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η-RICCI SOLITONS ON KENMOTSU MANIFOLDS

ADMITTING GENERAL CONNECTION

Ashis Biswas, Ashoke Das∗, Kanak Kanti Baishya,
and Manoj Ray Bakshi

Abstract. The object of the present paper is to study η-Ricci soli-
ton on Kenmotsu manifold with respect to general connection.

1. Introduction

Throughout our paper, we denote Schouten-Van Kampen connection,
general connection, Zamkovoy connection, generalized Tanaka-Webster
connection, quarter-symmetric connection, Levi-civita connection by the
symbols ∇s, ∇G, ∇z, ∇T , ∇q, ∇ respectively.

Recently, Biswas and Baishya( [3], [4]) introduced and studied a new
connection, named general connection in the context of Sasakian geom-
etry. The general connection ∇G is defined as

(1) ∇G
XY = ∇XY + k1 [(∇Xη) (Y ) ξ − η (Y )∇Xξ] + k2η (X)φY,

for all U, V ∈ χ (M) and the pair (λ, µ) being real constants. The beauty
of such connection ∇G lies in the fact that it has the flavour of

(i) quarter symmetric metric connection( [11], [5]) for (k1, k2) ≡ (0,−1) ;
(ii) Schouten-Van Kampen connection [26] for (k1, k2) ≡ (1, 0) ;
(iii) Tanaka Webster connection [29] for (k1, k2) ≡ (1,−1) and
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(iv) Zamkovoy connection [33] for (k1, k2) ≡ (1, 1) .
In 1982, Hamilton [24] introduced the notion of Ricci flow to find a

canonical metric on a smooth manifold. Then Ricci flow has become
a powerful tool for the study of Riemannian manifolds, especially for
those manifolds with positive curvature. Perelman ( [19], [20]) used
Ricci flow and its surgery to prove Poincare conjecture. The Ricci flow
is an evolution equation for metrics on a Riemannian manifold defined
as follows:

(2)
∂

∂t
gij (t) = −2Rij.

A Ricci soliton emerges as the limit of the solutions of the Ricci flow. A
solution to the Ricci flow is called Ricci soliton if it moves only by a one
parameter group of diffeomorphism and scaling. A Ricci soliton (g, V, λ)
on a Riemannian manifold (M, g) is a generalization of an Einstein met-
ric such that ( [25], [13], [23] [16])

(3) (£V g) (X, Y ) + 2S (X, Y ) + 2λg (X, Y ) = 0,

where S is the Ricci tensor, £V is the Lie derivative operator along the
vector field V on M and λ is a real number. The Ricci soliton is said to
be shrinking, steady or expanding according to λ being negative, zero
or positive, respectively. As a generalization of Ricci soliton, the notion
of η-Ricci soliton was introduced by Cho and Kimura [13]. They have
studied Ricci soliton of real hypersurfaces in a non-flat complex space
form and defined η-Ricci soliton, which satisfies the equation

(4) (£V g) (X, Y ) + 2S (X, Y ) + 2λg (X, Y ) + 2µη (X) η (Y ) = 0,

where λ and µ are real numbers. In particular, if µ = 0, then the
notion of η-Ricci soliton (g, V, λ, µ) reduces to the notion of Ricci soliton
(g, V, λ) . Recenty, η-Ricci solitons have been studied by various authors
for details we refer ( [9], [7], [18], [17], [28] and the reference therein ).

This paper is structered as follows: After introduction, a short de-
scription of Kenmotsu manifold is given in section 2. In section 3, we
have studied some properties of Kenmotsu manifold admitting general
connection. Section 4 deals with η-Ricci solitons and Ricci solitons on
Kenmotsu manifolds with respect to the general connection admitting
some curvature restrictions. Finally in section 6, we have given an non
trivial example of η-Ricci solitions and found out the relation between
the scalars λ and µ on Kenmotsu manifolds with respect to the general
connection.
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2. Preliminaries

Let M be an n(= 2m+ 1)-dimensional differentiable manifold, it said
to be an almost contact Riemannian manifold if either its structural
group can be reduced to U (n)×{I} or there is an almost contact metric
structure (φ, ξ, η, g) consisting of a vector field ξ, (1, 1) tensor field φ,
1-form η and Riemannian metric g satisfying

φ2X = −X + η (X) ξ,(5)

η(ξ) = 1, η (φX) = 0, φξ = 0.(6)

In Kenmotsu manifolds (Mn, g) the following relations hold ( [17], [28],
[14], [30], [1]).

g (X,φY ) = −g (φX, Y ) , g (X, ξ) = η (X) ,∀X, Y ∈ TM(7)

g (φX, φY ) = g (X, Y )− η (X) η (Y ) , g (QX, Y ) = S (X, Y )(8)

(9) S (φX, φY ) = S(X, Y ) + (n− 1) η (X) η (Y )

(10) (∇Xφ)Y = −g(X,φY )ξ − η(Y )φ(X),

∇Xξ = X − η(X)ξ,(11)

(∇Xη)Y = g(X, Y )− η(X) η(Y ).(12)

Further, for Kenmotsu manifold with structure (φ, ξ, η, g), following
relations holds

R(X, Y )ξ = η(X) Y − η(Y )X,(13)

S(X, ξ) = −(n− 1)η(X),(14)

R(X, ξ)Y = g(X, Y )ξ − η(Y )X,(15)

R(ξ,X)Y = η(Y )X − g(X, Y )ξ(16)

(17) Qξ = −(n− 1)ξ,

where S and Q are Ricci tensor and Ricci operator.
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3. Kenmotsu manifold admitting general connection

By the help of (5), (11) and (12) the relation (1) reduces to

(18) ∇G
XY = ∇XY + k1 [g (X, Y ) ξ − η (Y )X] + k2η (X)φY.

Substituting Y by ξ in (18) and using (5), (11)

(19) ∇G
Xξ = (1− k1) (X − η (X) ξ) .

Now on an acount of (5), (6), (7), (10), (11), (12) and (18), we get the
following

(20) ∇G
Xη (Y ) = η (∇XY ) + g (X, Y )− η (X) η (Y ) ,

(21) ∇G
X (φY ) = ∇X (φY )+k1g (X,φY ) ξ−k2η (X)Y +k2η (X) η (Y ) ξ,

∇G
Xg (Y, Z) = g (∇XY, Z) + k1η (Z) g (X, Y )− k1η (Y ) g (X,Z)

+k2η (X) g (φY, Z) + g (Y,∇XZ) + λη (Y ) g (X,Z)

−k1η (Z) g (Y,X) + k2η (X) g (Y, φZ) .(22)

Now we know that

(23) RG (X, Y )Z = ∇G
X∇G

YZ −∇G
Y∇G

XZ −∇G
[X,Y ]Z.

By using (18), (19), (20), (21) and (22) we obtain the following

∇G
[X,Y ]Z = ∇[X,Y ]Z + k2η (∇XY )φZ − k2η (∇YX)φZ

+k1 [g (∇XY, Z) ξ − g (∇YX,Z) ξ − η (Z)∇XY + η (Z)∇YX] ,(24)
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∇G
X∇G

YZ

= ∇X (∇YZ) + k1g (X,∇YZ) ξ − k1η (∇YZ)X + k2η (X)φ∇YZ

+k1g (∇XY, Z) ξ + k21η (Z) g (X, Y ) ξ − k21η (Y ) g (X,Z) ξ

+k1g (Y,∇XZ) ξ + k21η (Y ) g (X,Z) ξ − k21η (Z) g (Y,X) ξ

+k1 (1− k1) g (Y, Z)X − k1 (1− k1) g (Y, Z) η (X) ξ

+k1k2η (X) g (Y, φZ) ξ − k1η (∇XZ)Y − k1g (X,Z)Y

+k1η (X) η (Z)Y + k1k2η (X) g (φY, Z) ξ − k1η (Z)∇XY

−k21η (Z) g (X, Y ) ξ + k1η (Z) η (Y )X − k1k2η (Z) η (X)φY

+k2η (∇XY )φZ + k2g (X, Y )φZ − k2η (X) η (Y )φZ + k2η (Y )∇XϕZ

+k1k2η (Y ) g (X,ϕZ) ξ − k22η (X) η (Y )Z + k22η (X) η (Y ) η (Z) ξ.

(25)

Interchanging Y and X in (25)

∇GY∇GXZ
= ∇Y (∇XZ) + k1g (Y,∇XZ) ξ − k1η (∇XZ)Y + k2η (Y )φ∇XZ

+k1g (∇YX,Z) ξ + k21η (Z) g (Y,X) ξ − k21η (X) g (Y,Z) ξ

+k1g (X,∇Y Z) ξ + k21η (X) g (Y,Z) ξ − k21η (Z) g (X,Y ) ξ

+k1k2η (Y ) g (X,φZ) ξ + k1 (1− k1) g (X,Z)Y

−k1 (1− k1) g (X,Z) η (Y ) ξ − k1η (∇Y Z)X

−k1g (Y,Z)X + k1η (Y ) η (Z)X + k1k2η (Y ) g (φX,Z) ξ

−k1η (Z)∇YX − k21η (Z) g (Y,X) ξ + k1η (Z) η (X)Y − k1k2η (Z) η (Y )φX

+k2η (∇YX)φZ + k2g (Y,X)φZ − k2η (Y ) η (X)φZ + k2η (X)∇Y ϕZ
+k1k2η (X) g (Y, ϕZ) ξ − k22η (Y ) η (X)Z + k22η (Y ) η (X) η (Z) ξ.

(26)

Now in reference of (24), (25) and (26) we get from (23)

RG (X, Y )Z

= R (X, Y )Z + (k1k2 − k2) [η (Y ) g (X,φZ) ξ − η (X) g (Y, ϕZ) ξ]

+ (k1k2 − k2) [η (Y ) η (Z)φX − η (X) η (Z)φY ]

+k1 (1− k1) [g (X,Z) η (Y ) ξ − g (Y, Z) η (X) ξ]

+k1 [2− k1] g (Y, Z)X − k1 [2− k1] g (X,Z)Y.(27)
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On contracting (27), we obtain the Ricci tensor SG of a Kenmotsu man-
ifold with respect to the general connection ∇G as

SG (Y, Z) = S (Y, Z) + k2 (1− k1) g (Y, ϕZ)

+k1 (1− k1) η (Y ) η (Z) +
[
2nk1 − nk21 − 3k1 + 2k21

]
g (Y, Z) .(28)

This gives

QGY = QY − k2 (1− k1)φY
+
[
2nk1 − nk21 − 3k1 + 2k21

]
Y + k1 (1− k1) η (Y ) ξ.(29)

Again contracting (28) over Y and Z we obtain

(30) rG = r + k1 (1− k1) + n
[
2nk1 − nk21 − 3k1 + 2k21

]
.

Replacing Y by ξ in (28) we get

(31) SG (Y, ξ) = (−n+ 1) (1− k1)2 η (Y ) .

By the help of (13), (15), (16) and (27) we obtain the the following

RG (ξ, Y )Z = (1− k1)2 η(Z)Y − (1− k1) g(Y, Z)ξ

−k2 (k1 − 1) [g (Y, ϕZ) ξ + η (Z)φY ]

+k1 (1− k1) η (Z) η (Y ) ξ,(32)

RG (Y, Z) ξ = (1− k1)2 η(Y )Z − (1− k1)2 η(Z)Y

+k2 (k1 − 1) [η (Z)φY − η (Y )φZ] ,(33)

RG (Y, ξ)Z

= (1− k1) g (Y, Z) ξ − (1− k1)2 η (Z)Y

+k2 (k1 − 1) [g (Y, φZ) ξ + η (Z)φY ]− k1 (1− k1) η (Z) η (Y ) ξ.(34)

Thus we can state the following

Theorem 3.1. Let M be an n-dimensional Kenmotsu manifold ad-
mitting general connection ∇G. Then (i) the curvature tensor RG of ∇G

is given by (27), (ii) the Ricci tensor SG of ∇G is given by (28) and (iii)
the scalar curvature rG of ∇G is given by (30).
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4. η-Ricci solitions on Kenmotsu manifolds admitting gen-
eral connection

We consider a Kenmotsu manifold with respect to general connection
admitting an η-Ricci soliton (g, ξ, λ, µ). Then from (4), it is obvious that

(35)
(
£G
ξ g

)
(X, Y ) + 2SG (X, Y ) + 2λg (X, Y ) + 2µη (X) η (Y ) = 0.

Now, we express the Lie derivative along ξ on M with respect to general
connection as follows:(

£G
ξ g

)
(X, Y ) = £G

ξ g (X, Y )− g
(
£G
ξ X, Y

)
− g

(
X,£G

ξ Y
)

= £G
ξ g (X, Y )− g ([ξ,X] , Y )− g (X, [ξ, Y ]) .(36)

By the help of (1) and (36), we obtain(
£G
ξ g

)
(X, Y )

= ∇G
ξ g (X, Y )− g

(
∇G
ξ X −∇G

Xξ − k1 (X − η (X) ξ − k2φX) , Y
)

−g
(
X,∇G

ξ Y −∇G
Y ξ − k1 (Y − η (Y ) ξ − k2φY )

)
.(37)

Using (18) and (19), the relation (37) reduces to

(38)
(
£G
ξ g

)
(X, Y ) = 2g (X, Y )− 2η (X) η (Y ) .

By virtue of (38), the equation (35) takes the following form

(39) SG (X, Y ) = [1− µ] η (X) η (Y )− [1 + λ] g (X, Y ) .

Setting X = Y = ξ in (39), we get

(40) µ+ λ = (n− 1) (1− k1)2 .

Thus we can conclude that

Theorem 4.1. If (g, ξ, λ, µ) is an η-Ricci soliton on Kenmotsu man-
ifold with respect to quarter symmetric metric connection, then the
η-Ricci soliton on M is expanding, steady or shrinking according as

(n− 1) T µ.

Theorem 4.2. If (g, ξ, λ, µ) is an η-Ricci soliton on Kenmotsu man-
ifold with respect to each of (i) Shouten-Van Kampen connection, (ii)
Tanaka Webster connection and (iii) Zamkovoy connection, then the
η-Ricci soliton on M is expanding, steady or shrinking according as

µ S 0.
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Definition 4.3. A Kenmotsu manifold is said to be quasi-conformal
like flat with respect to general connection if

(41) ωG (X, Y )Z = 0,

where ωG is the quasi-conformal like curvature tensor with respect to
general connection and is given( [2]) by

ωG (X, Y )Z = RG(X, Y )Z + a
[
SG (Y, Z)X − SG(X,Z)Y

]
−cr

G

n

(
1

n− 1
+ a+ b

)
[g (Y, Z)X − g (X,Z)Y ]

+b
[
g (Y, Z)QGX − g (X,Z)QGY

]
,(42)

for all X, Y & Z ∈ χ (M), the set of all vector field of the manifold
M , where scalar triple (a, b, c) are real constants. The beauty of such
curvature tensor lies in the fact that it has the flavour of Riemann cur-
vature tensor RG if the scalar triple (a, b, c) ≡ (0, 0, 0), conformal cur-
vature tensor C G( [10]) if (a, b, c) ≡

(
− 1
n−2 ,−

1
n−2 , 1

)
, conharmonic

curvature tensor LG ( [12]) if (a, b, c) ≡ (− 1
n−2 ,−

1
n−2 , 0), concircular

curvature tensor EG ( [8], p. 84) if (a, b, c) ≡ (0, 0, 1), projective cur-
vature tensor PG( [8], p. 84) if (a, b, c) ≡ (− 1

n−1 , 0, 0) and m-projective

curvature tensor HG [21], if (a, b, c) ≡ (− 1
2n−2 ,−

1
2n−2 , 0), the WG

1 -

curvature tensor [22] if, (a, b, c) = ( 1
(n−1) , 0, 0),the WG

2 -curvature ten-

sor [21], if (a, b, c) = (0,− 1
(n−1) , 0), the WG

4 -curvature tensor [22], if

(a, b, c) = (0, 0, n
r
).

Contracting Y over Z in the above relation, we have

SG (X,W ) = − arG

[1− a+ bn− b]
g (X,W )

+
crG

n

(
1

n− 1
+ a+ b

)
(n− 1)

[1− a+ bn− b]
g (X,W ) .(43)
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Using (39) in (43), we find

[1− µ] η (X) η (W )− [1 + λ] g (X,W )

= − arG

[1− a+ bn− b]
g (X,W )

+
crG

n

(
1

n− 1
+ a+ b

)
(n− 1)

[1− a+ bn− b]
g (X,W ) .

(44)

Putting X = W = ξ in (44), we get

[µ+ λ] =
a [r + k1 (1− k1) + n (2nk1 − nk21 − 3k1 + 2k21)]

[1− a+ bn− b]

−c [r + k1 (1− k1) + n (2nk1 − nk21 − 3k1 + 2k21)]

n(
1

n− 1
+ a+ b

)
(n− 1)

[1− a+ bn− b]
.(45)

Again, putting Y = Z = ξ, in (42) and then using (39), we get

(46) [µ+ λ] = −1

b
(1− k1)2 [an− a+ 1− nab+ ab− n] .

This leads to the following:

Theorem 4.4. If (g, ξ, λ, µ) is an η-Ricci soliton on the quasi-conformal
like flat Kenmotsu manifold admitting general connection ∇G, then the
scalars λ and µ are related by (45).

Theorem 4.5. Let (g, ξ, λ, µ) be a η-Ricci soliton on Kenmotsu man-
ifold with respect to quarter symmetric metric connection. Then the
following relation hold

(i) the η-Ricci soliton onM for each of CG(X, ξ)ξ = 0 and LG(X, ξ)ξ =

0 is expanding, steady or shrinking according as
(
n3−4n2+6n−3

n−2

)
S 0.

(ii) the η-Ricci soliton on M having HG(X, ξ)ξ = 0 is expanding,

steady or shrinking according as
(

4n3−10n2+8n−1
2n−2

)
S 0.

Theorem 4.6. If (g, ξ, λ, µ) is an η-Ricci soliton admitting ωG(X, ξ)ξ =
0 on Kenmotsu manifold, then with respect to each of (i) Shouten-Van
Kampen connection, (ii) Tanaka Webster connection and (iii) Zamkovoy
connection, the η-Ricci soliton on is expanding, steady or shrinking ac-

cording as µ S 0.
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Now, let (g, ξ, λ, µ) be an η-Ricci soliton on Kenmotsu manifold ad-
mitting general connection such that V is pointwise collinear with ξ,
that is, V = βξ, where β is a function. Then obviously (35) holds and
we have

0 = (Xβ) η (Y ) + (Y β) η (X) + 2βg (X, Y )− 2βη (X) η (Y )

+2SG (X, Y ) + 2λg (X, Y ) + 2µη (X) η (Y ) .(47)

Putting Y = ξ in (47) and using (5), (6) and (31) it follows that
(48)
(Xβ) + (ξβ) η (X)− 2 (n− 1) (1− k1)2 η (X) + 2λη (X) + 2µη (X) = 0.

Putting X = ξ in (48) and using (5) and (6) we have

(49) (ξβ)− (n− 1) (1− k1)2 + λ+ µ = 0.

Using (49) in (48), we get

(50) (Xβ)−
[
(n− 1) (1− k1)2 − λ− µ

]
η (X) = 0.

Differentiating (50) covariently with respect to Y , we find

(51) −
[
(n− 1) (1− k1)2 − λ− µ

]
(∇Y η) (X) = 0.

From (50) and (51), we find

(52)
[
(n− 1) (1− k1)2 − λ− µ

]
dη = 0.

Since dη 6= 0, therefore

(53) λ+ µ = (n− 1) (1− k1)2 .

Substituting (53) in (50), we conclude that β is a constant. Hence it is
verified from (47) that

(54) SG (X, Y ) = − (β + λ) g (X, Y ) + (β − µ) η (X) η (Y )

In view of (28), the relation (54) takes the form

S (X, Y )

= −k2 (1− k1) g (X,ϕY )−
[
2nk1 − nk21 − 3k1 + 2k21 + β + λ

]
g (X, Y )

+ [β − µ− k1 (1− k1)] η (X) η (Y ) .

(55)

Thus we can state
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Theorem 4.7. If (g, ξ, λ, µ) is an η-Ricci soliton on Kenmotsu mani-
fold with respect to general connection, such that V is pointwise collinear
with ξ, then V is a constant multiple of ξ and the manifold is a gener-
alized η-Einstein manifold with respect to the Levi-Civita connection.

Corollary 4.8. Kenmotsu manifold with respect to each of (i)
Shouten-Van Kampen connection, (ii) Tanaka Webster connection and
(iii) Zamkovoy connection admitting an η-Ricci soliton (g, ξ, λ) whose
potential vector field is pointwise collinear with vector field ξ, is an η-
Einstein manifold with respect to the Levi-Civita connection.

In particular, for µ = 0, (53) yields

(56) λ = (n− 1) (1− k1)2 .
Thus we can state

Theorem 4.9. If Kenmotsu manifold with respect to each of (i)
Shouten-Van Kampen connection, (ii) Tanaka Webster connection and
(iii) Zamkovoy connection possess a Ricci soliton (g, ξ, λ) whose potential
vector field is pointwise collinear with vector field ξ, then such soliton is
always steady .

Theorem 4.10. If Kenmotsu manifold with respect to quarter sym-
metric metric connection possess a Ricci soliton (g, ξ, λ) whose potential
vector field is pointwise collinear with vector field ξ, then such soliton is
always expanding.

5. Example

By the help of [3] we introduce an example of 3-dimensional Ken-
motsu manifold with respect to Generalised Tanaka-Webster connection.
Choosing the linearly independent vector field as

(57) e1= e−z
∂

∂x
, e2= e−z

∂

∂y
, e3=

∂

∂z

at each point of 3-dimensional manifold M , where M = {(x, y, z) ∈ R3 :
x 6= 0}.Let g be the Reiemannian metric defined by

(58) g (ei, ej) = {1, i=j0,i 6=j for i, j = 1, 2, 3

The 1-form η is defined by g (Y, e3) = η (Y ) ,and the (1, 1) tensor field
φ is defined by φ (e1) = −e2, φ (e2) = e1, and φ (e3) = 0.Let ∇ be the
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Levi-Civita connection with respect to the Riemannian metric g. Then
we have

(59) [e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2.

Considering e3 = ξ and using Koszul’s formula we get

∇e1e3 = e1, ∇e1e2 = 0, ∇e1e1 = −e3,
∇e2e3 = e2, ∇e2e1 = 0, ∇e2e2 = −e3,
∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.(60)

By the help of (59) and (60), we obtain the following

R (e1, e2) e3 = 0;R (e1, e2) e2 = −e1;R (e1, e3) e3 = −e1;
R (e2, e2) e3 = 0;R (e2, e3) e3 = −e2;R (e2, e1) e1 = −e2;
R (e3, e2) e2 = −e3;R (e3, e1) e2 = 0;R (e3, e1) e1 = −e3;
R (e3, e2) e1 = R (e2, e1) e3 = R (e1, e3) e2 = 0.(61)

Using (18), (23), (59) and (60), we can easily calculate the following

∇G
e1
e2 = 0;∇G

e1
e1 = −e3 + k1e3;∇G

e1
e3 = e1 − k1e1.

∇G
e2
e3 = e2 − k1e2;∇G

e2
e1 = 0;∇G

e2
e2 = −e3 + k1e3

∇G
e3
e2 = +k2e1;∇G

e3
e3 = 0;∇G

e3
e1 = −k2e2,(62)

RG (e1, e2) e2 = −e1 + 2k1e1 + k21e1; R
G (e1, e2) e3 = 0;

RG (e2, e3) e3 = −k2e1 + k1k2e1 − e2 + k1e2;

RG (e3, e1) e1 = −e3 + k1e3; R
G (e3, e2) e2 = −e3 + k1e3;

RG (e2, e1) e1 = −e2 + 2k1e2 − k21e2;
RG (e1, e3) e3 = k2e2 − k1k2e2 − e1 + k1e1;

RG (e1, e3) e2 = −k2e3 + k1k2e3;R
G (e2, e1) e3 = 0;

RG (e1, e3) e3 = k2e2 − k1k2e2 − e1 + k1e1,(63)

SG (e1, e1) = k21 + 3k1 − 2;

SG (e2, e2) = k21 + 3k1 − 2;

SG (e3, e3) = −2 + 2k1(64)

and

(65) rG = −6 + 2k21 + 8k1.



η-Ricci solitons on Kenmotsu manifolds admitting general connection 815

Thus it can be seen that equation (33) is satisfied. Now from (39) and
(64) we get

(66) µ+ λ = 2(1− k1).
Hence the manifold under consideration satisfies Theorem 2 and Theo-
rem 3.

Theorem 5.1. There exists a Kenmotsu manifold (M3, g) with re-
spect to quarter symmetric metric connection possessing an η-Ricci soli-

ton (ξ, λ, µ) which is expanding, steady or shrinking according as 2 T µ.

Theorem 5.2. There exists a Kenmotsu manifold (M3, g) with re-
spect to each of (i) Shouten-Van Kampen connection, (ii) Tanaka Web-
ster connection and (iii) Zamkovoy connection admitting an η-Ricci soli-
ton (ξ, λ, µ) which is always steady.
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