equations [ui, uj ] = Ck

ijuk.

Then it is shown in [3] that:

rij(o) = − c

2
(Ci

nj + Cj
ni),

sij(o) =
c

2
Cn

ij ,

sj(o) = csnj =
c2

2
Cn

nj .

By the above relations, we have the following:

Lemma 2.2. Let F = (α+β)2

α be a G-invariant square metric on a coset space

G/K generated by a Riemannian metric α and a vector X ∈ m with AdK(X) =
X and 〈X,X〉 < 1. Then the following assertions are equivalent:

(1) F is a Berwald metric.

(2) For any Z1, Z2 ∈ m,

〈[Z1, X ]m, Z2〉+ 〈[Z2, X ]m, Z1〉 = 0, 〈[Z1, Z2]m, X〉 = 0.

(3) Γi
nj = 0, ∀i, j.

(4) Cn
ij = 0 = Ci

nj + Cj
ni.

Proof. Recall that F is a Berwald metric if and only if the invariant vec-

tor field ˜X is parallel with respect to α, if and only if Γi
nj = 0, ∀i, j, if

and only if −〈[un, uj]m, ui〉 + 〈[ui, uj ]m, un〉 + 〈[ui, un]m, uj〉 = 0, if and only
if 〈[un, uj ]m, ui〉 + 〈[un, ui]m, uj〉 = 0 and 〈[ui, uj ]m, un〉 = 0, if and only if

rij(o) = 0 and sij(o) = 0, if and only if Cn
ij = 0 = Ci

nj + Cj
ni, if and only if

〈[Z1, X ]m, Z2〉 + 〈[Z2, X ]m, Z1〉 = 0 and 〈[Z1, Z2]m, X〉 = 0, ∀Z1, Z2 ∈ m. This
completes the proof of the lemma. �

3. Homogeneous Einstein square metrics

3.1. Shen-Yu’s description

Einstein square metrics on smooth manifolds have been described in [7] (see
also [2, 10] for related results), and the main results can be summarized as the
following

Theorem 3.1 ([7]). Let F = (α+β)2

α be a non-Riemannian square metric on

an n-dimensional manifold M . Then F is an Einstein metric if and only if the

Riemannian metric α := (1 − b2)α and the 1-form β :=
√
1− b2β satisfy the

condition: αRic = −(n− 1)k2α and bi|j = k
√
1 + b2aij , where k is a constant,
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b =‖ β ‖α, and bi|j is the covariant derivation of β with respect to α. Moreover,

in this case, F is given in the following form:

F =
(

√

1 + b
2
α+ β)2

α
,

with the condition (1 + b
2
)(1 − b2) = 1.

Remark 3.2. The second condition of Lemma 2.2 can be replaced with the
condition that β is a closed form and the vector field X, which is the dual to
β with respect to α, is a conformal field.

Remark 3.3. If F is a G-invariant square metric on the coset G/H , and α is
G-invariant, then so is α. Moreover, let X be the dual of β with respect to
α, then one easily gets that X = 1√

1−b2
X . From this it follows that, if β is

G-invariant, then so is β.

3.2. Proof of the main theorem

Combining the above description and the above remarks, we get the following
characterization of homogeneous non-Riemannian Einstein square metrics on
a reductive coset space.

Theorem 3.4. Let F = (α+β)2

α be a homogeneous non-Riemannian square

metric on a reductive coset space G/K, where dimG/K ≥ 2, and ˜X be the

vector field dual to the G-invariant 1-form β. Denote X = ˜X |o and assume

that 0 < b2 = α(X,X) < 1. Then F is an Einstein metric if and only if

α is a homogeneous flat Riemannian metric and we have α([Z1, X ]m, Z2) +
α([Z2, X ]m, Z1) = 0 and α([Z1, Z2]m, X) = 0, ∀Z1, Z2 ∈ m.

Proof. We first prove the “only if” part. By Lemma 2.1, for any k ∈ K, we have
Ad(k)(X) = X . Now assume that F is a G-invariant Einstein metric. Then by
Remark 3.3, X is a homothetic vector field on the homogeneous Riemannian
manifold (G/K,α). We first prove that (G/K,α) is flat. Suppose conversely
that it is non-flat. Then (G/K,α) is an Einstein Riemannian manifold with
negative Ricci scalar. Now there are only two cases:

(1) dimG/K > 2. Then by Theorem 10 in [6], one easily deduces that the
homothetic vector field X on (G/K,α) is just a Killing vector field. Hence by
Theorem 3.1, the sectional curvature of (G/K,α) must be vanishing, which is
a contradiction to our assumption αRic < 0.

(2) dimG/K = 2. Then (G/K,α) must be a space of constant curvature.
It follows easily from the main results of [8] and [9] that (G/K,α) is isometric
to a hyperbolic space, and (G/K,α) must be an irreducible symmetric space.
But in this case there does not exist any nonzero G-invariant vector field on
G/K, which is also a contradiction.



972 S. DENG AND X. LIU

Therefore (G/K,α) must be flat, and X must be a Killing vector field on

(G/K,α). Then ˜X is also a Killing vector field on (G/K,α) and α is a homo-
geneous Ricci-flat Einstein metric. By the main result of [1], α must be flat.
Now a similar argument as in pp. 189–190 in [3] implies that

α([Z1, X ]m, Z2) + α([Z2, X ]m, Z1) = 0, ∀Z1, Z2 ∈ m.

From this it follows that α([Z1, X ]m, Z2)+α([Z2, X ]m, Z1) = 0, ∀Z1, Z2 ∈ m.On
the other hand, since β is closed, we have α([Z1, Z2]m, X|o) = 0, ∀Z1, Z2 ∈ m.
Then one easily deduces that α([Z1, Z2]m, X) = 0, ∀Z1, Z2 ∈ m. This completes
the proof of the “only if” part.

Conversely, if α is a homogeneous flat Riemannian metric, and we have

α([Z1, X ]m, Z2) + α([Z2, X ]m, Z1) = 0,

and

α([Z1, Z2]m, X) = 0, ∀Z1, Z2 ∈ m.

Then the vector field generated by X is a Killing field and the corresponding 1-
form β is closed. From this it follows that F is a homogeneous Einstein square
metric with zero Ricci scalar. �

Now by the above theorem and Lemma 2.2, we have:

Corollary 3.1. A homogeneous Einstein square metric must be Berwald.

Proof of Theorem 1.1. If F = (α+β)2

α is a homogeneous Finsler-Einstein metric
on the coset space G/K, then by Corollary 3.1, F is Berwald. Now, it is shown
in [5] that a Berwald-Einstein Finsler metric is either Riemannian or Ricci flat.
Now we suppose that F is non-Riemannian but Ricci flat. It is proved in [4]
that there exists a G-invariant Riemannian metric α̃ on G/K such that the
Chern connection of F and the Levi-Civita connection of α̃ coincide. Thus α̃ is
Ricci flat. Now by the main result of [1], a Ricci flat homogeneous Riemannian
metric must be flat. Thus α̃ is flat. From this it follows that F is also flat. �
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