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AND ZIVORAD TOMOVSKI

ABSTRACT. In this article, we establish some new weighted Hardy-type
inequalities involving some variants of extended Riemann-Liouville frac-
tional derivative operators, using convex and increasing functions. As
special cases of the main results, we obtain the results of [18,19]. We also
prove the boundedness of the k-fractional integral operator on Ly[a, b].

1. Introduction

Fractional calculus deals with the non integer order derivative and integral
operators and draws increasing attention due to its applications in many fields
see e.g. the books [30,31]. The first application of fractional calculus was due
to Abel in his solution to the Tautocrone problem [1]. It also has applications
in biophysics, quantum mechanics, wave theory, polymers, continuum mechan-
ics, Lie theory, field theory, spectroscopy and in group theory, among other
applications [14-16,25].

Many mathematicians originate the Hardy-type inequalities for different
fractional integral and derivative operators. Because of the fundamental impor-
tance of such inequalities in technical sciences, over the years much effort and
time have been dedicated to the improvement and generalizations of Hardy-
type inequalities. But still there are many open questions in this area, see e.g.
those pointed out in [24, Section 7.5]. For further details and literature about
the rich history of Hardy-type inequalities and fractional calculus, we refer the
books [4,13,15] and the papers [2,6,7,10,18,20]. In the present work, we shall
introduce some new results concerning Hardy-type inequalities not covered by
the literature mentioned above.
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2. Preliminaries and basic results

We start with the definition of the Riemann-Liouville fractional integrals
(see [22]).

Definition 2.1. Let [a,b], (—00 < a < b < 00) be a finite interval on the
real axis R. The Riemann-Liouville fractional integrals I ay fand Ij* f of order
« > 0 are defined by

(12,10 = 1 [ SO =0 (0> )
and .

(g f)(x) = ﬁ / F(t)(t — 2)*Vdt, (z < b),
respectively. Here I is the usual gamma function.

These integrals are called the left-sided and the right-sided fractional inte-
grals and are bounded in L,(a,b), 1 < p < oo, that is

(2.1) e fllp < Kl fllps M5 fllp < KN flp,
where

~_ (b—a)”

CI(a+1)

Inequalities given in (2.1) were proved by Hardy in one of his paper [12].
Next is the definition of convex function presented in [13].

Definition 2.2. Let I be an interval in R. A function ® : I — R is called
convex if the following inequality

(2.2) B(Az + (1 - \)t) < AB(z) + (1 — N)D(?)

holds for all points z,y € I and all A € [0,1]. The function ® is strictly convex
if inequality (2.2) holds strictly for all distinct points in I and A € (0, 1).

The generalized L, space given in [28] defined as follows:

Definition 2.3. A space L, .[a,b] is defined as a space of continuous real
valued function h(t) on [a,b], such that

b P
( / |h(t)|pt’°dt> < 0,

where 1 < p < oo, r > 0. It is clearly seems that L, o[a,b] = Ly[a, b].
Following is the definition of gamma k function defined by Diaz et al. in [9].

Definition 2.4. The I';, function is the generalization of the classical I' function
and is defined as follows:

(2.3) Ts(t) = lim k™ (nk) £ 1

n—oo (t)n,k

, k>0, R(t) >0,
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where (t)nx = t(t + k)(t + 2k)--- (¢t + (n — 1)k), n > 1, is called Pochhammer
k symbol. The integral representation is given by

(2.4) Tx(t) = / ' leT dx, R(t) > 0.
0

Specially for £ =1, 'y (¢) = T'(¢).

Next is the well known definition of Riemann-Liouvill fractional derivative
(see [22], [32]) of order « defined by

1

0@} = Fr

/0 " F O — ) dt, R(a) < 0.

Let (X1,Q1, p1) and (23,4, 12) be measure spaces with positive o-finite mea-
sures. Let U(f) denote the class of functions g : 0y — R with the representation

g(z) == A k(x,t) f(t)dpa(t)

and Ay be an integral operator defined by

glz) 1 i
K(z) K(z) /Q k(z,t) f(t)dpa(t),

where k : 1 x 25 — R is measurable and non-negative kernel, f : Q5 — R is
a measurable function and

(2.5) Apf(x) ==

(2.6) 0< K(z):= ; k(z,t)dua(t), =€ .

The following theorem is given in [18].
Theorem 2.5. Let (31,01, 1) and (32,00, u2) be measure spaces with o-
finite measures, u be a weight function on Q1, k be a non-negative measurable

kernel on Q1 x s, Let 0 < p < g < oo and the function © — u(x)i?(cwt))
integrable on Q1. Then for each fixed t € Qs, v is known by

v(t) ::/Q u($>kl((az,xt)) dps (x) < 0.

s

If @ : (0,00) = R is a convex and increasing function, then the inequality

[ e (’ e D () < | o050t

holds for all measurable functions f : Qs — R.

Next result is specified in [19].

Theorem 2.6. Let f; : Qs — R be measurable functions, g; € U(f;), (1 =1,2),
where go(x) > 0 for every x € Q. Let u be a weight function on Qy and



164 S. IQBAL, J. PECARIC, M. SAMRAIZ, H. TEHMEENA, AND Z. TOMOVSKI

k a non-negative measurable kernel on 1 x Qy. Assume that the function

T u(x)% is integrable on Q1 for each fized t € Qo. Define p on Qs by

= s, e

If & : (0,00) — R is a convex and increasing function, then the inequality
t
[t (|28 due) < [ e (|221) et
Ql QQ

f2(t)
The inequality due to Kruli¢ et al. [23] is given in the following theorem.

dp () < oo.

g1 (z)
92()

holds.

Theorem 2.7. Let the assumptions of Theorem 2.5 be satisfied and w be de-

fined by ,
w(t) = [/Ql u(x) (ig;?) ’ d,ul(x)] ‘1 < 0.

If ® is a non-negative convex function on the interval I C R, then the inequality

p

[ @ @ @)t du@] < | [ wie o))
holds for all measurable functions f : Qo — R such that Imf C I.
The following theorem is given in [23].

Theorem 2.8. Let g; € U(f;), (i =1,2,3), where go(x) > 0 for every x € Q.
Let u be a weight function on 1, k be a non-negative measurable function on
Q1 X Qo. Then r is defined by

r(t) := fg(t)/Q Wd:c < 00.
If & : (0,00) x (0,00) — R is a conver and increasing function, then the
inequality
91(@)| |gs(x) fi®)] | fs(@)
., v (|25 2] o < [, rore (|25 25 ) -0
holds true.

3. Weighted Hardy-type integral inequalities for extended
Riemann-Liouville fractional derivative operator involving
exponential function

This section consists of weighted Hardy-type inequalities for the extended
Riemann-Liouville fractional derivative operator established in [5] and is de-
fined as follows:
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Definition 3.1. Let R(r) > 0, R(s) > 0 and R(a) < 0. Then the extended
Riemann-Liouville fractional derivative ©%{f(z);r, s} of order a, be such that

(3.1) D f(x);r,s} = T t)(x — )" Lexp (_7‘: _ (xsj: t)) dt.

Specially for r = s we arrive at the extended Riemann-Liouville fractional
derivative of order « given in [3] and is defined by

32 D@ = i [ F0E - e (—t(j_t)) .

Example 3.2. Consider the derivative given by (3.1) of 2 corresponding to
r =1, we get

B'r s(V + 1, —Oé)
“La¥; _ s\ T
@z {.'L' 77”73}30:1 F(fa) N
where B, (v + 1, —a) is the extended beta functions (see [26]) defined by
1
(3.3) Brs(z,y) = / M1 -y eT T T,
0

where z,y,r,s € C, R(r) > 0, R(s) > 0. For r = s, B, s becomes B, and for
r = s =0, we get the classical beta function defined by

1
B(z,y) = / #1(1 = ) 1dt, Rz) > 0, R(y) > 0
0
In [29] the following inequality is proved for the extended beta function (3.3):
Byo(z,y) < (2r)°7 (25)°7 /T(—2z + L, 2r)(—2y + 1, 25),
where 7,5 > 0,0 <z, y < % and I'(z, y) is the incomplete gamma function.

Lemma 3.3. Let R(r) > 0, R(s) > 0 and R(a) < 0. Then the following
relation holds:

(3.4) K(x) = xff((;) =

Proof. Since

(35)  k(z,t) = {

Therefore

which can be written as

By substituting ﬁ = y and using the simple calculation, we arrive at (3.4). O
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The first result for the operator (3.1) is as follows:

Theorem 3.4. Let R(r) > 0, R(s) > 0 and R(a) < 0. Let D¢{f(z);r, s}
denote the extension of Riemann-Liouville fractional derivative of order o and
let u be a weight function defined on (0,b). For each fized t € (0,b), define a
function v by

dr < .

e

If @ : (0,00) — R is a convexr and increasing function, then the inequality

(3.6) / " () (\ F(x?ii;fyl(,ng), s}

Jao< | s s

holds for all measurable functions f € Ly(a,b).

Proof. Applying Theorem 2.5 with Q; = Qg = (0,b), du1 (x) = dx, dus(t) = dt,
K(z), k(x,t) given in (3.4), (3.5), respectively and define
{ _ P(=a)D{f(x);r, s}

(3.7) Apf(z) = B, (1, —a)

we get inequality (3.6). O

Theorem 3.5. Let R(r) > 0, R(s) > 0 and R(«a) < 0. Let D¥{f(x);r, s}
denote the extension of Riemann-Liouville fractional derivative of order o and
let u be a weight function defined on (0,b). For each fized t € (0,b), define a
function

b (z—t)"*lexp (-1 - 25
p(t) = szz(Z)/t u(x) @g{h(z();ns} | ))

dx < oo.

Do{fi(@)imst f1(t)
Dg{fa(z)ir,s}? fa(t)

i)

S

If @ : (0,00) = R is a conver and increasing function and
(0,00), then the inequality
b « .
(3.8) / u(z)® (’Qﬂ{fl(x)”’s}
0

b
dx < / p(t)® (
Sen]) o< [ o
holds for all measurable functions f; € L1(0,b), (i = 1,2).

Proof. Applying Theorem 2.6 with Q1 = Qo = (0,0), dpy (z) = dx, dus(t) = dt,
01(x) = D2 {fi (2); 7, 5}, g2(x) = D fo(x); 7, 5} and using K(z, ) provided in
(3.5), we obtain inequality (3.8). O

The upcoming result is the generalization of Theorem 3.4.
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Theorem 3.6. Let the assumption of Theorem 3.4 be satisfied, 0 < p < q¢ < 00
and the weight function be defined by

» b (z—t)"* 'exp (*% - (zsft)) ' p
— < .
w(t) /t u(x) Bl =) T oo

)

If ® is a non negative convex function on I C R, then the inequality

(59) [ [ ey (o (FeE U ) dx] P l / bw(t)@(f(t))dt] %

holds.

Proof. Applying Theorem 2.7 with Q1 = Qo = (0,0), dpy (z) = dx, dus(t) = dt,
K(z), k(z,t) and Ay f(z) are given in (3.4), (3.5) and (3.7), respectively, we
get inequality (3.9). O

Theorem 3.7. Let R(r) > 0, R(s) > 0 and R(«) < 0. Let DF{f(z);r, s}
denote the extension of Riemann-Liouville fractional derivative of order o and
D fa(x);r,s} > 0 for every x € (a,b). Let u be a weight function defined on
(a,b). For each fizred t € (0,b), define a function

£ /l’ O e (- - =)

= u(z
I(=a) J; D¢{fa(w);r, s}

If @ : (0,00) X (0,00) — R is a convex and increasing function and

D x);r,s . .
W, 2%3 € (0,00), then the inequality

/bu(x)cp ('Qg{fl(x§§r,s} ,‘Dg‘{fg(x);r,s}
0 2);

7(t) :

dxr < .

Do{f1(z);r,s}
De{f2(z);r,s}’

) as

(3.10) D¢ fo(x);r, s} | DY fa(z); 7, 5}
' b AW | f50)
= / r“”( AOINEEG )dt

holds for all measurable functions f; € L1(0,b), (i = 1,2,3).
Proof. Applying Theorem 2.8 with Q1 = Qs = (a,b), du1 (x) = dx, dus(t) = dt,

v

k(x,t), is offered in (3.5), g1(z) = D2{ f1(z);r, s}, g2(x) = DE{ fa(x); r, s} and
g3(x) = DY{ fs(x);r, s}, we get inequality (3.10). O

Remark 3.8. If we choose r = s in inequalities (3.6), (3.8), (3.9) and (3.10), we
get the results for the extended Riemann-Liouville fractional derivative given
in (3.2).

Remark 3.9. If we choose r = s = 0 in inequalities (3.6), (3.8), (3.9) and (3.10),
we get the results for the classical Riemann-Liouville fractional derivative.
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4. Weighted Hardy-type integral inequalities for extended
Riemann-Liouville fractional derivative

This section includes weighted Hardy-type integral inequalities for more gen-
eral extended Riemann-Liouville fractional derivative given in [29] and is de-
fined as follows:

Definition 4.1. Let R(u) < 0, R(p) > 0 and R(«) > 0. Then the more
general extended Riemann-Liouville fractional derivative DL f of order « is
given by

(4.1) D f(x) /f Yz —t)" 1E< (x_t))dt,

where F,, is the Mlttag—Lefﬂer function was introduced and studied by Mittag-
Leffler in the year (1903) and is given by

© k

(4.2) E.(z) = I;J Tk D) ©¢ C.

In particular if we choose a = 1 in (4.1), we get extended Riemann-Liouville
fractional derivative given by (3.2). Similarly, if « = 1,p = 0, it reduces to
classical Riemann-Liouville fractional derivative.

Lemma 4.2. Let R(p) < 0, R(p) > 0 and R(«) > 0. Then the following
equation holds:

43) R = TP,

where
1
« _ 61—1 _ 1\02—1 _ p
Byna) = [ 1) E( t(l_t))du R(61), R() >0

is the modified extension of beta function presented in [33].

Proof. Since

= —t)—n—1 _pa® )
(4.4)  k(z,t)={ TC o (@ =17 Ea ( (H)), 0<t<a;
0, r<t<b.

Therefore

which can be written as

[t ()

By substituting ﬁ = y and using the simple calculation, we arrive at (4.3). O
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Theorem 4.3. Let R(p) < 0, R(p) > 0 and R(a) > 0. Let DL f denote the
extension of Riemann-Liouville fractional derivative of order a and let u be a
weight function defined on (0,b). For each fized t € (0,b), define a function v

by

dx < oo.

(112
w0 = [ NG )
u(t) = u(zx
t xf“Bﬁ (17 _:u)

If & : (0,00) = R is a convex and increasing function, then the inequality

’ L(=p) D {f ()} ’
(4.5) / w(z)® (' D do g/ BB F(1))dt

0 r=rB(1, —p) 0 |
holds for all measurable functions f € L1(0,b).
Proof. Applying Theorem 2.5 with Q; = Qg = (0,b), duy (x) = dx, dus(t) = dt,
K(xz), k(x,t) given in (4.3), (4.4), respectively and define

PpDepif(@)}
T “Bg(la—ﬂ) ’

(4.6) Apf (@) =
we get inequality (4.5). O

Theorem 4.4. Let R(p) < 0, R(p) > 0 and R(a) > 0. Let DL f denote the
extension of Riemann-Liouville fractional derivative of order a and let u be a
weight function defined on (0,b). For each fized t € (0,b), define a function

o 07 ()
PO =1 | s
D@} A®)

If & : (0,00) = R is a conver and increasing function and D TR@T B €
b @,u,a

(4.7) / u(z)® ( Ui(@)
0

b fi(t) D
siion ) o= o (7))
holds for all measurable functions f; € L1(0,b), (i = 1,2).

Proof. Applying Theorem 2.6 with Q; = Qg = (0, ), dul( ) = dx, dus(t) = dt,

g1(x) =Do{ fi(2)}, ga(w) = Dh:o{ f2(2)} and using F(x,t) provided in (4.4),
we obtain inequality (4.7). O

dxr < oo.

(0,00), then the inequality

The upcoming result is the generalization of Theorem 4.3.

Theorem 4.5. Let the assumption of Theorem 4.3 be satisfied, 0 <1 < s < 00
and the weight function be defined by

I N RS = WA I
w = u\xr i oQ.
t 33_”33(17—/1)
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If ¢ is a non-negative convexr function on I C R, then the inequality

(45) [ [ vt (2 (7 N)E;(i{f())}>)sdxrg [ / b@(t)<1>(f(t))dtr

holds.

Proof. Applying Theorem 2.7 with Q; = Q3 = (0,0), dp () = dz, dus(t) = dt,
K(z), k(x,t) and A f(z) are given in (4.3), (4.4) and (4.6), respectively, we
get inequality (4.8). O

Theorem 4.6. Let R(u) < 0, R(p) > 0 and R(a) > 0. Let DL f de-
note the extension of Riemann-Liouville fractional derivative of order a and
DL f2(x)} > 0 for every x € (0,b). Let u be a weight function defined on
(o, b) For each fized t € (0,b), define a function

dr < oo.

7ty = 2200 /buu)(x_t) ()

I'(=p) Dip{fa(x)}
If & : (0,00) x (0,00) — R is a conver and increasing function, then the
inequality
’ Dip{fi@)}] |Dhp{fs(@)}
0 ;o ([ [ ser i)
. - Ah@®] @)
< [ oo (|55 |7

holds for all measurable functions f; € L1(0,b), (i =

:3)-
Proof. Applying Theorem 2.8 with 0y = Q3 = (a,b), dul( ) = dx, dus(t) = dt,

k(x,t), is offered in (4.4), gi(z) = Dh{fi(x)}, ga(x) e {fe(x)} and
g3(z) = D40 { f3(x)}, we get inequality (4.9). O

Remark 4.7. If we choose o = 1 in inequalities (4.5), (4.7), (4.8) and (4.9), we
get the results for the extended Riemann-Liouville fractional derivative given
n (3.2).

Remark 4.8. If we choose aw = 1, p = 0 in inequalities (4.5), (4.7), (4.8) and
(4.9), we get the results for the classical Riemann-Liouville fractional derivative
operator.

5. Hardy-type inequalities for generalized fractional integral
operator involving Gauss hypergeometric function

This section deals with Hardy-type inequalities for generalized fractional
integral operator involving Guass hypergeometric function in its kernel. We
first give the definition of generalized fractional integral operator offered in [8].
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Definition 5.1. Let a > 0, 4 > —1, 8,17 € R. Then the generalized fractional

integral I g‘f H f of order a, for a real-valued continuous function f is defined
by:

a,3 L w—a—B—Qu * a—1
I gte) = T [ e

(5.1) x o Fy (a + B8+ p,—ma;1 — ;) f®)dt, x € la,bl,

where the function o Fj (-, -, ;) appearing in the kernel of above operator is the
Gaussian hypergeometric function defined by

2Fi(a,bieit) =) Wt"

n=0
and (a), is the Pochhammer symbol defined as (a), = a(a+1)---(a+n —1),
(a)o = 1. The operator (5.1) includes the Saigo, the Riemann-Liouville and
the Erdélyi-Kober fractional integral operators, i.e.,

JCa (a+5—n;a; 1—1) F(tydt, @ € o],

x—e= B

')

IO f (a) =

R (0) = 1257108 (0) = s [ (o= 00 )t @ € fad
and
1 f(z) = 18010 f(z) = % /I(x — 1N ()dt, @ € [ayb].

The upcoming lemma includes the calculation of K (z) given in (2.6) for the
generalized integral operator (5.1), which we used to derive our main results of
this section.

Lemma 5.2. Leta >0, u > —1, B,n € R. Then the following relation exists:

~ .z PPT(u+ )T (1 - B+1n)
(5:2) K(w) = r1—p)r(a+u+1+mn) -

Proof. Since

_ f—a—szutu(z_t)a—BFl(a_‘_ﬂ_ﬂh_ma;l_i) )
(5.3)  k(xt) = @) » Ust<a;
0, x<t<b,

so that
I A 1= DY e —ea
=/ Y —nyo;1 — = )t (x — ) dt
() /0 T 1(a+/3+u, 0o x) (x — ) dt,

substituting 1 — % = y and using formula given in ([11], page 813), i.e.,

)T (p)T(y+p—a—p)
C(y+p—a)l(p+v—B)’

1
/ 2771 = 2)P YN B (o, By x)dr =
0
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we get (5.2). O
Our first main result is given in next theorem.

Theorem 5.3. Let a > 0, up > —1, B,n € R, Iﬁfvnvl‘f denote the general-
ized fractional integral of order o and u be a weight function defined on (0,b).
Moreover, for each fized t € (0,b), we define v by

L(L—B)l(a+p+1+m) /b u(z)z—
Pp+1D)IA=B+n) J;

t
X o} (a +B8+p,—n,a;1— ) th(z — 1) Lda.
X

i(t) =

If @ : (0,00) — R is a convexr and increasing function, then the inequality

b
/u(m)@( F(l—/@)r(a'HH'l‘H?) Ioz,B,n,u )dl‘
0

TP (u+ DL(L— B 4 ) 0
b~
séwmwww

holds for all measurable functions f € L1(0,b).

f(z)

(5.4)

Proof. Applying Theorem 2.5 with Q; = Qs = (0,0), duq(x) = dx, dus(t) = dt,
K(z), k(x,t) are given in (5.2), (5.3), respectively and define
L5 f (@)D (L= BT (a+ i+ 1+ 1)
= H=BT(u+ T(1 — B +n) ’
we get inequality (5.4). O

(5.5) Af (@) =

Theorem 5.4. Leta >0, u> -1, 3, n € R, I;f’"’“f denote the generalized
fractional integral of order a and Iﬁf’"’“fg(x) > 0. Define p on (a,b) by
@) [Pul)em P2 (a4 B4 p,—n a1 — L)t (z — )

- T(a) /t ISP £y () '

pt) :

I&EME () fi(1)
ISP fa(2) f2(1)

If & : (0,00) = R is a convex and increasing function and €
(0,00), then the inequality
Iﬁf’"”‘fl ()

(5.6) /abu(x)fl) ( ) ) de < /abﬁ(t)q) <

holds for all measurable functions f; € L1(a,b), (i =1,2).

i)«

Proof. Applying Theorem 2.6 with €y = Qs = (a,b), du1(2) = dx, dps(t) = dt
and k(z,t) is given in (5.3), we get inequality (5.6). O

Next theorem is the generalization of Theorem 5.3.
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Theorem 5.5. Let « > 0, u > —1, B, € R and Ig‘}’f’""‘f denote the
generalized fractional integral of order o and uw be a weight function. Let
0<p<g<ooand

() TA-pB)(a+p+1+n)
- D(p+ DI =B +n)

X /bu(m) x TR | a4 B+ p, — oz'l—E th(z—t)*? %dﬂc ’
] 2471 My, =1, 5 - .

If ® is a non-negative convex function on the interval I C R, then the following

inequality
Uob“(x) (q) (xrgl;rﬁ(ztrialjr?lﬂﬂinv)v) T (x))> dm]q

s

P

b
@7><<[Aqmw@ua»ﬁ]

holds true.
Proof. Applying Theorem 2.7 with Q; = Qg = (0, ), dui(x) = dx, dus(t) = dt,

K(x) k(z,t) and A f(x) are provided in (5.2), (5.3) and (5.5), respectively, we
get inequality (5.7). O
Theorem 5.6. Let o >0, p > —1, B,n € R, I&f?"**‘f denote the generalized
fractional integral of order o and Ig"f’”’“fg(a:) > 0 for every x € (a,b). Let u
be a weight function on (a,b). Then for each fized t € (a,b), we define 7 by

) P e PP (a4 Bt p, -, 051 — L)t — 1)
)= £ /t u(z) o
< Q.

dx

If & : (0,00) x (0,00) — R is a conver and increasing function, then the
following inequality

b B £ (g B, £ (g
/’w@®<(ﬁn jD()7(%%7J@()>dm
(5.8) a (L2 folr) || (T2 f2) ()
fi(t)

b

b fs(t)
< [ ron (|25 20
holds for all measurable functions f; € Ly(a,b), (i =1,2,3).

Proof. Applying Theorem 2.8 with ; = Qs = (a,b), dui(x) = dx,dus(t) = dt,
k(x,t) is offered in (5.3), we get inequality (5.8). O

Remark 5.7. If we take p = 0, in inequalities (5.4), (5.6), (5.7) and (5.8), we
get the inequalities for the Saigo fractional integral.
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Remark 5.8. If along u = 0, we take 8 = —a, in inequalities (5.4), (5.6), (5.7)
and (5.8), we get the inequalities for the Riemann-Liouvill fractional integral.

Remark 5.9. If we take § = 0 and p = 0, in inequalities (5.4), (5.6), (5.7) and
(5.8), we get the inequalities for the Erdélyi-Kober fractional integral.

6. Hardy-type inequalities for generalized Riemann-Liouville
fractional integral operator

Let us recall the definition of generalized Riemann-Liouville fractional inte-
gral operator specified in [21].

Definition 6.1. Let & > 0, a > 0 and r # —1, a real number and let f €
Lq,.[a,b]. Then the generalized Riemann-Liouville fractional integral I" f is
defined by

(r+1)t-«

(6.1) I f(x) = T /I(:rT'H — "t f(4)dt, @ € (a,b).

We note that if » — —17 the integral operator (6.1) reduces to the famous
Hadamard fractional integral:

(6.2) 197 f(2) = %a) /x (1og %)a_l @dt.

The first result for the generalized Riemann-Liouville fractional integral op-
erator is as follows:

Theorem 6.2. Let f € Ly ,[a,b], o > 0 and r # —1 and let u be a weight

rl_rlya—1,r
function on (a,b). Assume that the function z u(x)a(T+1()z(f+1_a,f+l)Z t s

integrable on (a,b). Then for each fized t € (a,b), we define v by

b r+1 r+1ya—147
i (zrtt —gril)e-ly
o(t) := afr + 1)/t u(z) @ —a)e dx < 0.

If @ :(0,00) — R is a convex and increasing function, then the inequality

/bu(x)q)( a(r+1)

N r+1 r+1ya—1,r
Mll (I + —t +) tf(t)dt’) dI’

b
< [ omeqrena
a
holds for all measurable functions f : (a,b) — R.

Proof. Applying Theorem 2.5 with Q1 = Q3 = (a,b), dui(z) = dx, dus(t) = dt,

(6.3)

~ (T+1)17Q(Ir+17tr+1)a71tr )
(6.4) k(x,t) = I(a) y aStST,
0, x<t<b,

(6.5) Ra) = & o)

al'(a)(r+ 1)«
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and
A o(r + 1 * r r a—14r
60 Auflo) = e [ @ -
we get inequality (6.3). O

Remark 6.3. In particular if we choose r = 0 in inequality 6.3, we get [18,
Corollary 2.2].

Corollary 6.4. In particular if r — —1 and a > 0 in Theorem 6.2, we get
b 1 x a—1
5(t) = g/ u(m)%dm
b (log 3)
and the inequality (6.3) reduces to
b z (] z a—1 "
/ u(z)® a/ 7(0gt2 & &dt
a o (log)”

Corollary 6.5. In particular for the weight function u(z) = 2" (2" —a"+1),
x € (a,b), in Theorem 6.2, we obtain v(t) = t"(b" T —t"T1)* then the inequality
(6.3) takes the form

a(r+1)

b T
/ mr(xvdrl_avdrl)aq) ( ﬁ/‘ (mr+1_tr+1)a71trf(t)dt‘> dx
a x’(‘ 76‘(1”, « a

b
(6.7) §/ (O™ — " THeD(|f(2)])dt.

) iz < / 3(6)(1£ (1))t

Although (6.3) holds for all convex and increasing functions, but we shall con-
sider a power function which is of our interest. Let q > 1 and function
®: R — R be define by ®(x) = x%. Then (6.7) reduces to

(@r(@)r+ 1" [ 4@ = e |13 () da

a

b
6.8) < / (O — Y| f ()]t

Since x € (a,b) and a(1 — q) < 0, then from the left hand side of (6.8), we can
have
b

(@r(@)(r+ D) [ (@t - a0 |12 (o) da

a

b
6.9) > (aF(a)(TﬂLl)“)qar(br“—am)a(l_q)/ [e" f ()| *dx

a

and the right hand side of (6.8) can be estimated as

b b
(6.10) / (O — T F(8)[2dt < bT(BTTE — a”l)“/ |f(t)|2dt.
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Combining (6.9) and (6.10), we get

b
(@P(@)(r+ D) a (b7 = a0 [ pojrd

b
<t - artye / () edt,

that is

ar (br+1 T+1
(6.11) /|1 o |de_r< o 7"+1 /\f J[9dt.

Taking power E on both sides of inequality (6.11), we can have

(6.12) & flla < M| fllq,

where .
o é q (br+1 _ ar+1)a
a) T(a+1)(r+1)
Remark 6.6. If in particular we choose r = 0 in inequality (6.12), we get
[18, Remark 2.5].

Theorem 6.7. Let u be a weight function on (a,b), IS f be the generalized

Riemann-Liowville fractional integral of order o > 0, r # 0 and I$" fa(x) > 0.
f2(t)(fl’r+1 t?‘+1)a—1t7‘

Assume that the function © — u(x) ()

Define p on (a,b) by

(,,, + 1)17af2(t) /b u(m)(Q}TJrl _ trJrl)afltr

[(a) t 127" f2(z)
If & : (0,00) — R is a convex and increasing function, then the inequality
b
)< e (15

6.14 /uxq)(‘flr de < [ p(t)® dt
(6.14) ’ (z) 1 Fo(a) ’ (t) 130
holds for all measurable functions f; € L1(a,b), (i =1,2).

Proof. Applying Theorem 2.6 with Q; = Q3 = (a,b), dui(x) = dx,dpa(t) = dt
and k(z,t) is given by (6.4), we get inequality (6.14). O

is integrable on (a,b).

(6.13) p(t) = dr < 0.

Corollary 6.8. For the particular choice of 1 — —17, in Theorem 6.7 the
weight function (6.13) becomes

a—1
o 20 /” (log %)
q(t) = =+ u(x a_idx < 00

O = i) i e
and the inequality (6.14) takes the form

b a,—1 b

[ e ([ES20 ) 4o < oo
a I fo(x) a
which is [19, Corollary 2.6].

)
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Next theorem is the generalized version of Theorem 6.2.

Theorem 6.9. Let 0 < p < ¢ < 00 and f € Ly ,[a,b]. Let I®" f denote the

generalized Riemann-Liouville fractional integral of order o > 0 and r # —1.
" T o — T 1
Suppose u is a weight function and x — u(x) (%) " is integrable

on (a,b). Then for each fized t € (a,b), the weight function @ is defined by

b r+l _ gr4lya—1pr\ B a
(R AR s AN
d .
/t u(x) ( T — ) r| < oo

If ® is a non-negative convex function on the interval I C R, then the inequality

[ (w (el 0T Ay dx] " [ [ wweuo) dt] %

holds for all measurable functions f : (a,b) — R.

Proof. Applying Theorem 2.7 with Q; = Qs = (a,b), du1(v) = dz, dus(t) = dt,
k(x,t), K(x) and Ay f(x), are given by (6.4), (6.5) and (6.6), respectively, we
get inequality (6.16). O

6.15)  @(t) == a(r+1)

(6.16)

The upcoming corollary is a special case of Theorem 6.9, which involve
results for the Hadamard fractional integral operator.

Corollary 6.10. In particular when r — —17F, then the weight function (6.15)

can be written as:
i b fog gy E ]
XNt) =« /uo: (t) dzx

and the inequality (6.16) becomes

[/ab <¢ (wfg’_l <w))> ’ dx] % <

Remark 6.11. If we choose r = 0 in inequality (6.16), we get [17, Corollary
2.4].

Theorem 6.12. Let f € Ly ,[a,b], I" f be the generalized Riemann-Liouville

fractional integral of order o > 0, r # —1 and I®" fo(x) > 0 for every x € (a,b).
Let u be a weight function on (a,b). Then ¥ is defined by

(7“ + 1)1—af2(t) /b u(x)(x”'l _ tr+1)a—1tr
INGY) ¢ 127" fo(x)
If @ : (0,00) x (0,00) — R is a convex and increasing function, then the
inequality
> dx

(6.18) /a e () (ﬁz%)

. "
/ (1)(1)® <f<t>>dt] .

(6.17) 7(t) :== dr < 0.

(L f5) ()
(Ia"" f2) (@)

)
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- /:T(t)q><f1(t) f(t)Ddt

L@ f2()
holds for all measurable functions f; € L1(a,b), (i =1,2,3).

Proof. Applying Theorem 2.8 with Q; = Qs = (a,b), dui(z) = dz,dpa(t) = dt
and k(z,t) is given in (6.4), we get inequality (6.18). O

As special case of Theorem 6.12, we next present the result for the Hadamard
fractional integral operator.

Corollary 6.13. If we choose r — —17, then the weight function (6.17) be-

I O & (log $)>~* v < oo
50 =15 [ ) e <

and the inequality (6.18) for the Hadamard fractional integral turn into
/"u(x)q) (‘(Li"lfl)(m) (e f) () ) "
“ L folw) 1112 fo) ()

b

t
[E0N a
L@ ]| fa(t)
7. Hardy-type inequalities for the Riemann-Liouville k-fractional
integral operator

i

The definition and notation of generalized Riemann-Liouville k-fractional
integral operator presented in [27] is defined as follows:

Definition 7.1. Let f € Lq[a,b]. Then the Riemann-Liouville k-fractional
integral I, f of order o > 0 and k > 0, is given by

@) I = g [ @0 0 e )

where T, is defined by (2.4). Moreover, if we choose k = 1, the integral operator

(7.1) represents the left sided Riemann-Liouville fractional integral.

Theorem 7.2. Let f € Li[a,b]. Then the Riemann-Liouville k-fractional
integral I f of order o> 0 and k > 0, is bounded, i.e.,

e Flla < Allflla,

ké (b— a)k
(qo) @ (Fk(a))( (£-1)

where A =

Sl

Proof. Since we have

o f(x |*kF / |f(t)|(x —t)% Ldt.
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Using Holder’s inequality on the right hand side of the above inequality, we

have
g f ()] < ﬁ(a) (/{:(az - t)P<%—1)dt>; (/j |f(t)|th>;

Consequently, we find

G xS (@)llg <

This completes the proof. (I

Remark 7.3. If we take k = 1, in above result, we arrive at [18, Theorem 2.6].

Theorem 7.4. Let f € Li[a,b], o > 0 and let u is a weight function,  —
u(x)o‘lig(”%)?%1 is integrable on (a,b). Then for each fived t € (a,b), we define
a function v by

o Pu@E-ni
(t) == k/t @—a)f dx < co.

If & : (0,00) — R is a convex and increasing function, then the inequality
b o T N b

(7.2) / u(x)® 73/ (x —t) " f(t)dt| | da < / o(t)D(|f(t)])dt
a k(ﬂf - a) kJa a

holds for all measurable functions f : (a,b) — R.

Proof. Applying Theorem 2.5 with Q1 = Qs = (a,b), dui(x) = dz, dus(t) = dt,

~ (I_t)%71 a<t<g:
(7.3) fo(z,t) ={ FTa@) 0 ASTS
0, r<t<b,

K () is defined by

(7.4) K(z) = al";j St
and
(7.5 Auf@) = s [0t

we get inequality (7.2). O
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Corollary 7.5. Let I3, f be the Riemann-Liouville k-fractional integral of

order o > 0 and k > 0. Choose a particular weight function u(z) = (x —a)*,
x € (a,b) in Theorem 7.4, we obtain 0(t) = (b—t)%. Then the inequality (7.2)
takes the form

/ab(x o)t (‘k(maa) /aw(x - t)%lf(t)dtD dz

b «@
o) < [ @-nFe(so)
Let ¢ > 1 and function ® : (0,00) — R be define by ®(x) = x?. Then (7.6)

becomes
/ab(m o (ahﬁj)_lf;{;f””)qu < /ab(b — ) F[f(t)|9dL.

Since x € (a,b) and ¢(1 —q) <0, then after some calculations, we have
&k llg < NI fllg,

where .
(b—a)t

al'(a)
Remark 7.6. Particularly for k = 1, we get [18, Remark 2.3].

Theorem 7.7. Let u be a weight function on (a,b), I3, f be the Riemann-
Liouwville k-fractional integral of order a > 0 and Iaka( x) > 0 for every x €

N =

(a,b). Assume that the function x — u(m)#% is integrable on (a,b).
Then define p on (a,b) by '

dr < oo.

b e
) o= 20 [ e)le

klk(a) 12 f2(x)
If & : (0,00) = R is a convex and increasing functz’on then the inequality
b 15 fi(@)

[ (B0 (H)

( ) " ( ) (Iozka(z)

holds for all measurable functions f; € Ll(a b) (¢

Proof. Applying Theorem 2.6 with Q1 = Qs = (a, ), d,u ( ) =dzx,dus(t) = dt
and k(z,t), is given in (7.3), we get inequality (7.7). O

Theorem 7.8. Let a > 0, O<p<q<oo f € Lia,b], let u be a weight
function on (a,b) and x — u(x) (%) ’ is integrable on (a,b). Then for

(@—a) ¥

each fized t € (a,b), W is defined by

oi0:- 2 [ [ (B2 ] e
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If ® is a non-negative conver function on the interval I C R, then the inequality

1

[ v (o e [ - esom) o]

P

b
(78) < [ / w<t>¢<f(t>>dt]

holds for all measurable functions f : (a,b) — R such that Imf C I.

Proof. Applying Theorem 2.7 with Q1 = Qo = (a,b), dui(x) = dz, dus(t) = dt,
k(z,t), K(z) and Agf(x) are given by (7.3), (7.4) and (7.5), respectively, we
get inequality (7.8). O
Corollary 7.9. Let 0 < p < q < oo, f € Li[a,b] and I, f be the Riemann-

Liouville k-fractional integral of order a > 0. Suppose ®(x) = z°, s > 0, is a

convez function and u(z) = (x — a)%’: a particular weight function. Then for
each fived t € (a,b), Y(t) is defined by
(1) = = (b—t)F 1T,
B85 -1 +1)
Substituting these values in (7.8) and after some calculations we get the in-
equality

(/b (Ig,kf(l‘))% d:c) ’ < (a)? (b—a)vita s (/b fs(t)dt>

(k(Tw(a-+k))? (4(2-1)+1)

Theorem 7.10. Let I3, f be the Riemann-Liouville k-fractional integral of
order a > 0 and let I fo(x) > 0 for every x € (a,b), u is a weight function
on (a,b). Then 7 is defined by

B [Pu@)@— i
") = kma)/t 17 ()

If @ : (0,00) x (0,00) = R is a convex and increasing function, then the

inequality
’ I3 fi(@) | |15 f3(2) b f3(t)
w9) [ ue ( I8 | |12, @) )dmg/a e (|25 2]

holds for measurable functions f; € L1(a,b), (i =1,2,3).
Proof. Applying Theorem 2.8 with Q1 = Qs = (a,b), du1(z) = dx, dus(t) = dt
and k(zx,t), is given by (7.3), we get inequality (7.9). O

Remark 7.11. If we choose k = 1, in inequalities (7.2), (7.7), (7.8) and (7.9),
we get results for the Riemann-Liouville fractional integral operator.

Qs

s =

Q=

dr < o0o.

fl(t)‘
fa2(t) ]
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