• Title/Summary/Keyword: Ricci symmetric manifold

Search Result 53, Processing Time 0.019 seconds

CHEN INEQUALITIES ON LIGHTLIKE HYPERSURFACES OF A LORENTZIAN MANIFOLD WITH SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Poyraz, Nergiz (Onen)
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.339-359
    • /
    • 2022
  • In this paper, we investigate k-Ricci curvature and k-scalar curvature on lightlike hypersurfaces of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using this curvatures, we establish some inequalities for screen homothetic lightlike hypersurface of a real space form ${\tilde{M}}$(c) of constant sectional curvature c, endowed with semi-symmetric non-metric connection. Using these inequalities, we obtain some characterizations for such hypersurfaces. Considering the equality case, we obtain some results.

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui;Lakrini, Ibrahim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1219-1233
    • /
    • 2019
  • Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

Paracontact Metric (k, 𝜇)-spaces Satisfying Certain Curvature Conditions

  • Mandal, Krishanu;De, Uday Chand
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.1
    • /
    • pp.163-174
    • /
    • 2019
  • The object of this paper is to classify paracontact metric ($k,{\mu}$)-spaces satisfying certain curvature conditions. We show that a paracontact metric ($k,{\mu}$)-space is Ricci semisymmetric if and only if the metric is Einstein, provided k < -1. Also we prove that a paracontact metric ($k,{\mu}$)-space is ${\phi}$-Ricci symmetric if and only if the metric is Einstein, provided $k{\neq}0$, -1. Moreover, we show that in a paracontact metric ($k,{\mu}$)-space with k < -1, a second order symmetric parallel tensor is a constant multiple of the associated metric tensor. Several consequences of these results are discussed.

NEARLY SASAKIAN MANIFOLD SATISFYING

  • Kim, Chong-Hon;Kim, Byong-Du
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.21-26
    • /
    • 1984
  • The notion of nearly Sasakian manifold was introduced in [1] and Z-Olszak has studied certain properties in [2] and [3]. In section (2) of this paper, we show that a nearly Sasakian manifold M admitting .GAMMA.$_{ji}$ $^{h}$ such that .del.$_{1}$ $R_{kji}$$^{h}$ =0 is of contant scalar curvature and the covariant derivate of the Ricci tensor of M is a symmetric tensor. In the last section, we shall deal with a recurrent and conformal recurrent nearly Sasakian manifold.d.

  • PDF

MEAN DISTANCE OF BROWNIAN MOTION ON A RIEMANNIAN MANIFOLD

  • Kim, Yoon-Tae;Park, Hyun-Suk
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.45-48
    • /
    • 2002
  • Consider the mean distance of Brownian motion on Riemannian manifolds. We obtain the first three terms of the asymptotic expansion of the mean distance by means of Stochastic Differential Equation(SDE) for Brownian motion on Riemannian manifold. This method proves to be much simpler for further expansion than the methods developed by Liao and Zheng(1995). Our expansion gives the same characterizations as the mean exit time from a small geodesic ball with regard to Euclidean space and the rank 1 symmetric spaces.

  • PDF

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.

MODULI SPACES OF ORIENTED TYPE ${\mathcal{A}}$ MANIFOLDS OF DIMENSION AT LEAST 3

  • Gilkey, Peter;Park, JeongHyeong
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.1759-1786
    • /
    • 2017
  • We examine the moduli space of oriented locally homogeneous manifolds of Type ${\mathcal{A}}$ which have non-degenerate symmetric Ricci tensor both in the setting of manifolds with torsion and also in the torsion free setting where the dimension is at least 3. These exhibit phenomena that is very different than in the case of surfaces. In dimension 3, we determine all the possible symmetry groups in the torsion free setting.

Some Results on Null Hypersurfaces in (LCS)-manifolds

  • Ssekajja, Samuel
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.783-795
    • /
    • 2019
  • We prove that a Lorentzian concircular structure (LCS)-manifold does not admit any null hypersurface which is tangential or transversal to its characteristic vector field. Due to the above, we focus on its ascreen null hypersurfaces and show that such hypersurfaces admit a symmetric Ricci tensor. Furthermore, we prove that there are no totally geodesic ascreen null hypersurfaces of a conformally flat (LCS)-manifold.

Conformally Flat Totally Umbilical Submanifolds in Some Semi-Riemannian Manifolds

  • Ewert-Krzemieniewski, Stanislaw
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.183-194
    • /
    • 2008
  • We prove that totally umbilical submanifold M of an extended quasi-recurren manifold is also extended quasi-recurrent. If, moreover, M is conformally flat then, locally, M is isometric to the manifold with known metric. Some curvature properties of such submanifold are investigated. Making use of these results we shall prove the existence of totally umbilical submanifold being pseudosymmetric in the sense of Ryszard Deszcz and satisfying some other curvature conditions.