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ON AN EQUATION CONNECTED WITH THE THEORY

FOR SPREADING OF ACOUSTIC WAVE

O. S. Zikirov

Abstract. In the paper, we study questions on classical solvability of

nonlocal problems for a third-order linear hyperbolic equation in a rect-

angular domain. The Riemann method is applied to the Goursat problem
and solution is obtained in the integral form. Investigated problems are

reduced to the uniquely solvable Volterra-type equation of second kind.
Influence effects of coefficients at lowest derivatives on correctness of stud-

ied problems are detected.

1. Introduction

At present, great attention is spared to problems of mathematical physics
arising from study of questions of liquid filtration in porous surroundings [1],
unsteady motion of ground waters with a free surface [5] and other wave pro-
cesses in various surroundings (see, for example, [13], [14]).

This interest is connected with both great applied significance of such prob-
lems and mathematical originality expressed in nonclassical character of ob-
taining equations. Study of acoustic waves in surroundings, where spreading
of a wave breaks state of thermodynamical and mechanical equilibrium, relates
to this circle of questions. If we assume that perturbations are small and re-
laxation takes place by an exponential law, then changes of the density in such
surrounding will be described with the help of the equation [14]

τ
∂

∂t

(
∂2ρ(x, t)

∂t2
− c2∞∆ρ(x, t)

)
+
∂2ρ(x, t)

∂t2
− c20 ∆ρ(x, t) = 0. (1.1)

Here τ, c0, c∞ are characteristics of a material having the sense of time, relax-
ation, and limit phase velocities of sound, respectively.

If τ � T (T is the oscillation period), then sound spreads with the velocity
c0, which is the same as for a surrounding without relaxation. For τ � T relax-
ation processes in the surrounding are ”frozen” and sonic oscillations spreading
with the velocity c∞, moreover c0 < c∞ according to [14].

Received June 14, 2010; Accepted January 3, 2011.
2000 Mathematics Subject Classification. 35G15, 35L35, 35M20.
Key words and phrases. Third-order equation, wave operator, conditions, nonlocal prob-

lem, the Goursat problem, the Riemann function, integral equation, solvability.

c©2011 The Youngnam Mathematical Society

51



52 O. S. ZIKIROV

For convenience of study, introduce dimensionless variables x ∼ x/(c∞τ),
t ∼ t/τ, remaining former notations, and suppose u(x, t) ∼ ρ(x, t)/c2∞, α =
c20/c

2
∞. Then equation (1.1) for an one–dimensional isotropic surrounding in

new variables becomes the form

∂

∂t

(
∂2u

∂t2
− ∂2u

∂x2

)
+
∂2u

∂t2
− α ∂

2u

∂x2
= 0, (1.2)

moreover 0 < α < 1 for real surroundings [14]–[18].
Equations of the form (1.1) or (1.2) arise also in investigating processes of

spreading perturbations in viscoelastic and visco–plastic pivots [13].
Equations of the form (1.1) were considered in the work [18] where the

solution of the Cauchy problem was constructed and its asymptotical estimate
was obtained by a small parameter characterizing the dispersion of the sound
velocity.

In the present work, we consider nonlocal boundary value problems for a
third-order partial equation with a hyperbolic operator in the main part.

It is known, the Riemann function [2] plays the fundamental role in the
theory of hyperbolic equations at a plane. Recently interest increases to con-
struction of the Riemann function for equations of high, in particular, third
order and to study of initial–boundary value problems for such equations [7]–
[8].

Consider in the plane of variables x, y the third-order partial equation(
α
∂

∂x
+ β

∂

∂y

)
uxy + Lu = f(x, y) (1.3)

where α, β are given constants, moreover α2 + β2 6= 0, and L is a linear
differential expression of the form

Lu ≡ a(x, y)uxx + 2b(x, y)uxy + c(x, y)uyy + a1(x, y)ux

+ b1(x, y)uy + c1(x, y)u.
(1.4)

Coefficients a(x, y), b(x, y), c(x, y), a1(x, y), b1(x, y), c1(x, y) and the right
side f(x, y) of (1.3) are given real functions, but u(x, y) is a real function to be
found.

Without any loss of generality, suppose α > 0 and β > 0. In fact, if α < 0,
β > 0 or α > 0, β < 0, then changing the independent variable x = 1 − ξ or
y = 1− η these cases are reduced to the case of α > 0 and β > 0.

It should be noted that equation (1.3) at α = 1 and β = 0 is called pseu-
doparabolic, and both local and nonlocal boundary value problems for it were
studied by many authors in various domains with the help of the Riemann
method (see, for example [6]–[9]).

In the work [16] local and nonlocal boundary value problems are investigated
for equation (1.3). However, in proofs of solvability for investigated problems
in mentioned work, conditions are imposed upon coefficients of equation (1.3),
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which are to be connected with equalities

2b(x, y) =
β

α
a(x, y) +

α

β
c(x, y), a1(x, y) =

α

β
b1(x, y),

every where in the considered domain.
In the present paper, we study questions on classical solvability of non–local

boundary–value problems for the third–order hyperbolic equation with condi-
tions of the Bitsadze–Samarsky–type and Samarsky–Ionkin–type conditions.

Boundary–value problems for partial differential equations of the second
order with nonlocal conditions has been investigated in [15]–[17] and see also
references therein.

Investigation of boundary–value problems are interesting on theoretical point
of view. Also there are a number of the non–local boundary conditions for evo-
lution problems that have various applications in chemical engineering, ther-
moelasticity, underground water flow and population dynamics and etc.: see,
for example [11].

Boundary–value problems for equations of third–order with local and non–
local boundary conditions are investigated by A. Bouziani [3], A. Bouziani and
M. S. Temsi [4], V. I. Jegalov and A. N. Mironov [9], A. I. Kozhanov [10], A.
M. Nakhushev [11], O. S. Zikirov [20].

2. Formulation of the problems

Consider in the domain D = {(x, y) : 0 < x < l, 0 < y < h} nonlocal prob-
lems for a third-order partial differential equation in the form

Mu ≡
(
α
∂

∂x
+ β

∂

∂y

)
uxy + Lu = f(x, y) (2.1)

where α, β are given constants, moreover α2 + β2 6= 0, and L is a linear
differential expression of the form (1.4). Using the methods of [16] and [19], we
solve following problems:

Problem 1. To find a regular in D solution u(x, y) of equation (2.1) satis-
fying to the initial conditions

u(x, 0) = ψ1(x), uy(x, 0) = ψ2(x), 0 ≤ x ≤ l, (2.2)

and the following boundary conditions:

u(0, y) = λu(l, y) + ϕ1(y), 0 ≤ y ≤ h, (2.3)

ux(0, y) = ϕ2(y), 0 ≤ y ≤ h, (2.4)

where λ = const, ψi(x), ϕi(y), (i = 1, 2) are given functions, such that

ψ
′

1(0) = ϕ2(0), ψ1(0) = λψ1(l) + ϕ1(0), ψ2(0) = λψ2(0) + ϕ
′

1(0).
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Problem 2. To find a regular in D solution u(x, y) of equation (2.1) satis-
fying to initial conditions (2.2) and the boundary conditions:

u(0, y) = ϕ1(y), 0 ≤ y ≤ h, (2.5)

ux(0, y) = λux(l, y) + ϕ2(y), 0 ≤ y ≤ h, (2.6)

where ψi(x), ϕi(y), (i = 1, 2) are given functions, moreover the following agree-
ment conditions

ψ1(0) = ϕ1(0), ψ2(0) = ϕ1(0), ψ
′

1(0) = λψ
′

1(l) + ϕ2(0).

Problem 3. To find a regular in D solution u(x, y) of equation (2.1) Satis-
fying to the initial conditions and nonlocal boundary conditions:

u(0, y) = λ1u(l, y) + ϕ1(y), 0 ≤ y ≤ h, (2.7)

ux(0, y) = λ2ux(l, y) + ϕ2(y), 0 ≤ y ≤ h, (2.8)

where λi = const, ψi(x), ϕi(y), (i = 1, 2) are given functions, moreover

ψ1(0) = λ1ψ1(l)+ϕ1(0), ψ
′

1(0) = λ2ψ
′

1(l)+ϕ2(0), ψ2(0) = λ1ψ2(l)+ϕ
′

1(0).

According to definition of nonlocal problems [12], nonlocal conditions (2.3)
and (2.6) relate to the Bitsadze–Samarsky–type and Samarsky–Ionkin–type
conditions, respectively.

Remark 1. Note that the hyperbolical properties of the problem (2.1)–(2.3)
follow only from the derivatives uxxy and uxyy.

Remark 2. Since the family characteristics x = const and y = const is the
double one for the hyperbolic equation (2.1), two conditions are given on the
segments [0, l] and [0, h].

Remark 3. The family of characteristics of equation (2.1) contains real and dif-
ferent elements. It affects sufficiently both correctness of the problem formula-
tion and its solvability. It should be noted that problem (2.1)–(2.3) represents
natural development of known initial–boundary value and characteristic prob-
lems for pseudo–parabolic and linear hyperbolic equations of the third–order
with two independent variables.

Definition 1. A function u(x, y) continuous in D with its partial derivatives
entering in equation (2.1) and satisfying to this equation in D is said to be a
regular solution of equation (2.1).

Definition 2. The Riemann function is a solution v(x, y) = v(x, y; ξ, η) of the
following problem:

M∗v = 0, (2.9)

v(ξ, y; ξ, η) = ω1(ξ, y), vx(ξ, y; ξ, η) = exp

− 1

α

y∫
η

a(ξ, t)dt

 , (2.10)
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v(x, η; ξ, η) = ω2(x, η), vy(x, η; ξ, η) = exp

− 1

β

x∫
ξ

c(t, η)dt

 , (2.11)

where (ξ, η) is arbitrary fixed point from the closed domain D,

M∗v ≡ −
(
α
∂

∂x
+ β

∂

∂y

)
vxy + (av)xx + (2bv)xy + (cv)yy − (a1v)x

− (b1v)y + c1v,

ω1(ξ, y) and ω2(x, η) are respectively solutions of the following Cauchy problems

βω1yy(ξ, y)− b(ξ, y)ω1y(ξ, y) + a1(ξ, y)ω1(ξ, y) = 0,

ω1(ξ, η) = 0, βω1y(ξ, η) = 1; (2.12)

αω2xx(x, η)− b(x, η)ω2x(x, η) + b1(x, η)ω2(x, η) = 0,

ω2(ξ, η) = 0, αω2x(ξ, η) = 1. (2.13)

Obviously, problems (2.12) and (2.13) are uniquely solvable.

Assumption 1. For all (x, y) ∈ D, we assume that

a(x, y), b(x, y), c(x, y) ∈ C1(D) ∩ C2(D);

a1(x, y), b1(x, y) ∈ C(D) ∩ C1(D), c1(x, y) ∈ C(D).

Assumption 2. We assume that

f(x, y) ∈ C(1, δ)(D), 0 < δ < 1; ψi(x) ∈ C2[0, l], ϕi(y) ∈ C2[0, h]; i = 1, 2.

In this paper, we show the existence and uniqueness of a classical solution
of the boundary–value problems with the nonlocal conditions. For the proof of
unique solvability, we use the methods of the Riemann’s function and integral
equations.

3. The Goursat problem and the Riemann function

In this section, we consider the subsidiary problem: To find a function u(x, y)
being in D a solution of equation (2.1) and satisfying to conditions (2.2) and

u(0, y) = µ(y), ux(0, y) = ϕ2(y), 0 ≤ y ≤ h, (3.1)

where µ(y) is an unknown function for now, moreover

ψ1(0) = µ(0), ψ2(0) = µ
′
(0), ψ

′

1(0) = ϕ2(0).

The straight lines x = const and y = const are characteristics of the equa-
tion (2.1), then problem {(2.1), (2.2), (3.1)} is called the Goursat’s problem.
Following theorem is a solvability of the Goursat’s problem.

Theorem 3.1. Let Assumptions 1, 2 are fulfilled and µ(y) ∈ C2[0, h]. Then
Goursat’s problem is uniquely solvable.
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Proof. We shall prove Theorem 1 by the Riemann’s method [19]. Let u(x, y),
v(x, y) ∈ C2(D)

⋂
C3(D). Then evident identities

v

(
α
∂

∂x
+ β

∂

∂y

)
uxy =

∂

∂x
(αvuxy − αvxyu− βvyuy)

+
∂

∂y
(βvuxy − βvxyu− αvxux)

− u
(
α
∂

∂x
+ β

∂

∂y

)
vxy;

v (auxx + 2buxy + cuyy) =
∂

∂x
[avux − (av)xu+ bvuy − (bv)yu]

+
∂

∂y
[bvux − (bv)xu+ cvuy − (cv)yu]

+ u [(av)xx + (2bv)xy + (cv)yy] ;

v(a1ux + b1uy + c1u) =
∂

∂x
(a1uv) +

∂

∂y
(b1uv)− u[(a1v)x + (b1v)y − c1v],

imply validity of the equality

vMu− uM∗v =
∂P

∂x
+
∂Q

∂y
, (3.2)

here

P = αvuxy − αvxyu− βvyuy + (av)ux − (av)xu+ (bv)uy − (bv)yu+ (a1v)u;

Q = βvuxy − βvxyu− αvxux + (bv)ux − (bv)xu+ (cv)uy − (cv)yu+ (b1v)u;

M∗v ≡ −
(
α
∂

∂x
+ β

∂

∂y

)
vxy + (av)xx + (2bv)xy + (cv)yy − (a1v)x − (b1v)y

+ c1v.

Suppose P, Q are continuous in the domain D, and Px, Qy are continuous
and bounded in D.

One can easily obtain with the help of the Riemann function v(x, y; ξ, η)
representation of the general solution u(ξ, η) for equation (2.1) in the domain
D. Indeed, integrating by parts equality (3.2) by the domain D0 = {(x, y) :
0 < x < ξ, 0 < y < η}, we have

u(ξ, η) = αvx(0, η; ξ, η)u(0, η) + βvy(ξ, 0; ξ, η)u(ξ, 0)

−
ξ∫

0

[βv(x, 0; ξ, η)uxy(x, 0) + c(x, 0)v(x, 0; ξ, η)uy(x, 0)

+A(x; ξ, η)ux(x, 0) +B(x; ξ, η)u(x, 0)]dx



ON AN EQUATION FOR SPREADING OF ACOUSTIC WAVE 57

−
η∫

0

[αv(0, y; ξ, η)uxy(0, y) + a(0, y)v(0, y; ξ, η)ux(0, y)

+A1(y; ξ, η)uy(0, y) +B1(y; ξ, η)u(0, y)]dy

+

ξ∫
0

η∫
0

v(x, y; ξ, η)f(x, y)dxdy

(3.3)

where

A(x, ξ, η) =− αvx(x, 0; ξ, η) + b(x, 0)v(x, 0; ξ, η);

B(x; ξ, η) =− βvxy(x, 0; ξ, η)− b(x, 0)vx(x, 0; ξ, η)−
− c(x, 0)vy(x, 0; ξ, η)− [bx(x, 0) + c(x, 0)− d(x, 0)]v(x, 0; ξ, η);

A1(y; ξ, η) =− βvy(0, y; ξ, η) + b(0, y)v(0, y; ξ, η);

B1(y; ξ, η) =− αvxy(0, y; ξ, η)− a(0, y)vx(0, y; ξ, η)−
− b(0, y)vy(0, y; ξ, η)− [ax(0, y) + by(0, y)− e(0, y)]v(0, y; ξ, η).

Formula (3.3) can be considered as a representation of the general solution
for equation (2.1) if we consider u(0, y), ux(0, y), u(x, 0) and uy(x, 0) as arbi-
trary continuously differentiable functions.

By virtue of boundary conditions (2.2) and (3.1), we obtain from (3.3) a
representation for the solution of the Goursat problem for equation (2.1) in the
form

u(ξ, η) = αvx(0, η; ξ, η)µ(η) + βvy(ξ, 0; ξ, η)ψ1(ξ)

−
ξ∫

0

[βv(x, 0; ξ, η)ψ
′

2(x) + c(x, 0)v(x, 0; ξ, η)ψ2(x)

+A(x; ξ, η)ψ
′

1(x) +B(x; ξ, η)ψ1(x)]dx

−
η∫

0

[αv(0, y; ξ, η)ϕ
′

2(y) + a(0, y)v(0, y; ξ, η)ϕ2(y)

+A1(y; ξ, η)µ
′
(y) +B1(y; ξ, η)µ(y)]dy

+

ξ∫
0

η∫
0

v(x, y; ξ, η)f(x, y)dxdy.

(3.4)

Thus, the solution of Goursat’s problem for equation (2.1) is presentable in
explicit form (3.4) if the Riemann’s function v(x, y; ξ, η) is known. �

By the method, based on reduction to integral–differential equations of
Volterra [16] and [19], one can prove the existence and uniqueness of the Rie-
mann’s function, which was determined by formulas (2.9)–(2.13).
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Theorem 3.2. Let Assumptions 1, 2 are fulfilled. Then the Riemann’s function
v(x, y) = v(x, y; ξ, η) for the operator M exists and unique.

Proof. Integrating equation (2.9) in x from ξ to x and in y from y to η and using
conditions (2.10)–(2.13), as in [16], for determining the function v(x, y; ξ, η) we
get the integral equation

v(x, y) =
1

2(α2 + β2)

αx+βy∫
βx−αy

K0v(x̄(s), ȳ(s))ds+ γ(x, y), (3.5)

here

K0v(x̄(s), ȳ(s)) = 2b(x̄(s), ȳ(s))v(x̄(s), ȳ(s))

+

x̄(s)∫
ξ

[cy(t, ȳ(s))− e(t, ȳ(s))] v(t, ȳ(s))ds

+

x̄(s)∫
η

[ax(x̄(s), τ)− d((x̄(s), τ)] v(x̄(s), τ)dτ

+

x̄(s)∫
ξ

ȳ(s)∫
η

f(t, τ)v(t, τ)dτdt;

x̄(s) =
1

α2 + β2

(
β2x− αβy + αs

)
, ȳ(s) =

1

α2 + β2

(
−αβx+ α2y + βs

)
;

γ(x, y) is known function.
The generalized theorem on the stationary point implies that integral equa-

tion (3.5) has a unique solution. It follows from the Theorem 2 in [19].
In the case the solution of Goursat’s problem for the equation (2.1) exists

and we obtain representation (3.4). �

For the Riemann function v(x, y; ξ, η), the following statements immediately
follow:

Lemma 3.3. If d(x, y) < 0, e(x, y) < 0, ∀(x, y) ∈ D, then the inequalities

v(x, η; l, η) < 0, ∀x ∈ [0, l), αvx(0, η; l, η) > 1, (3.6)

v(ξ, y; ξ, h) < 0, ∀y ∈ [0, h), βvy(ξ, 0; ξ, h) > 1, (3.7)

hold for the function v(x, y; ξ, η).

Proof. Consider the problem

αvxx(x, η; l, η)− b(x, η)vx(x, η; l, η) + d(x, η)v(x, η; l, η) = 0, (3.8)

v(x, η; l, η) |x=l= 0, αvx(x, η; l, η) |x=l= 1; (3.9)
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Rewrite equation (3.5) in the form

∂

∂x

[
αp(x; l, η)

∂vx(x, η; l, η)

∂x

]
+ q(x, η)v(x, η; l, η) = 0, (3.10)

where

p(x; l, η) = exp

 l∫
x

b(t, η)dt

 , q(x, η) = p(x; l, η)d(x, η).

Let v = v(x, η; l, η), 0 ≤ x < l be the solution of equation (3.7) determi-
nate by conditions (3.6). Then by virtue of the maximum principle and the
Zaremba–Jiro principle we obtain [16] from (3.7) v(x, η; l, η) < 0, ∀x ∈ [0, l).

Integrating equation (3.7) in limits from 0 up to l taking into account con-
ditions (3.6) we obtain

αp(x; l, η)vx(0, η; l, η) = 1 +

l∫
0

q(t, η)v(t, η; l, η)dt.

Since v(x, η; l, η) < 0, d(x, η) < 0, we obtain from the last equality αvx
(0, η; l, η) > 1. Inequality (2.20) can be proved similarly to (2.19). �

We obtain presentation (3.4) in the case of the solution of Goursat problem
(2.1)–(2.2) and (3.1) exists.

Note that it is sufficient to establish the existence of the solution of Eq. (2.1)
for the homogeneous conditions ψi(x) = 0, i = 1, 2; µ(y) = 0, ϕ2(y) = 0.

Indeed, this can be done introducing a new unknown function z(x, y) by the
formula

z(ξ, η) = u(ξ, η)− {ϕ1(η) + ξ[ϕ(η)− ψ
′

1(0)]

+ ψ1(ξ) + η[ψ(ξ)− ψ(0)]− ψ
′
(0)ξη − ψ1(0)},

which satisfies equation (2.1) with another right part and homogeneous condi-
tions

z(0, η) = zξ(0, η) = z(ξ, 0) = zη(ξ, 0) = 0. (3.12)

Using properties of the Riemann’s function [19] one can see that the func-
tion determinate by formula (3.8) satisfies equation (2.1) and homogeneous
conditions (3.12).

Thus we have proved the unique solvability of the Goursat problem. Formula
(3.4) allows to study different boundary–value problems for equations of the
form (2.1). �
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4. Reduction of problems to the integral equations.

In this section we study questions on existence and uniqueness for the solu-
tions of considered nonlocal problems.

Theorem 4.1. Let Assumptions 1, 2 are fulfilled. Then non–local problem 1
is solvable, moreover uniquely at λ∈(0, 1).

Proof. We showed above that if functions ψi(x) ∈ C2[0, l], µ(y), ϕ2(y) ∈
C2[0, h], i = 1, 2, then the solution of the characteristic problem (2.1), (2.2),
and (3.1) exists, it is unique and is representable in the form of (3.4). Rewrite
representation (3.4) after some transformations in the form of

u(ξ, η) = [αvx(0, η; ξ, η)−A1(η; ξ, η)]µ(η)− αv(0, η; ξ, η)ϕ2(η)

+ [βvy(ξ, 0; ξ, η)−A(ξ; ξ, η)]ψ1(ξ)− βvx(ξ, 0; ξ, η)ψ2(ξ)

+ βv(0, 0; ξ, η)ψ2(0) + αv(0, 0; ξ, η)ψ
′

1(0)

+ [A1(0; ξ, η) +A(0; ξ, η)]ψ1(0)

+

ξ∫
0

[Ax(x; ξ, η)−B(x; ξ, η)]ψ1(x)dx

+

ξ∫
0

[βvx(x, 0; ξ, η)− c(x, 0)v(x, 0; ξ, η)]ψ2(x)dx

+

η∫
0

[αvy(0, y; ξ, η)− a(0, y)v(0, y; ξ, η)]ϕ2(y)dy

+

η∫
0

[A1y(y; ξ, η)−B1(y; ξ, η)]µ(y)dy

+

ξ∫
0

η∫
0

v(x, y; ξ, η)f(x, y)dxdy.

(4.1)

Thus, arbitrary solution of nonlocal problem 1 can be represented in the
form of (4.1) if the continuously–differentiable function µ(y) is found.

For simplification of further calculations, denote

F (ξ, η) = [αvx(0, η; ξ, η)−A1(η; ξ, η)]µ(η)− αv(0, η; ξ, η)ϕ2(η)

+ [βvy(ξ, 0; ξ, η)−A(ξ; ξ, η)]ψ1(ξ)− βvx(ξ, 0; ξ, η)ψ2(ξ)

+ βv(0, 0; ξ, η)ψ2(0) + αv(0, 0; ξ, η)ψ
′

1(0)

+ [A1(0; ξ, η) +A(0; ξ, η)]ψ1(0) +

ξ∫
0

[Ax(x; ξ, η)−B(x; ξ, η)]ψ1(x)dx
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+

ξ∫
0

[βvx(x, 0; ξ, η)− c(x, 0)v(x, 0; ξ, η)]ψ2(x)dx

+

η∫
0

[αvy(0, y; ξ, η)− a(0, y)v(0, y; ξ, η)]ϕ2(y)dy

+

ξ∫
0

η∫
0

v(x, y; ξ, η)f(x, y)dxdy.

By virtue of nonlocal condition (2.3), we obtain unknown functions µ(y) satis-
fying to the condition

µ(y) = λu(l, y) + ϕ1(y), 0 ≤ y ≤ h. (4.2)

Solving the nonlocal problem is reduced on the whole to finding functions
µ(y).

We obtain from representation (4.1) at ξ = l :

u(l, η) = F (l, η) + [αvx(0, η; l, η)−A1(η; l, η)]µ(η)

+

η∫
0

[A1y(y; l, η)−B1(y; l, η)]µ1(y)dy.

If we multiply the last expression by λ, we obtain by virtue of condition (4.2)
the Volterra–type equation with respect to µ(η) :

σ(η)µ(η) =

η∫
0

k(y, η)µ(y)dy + g(η), (4.3)

here

σ(η) = 1− λ[αvx(0, η; l, η)−A1(η; l, η)], k(y, η) = λ[A1y(y; l, η)−B1(y; l, η)],

g(η) = ϕ1(η) + λF (l, η) is a known function.
By virtue of properties of the Riemann’s function v(x, y; ξ, η), one can easily

make sure, equation (4.3) will be the second–order Volterra integral equation
for all values of λ∈(0, 1). For indicated values of λ, we find from equation (4.3)
µ(η) in the form of

µ(η) = g1(η) +

η∫
0

R(y, η)g1(y)dy (4.4)

where g1(η) = g(η)/σ(η), R(y, η) is the resolvent of the kernel k(y, η)/σ(η).
After definition of the function µ(η), investigated nonlocal problem 1 is re-

duced to the characteristic Goursat problem for equation (2.1), uniquely solv-
ability for that is proved above.
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Values of λ, at which a nonlocal problem is stated correctly, will be said to
be regular values of this problem.

It is known [16], any value of λ ∈ (0, 1) cannot be regular for nonlocal
problem 1.

Now the following question arises naturally: what happens when conditions
on coefficients of equation (2.1) are broken separately or simultaneously? If
conditions on coefficients of the equation and boundary conditions are broken,
then, as a simple example shows, nonlocal problem 1 can be stated incorrectly.

In fact, the function u(x, y) = y2(kx + k−x), k = (1 +
√

1− λ2)/λ satisfies
in the domain D = {(x, y) : 0 < x < 1, 0 < y < h} to the equation

uxxy + uxyy −
2

y2
ux − ln2 k uy = 0,

and the boundary conditions

u(0, y) = λu(1, y), ux(0, y) = 0, u(x, 0) = 0, uy(x, 0) = 0.

Similar result takes place also for nonlocal problem 2. �

Theorem 4.2. Let Assumption 1 and Assumption 2 are fulfilled. Then the
classical solution of the problem 3 exists and unique at λi∈(0, 1), (i = 1, 2).

Proof. To prove existence and uniqueness of the solution for nonlocal problem
3, we study the subsidiary Goursat problem for equation (2.1) with initial
conditions (2.2) and boundary conditions

u(0, y) = µ1(y), ux(0, y) = µ2(y), 0 ≤ y ≤ h, (4.5)

where µi(y), (i = 1, 2) are for the present unknown functions, moreover the
following equalities

ψ1(0) = µ1(0), ψ2(0) = µ
′

1(0), ψ
′

1(0) = µ2(0)

hold.
By virtue of nonlocal conditions (2.7) and (2.8), we find unknown functions

µ1(y), µ2(y) satisfying to the conditions

µ1(y) = λ1u(l, y) + ϕ1(y), 0 ≤ y ≤ h, (4.6)

µ2(y) = λ2ux(l, y) + ϕ2(y), 0 ≤ y ≤ h. (4.7)

Solving the nonlocal problem is reduced on the whole to finding functions
µ1(y), µ2(y).
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We find from representation (4.1) at ξ = l :

u(l, η) = F (l, η) + [αvx(0, η; l, η)−A1(η; l, η)]µ1(η)− αv(0, η; l, η)µ2(η)

+

η∫
0

[αvy(0, y; l, η)− a(0, y)v(0, y; l, η)]µ2(y)dy

+

η∫
0

[A1y(y; l, η)−B1(y; l, η)]µ1(y)dy.

If we multiply the last expression by λ1, then by virtue of condition (4.6) we
obtain the relation between functions µ1(η) and µ2(η):

A11(η)µ1(η) +A12(η)µ2(η) =

η∫
0

[k11(y, η)µ1(y) + k12(y, η)µ2(y)]dy

+ f1(η),

(4.8)

here

A11(η) = 1− λ1[αvx(0, η; l, η)−A1(η; l, η)],

A12(η) = λ1αv(0, η; l, η),

k11(y, η) = λ1[A1y(y; l, η)−B1(y; l, η)],

k12(y, η) = λ1[αvy(0, y; l, η)− a(0, y)v(0, y; l, η)],

f1(η) is a known function.
Calculating the derivative of u(ξ, η) from (4.1) by ξ and setting ξ = l, taking

into account condition (4.7), we find after some transformations

A21(η)µ1(η) +A22(η)µ2(η) =

η∫
0

[k21(y, η)µ1(y) + k22(y, η)µ2(y)]dy

+ f2(η),

(4.9)

here

A21(η) = −λ2[αvxξ(0, η; l, η)−A1ξ(η; l, η)],

A22(η) = 1− λ2αvξ(0, η; l, η),

k21(y, η) = λ2[A1yξ(y; l, η)−B1ξ(y; l, η)],

k22(y, η) = λ2[αvyξ(0, y; l, η)− a(0, y)vξ(0, y; l, η)],

f2(η) is a known function.
Thus, to define functions µ1(η) and µ2(η), we obtain the system of integral

equations. Hence, the question on solvability of studying nonlocal problem
is reduced to the question on solvability of the system of equations (4.8) and
(4.9).
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Rewrite (4.8)–(4.9) in the form of

A1(η)

(
µ1(η)
µ2(η)

)
=

η∫
0

K1(y, η)

(
µ1(y)
µ2(y)

)
dy +

(
f1(η)
f2(η)

)
, (4.10)

here

A1(η) =

(
A11(η) A12(η)
A21(η) A22(η)

)
, K1(y, η) =

(
k11(y, η) k12(y, η)
k21(y, η) k22(y, η)

)
,

On the base of Lemma 3.1, we have det|A1(η)| 6= 0, ∀η ∈ [0, h]. Therefore
the system of equations (4.10) is the system of integral Volterra equations of
the second kind [12]. Finding from equation (4.10) µi(η), (i = 1, 2), we reduce
nonlocal problem 3 to the Goursat problem for equation (2.1), correctness of
which was established in 3. �
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