• Title/Summary/Keyword: Riemann integral

Search Result 86, Processing Time 0.023 seconds

An analysis of the introduction and application of definite integral in textbook developed under the 2015-Revised Curriculum (2015 개정 교육과정에 따른 <수학II> 교과서의 정적분의 도입 및 활용 분석)

  • Park, Jin Hee;Park, Mi Sun;Kwon, Oh Nam
    • The Mathematical Education
    • /
    • v.57 no.2
    • /
    • pp.157-177
    • /
    • 2018
  • The students in secondary schools have been taught calculus as an important subject in mathematics. The order of chapters-the limit of a sequence followed by limit of a function, and differentiation and integration- is because the limit of a function and the limit of a sequence are required as prerequisites of differentiation and integration. Specifically, the limit of a sequence is used to define definite integral as the limit of the Riemann Sum. However, many researchers identified that students had difficulty in understanding the concept of definite integral defined as the limit of the Riemann Sum. Consequently, they suggested alternative ways to introduce definite integral. Based on these researches, the definition of definite integral in the 2015-Revised Curriculum is not a concept of the limit of the Riemann Sum, which was the definition of definite integral in the previous curriculum, but "F(b)-F(a)" for an indefinite integral F(x) of a function f(x) and real numbers a and b. This change gives rise to differences among ways of introducing definite integral and explaining the relationship between definite integral and area in each textbook. As a result of this study, we have identified that there are a variety of ways of introducing definite integral in each textbook and that ways of explaining the relationship between definite integral and area are affected by ways of introducing definite integral. We expect that this change can reduce the difficulties students face when learning the concept of definite integral.

THE RIEMANN DELTA INTEGRAL ON TIME SCALES

  • Park, Jae Myung;Lee, Deok Ho;Yoon, Ju Han;Kim, Young Kuk;Lim, Jong Tae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.327-333
    • /
    • 2014
  • In this paper, we define the extension $f^*:[a,b]{\rightarrow}\mathbb{R}$ of a function $f:[a,b]_{\mathbb{T}}{\rightarrow}\mathbb{R}$ for a time scale $\mathbb{T}$ and show that f is Riemann delta integrable on $[a,b]_{\mathbb{T}}$ if and only if $f^*$ is Riemann integrable on [a,b].

The denjoy extension of the mcshane integral

  • Park, Jae-Myung;Lee, Deok-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.411-417
    • /
    • 1996
  • Some generalizations of the Riemann integral have been studied for real-valued functions. One of these generalizations leads to an integral, often called the McShane integral, that is equivalent to the Lebesgue integral.

  • PDF

ON AN EQUATION CONNECTED WITH THE THEORY FOR SPREADING OF ACOUSTIC WAVE

  • Zikirov, O.S.
    • East Asian mathematical journal
    • /
    • v.27 no.1
    • /
    • pp.51-65
    • /
    • 2011
  • In the paper, we study questions on classical solvability of nonlocal problems for a third-order linear hyperbolic equation in a rectangular domain. The Riemann method is applied to the Goursat problem and solution is obtained in the integral form. Investigated problems are reduced to the uniquely solvable Volterra-type equation of second kind. Influence effects of coefficients at lowest derivatives on correctness of studied problems are detected.

SOME COMPOSITION FORMULAS OF JACOBI TYPE ORTHOGONAL POLYNOMIALS

  • Malik, Pradeep;Mondal, Saiful R.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.677-688
    • /
    • 2017
  • The composition of Jacobi type finite classes of the classical orthogonal polynomials with two generalized Riemann-Liouville fractional derivatives are considered. The outcomes are expressed in terms of generalized Wright function or generalized hypergeometric function. Similar composition formulas are also obtained by considering the generalized Riemann-Liouville and $Erd{\acute{e}}yi-Kober$ fractional integral operators.

C-DUNFORD INTEGRAL AND C-PETTIS INTEGRAL

  • Zhao, Dafang;You, Xuexiao
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.21-28
    • /
    • 2008
  • In this paper, we give the Riemann-type extensions of Dunford integral and Pettis integral, C-Dunford integral and C-Pettis integral. We prove that a function f is C-Dunford integrable if and only if $x^*f$ is C-integrable for each $x^*{\in}X^*$ and prove the controlled convergence theorem for the C-Pettis integral.

  • PDF

ON SOME WEIGHTED HARDY-TYPE INEQUALITIES INVOLVING EXTENDED RIEMANN-LIOUVILLE FRACTIONAL CALCULUS OPERATORS

  • Iqbal, Sajid;Pecaric, Josip;Samraiz, Muhammad;Tehmeena, Hassan;Tomovski, Zivorad
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.161-184
    • /
    • 2020
  • In this article, we establish some new weighted Hardy-type inequalities involving some variants of extended Riemann-Liouville fractional derivative operators, using convex and increasing functions. As special cases of the main results, we obtain the results of [18,19]. We also prove the boundedness of the k-fractional integral operator on Lp[a, b].

RIEMANN-LIOUVILLE FRACTIONAL VERSIONS OF HADAMARD INEQUALITY FOR STRONGLY (α, m)-CONVEX FUNCTIONS

  • Farid, Ghulam;Akbar, Saira Bano;Rathour, Laxmi;Mishra, Lakshmi Narayan
    • Korean Journal of Mathematics
    • /
    • v.29 no.4
    • /
    • pp.687-704
    • /
    • 2021
  • The refinement of an inequality provides better convergence of one quantity towards the other one. We have established the refinements of Hadamard inequalities for Riemann-Liouville fractional integrals via strongly (α, m)-convex functions. In particular, we obtain two refinements of the classical Hadamard inequality. By using some known integral identities we also give refinements of error bounds of some fractional Hadamard inequalities.