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Abstract. We prove that a Lorentzian concircular structure (LCS)-manifold does not

admit any null hypersurface which is tangential or transversal to its characteristic vector

field. Due to the above, we focus on its ascreen null hypersurfaces and show that such

hypersurfaces admit a symmetric Ricci tensor. Furthermore, we prove that there are no

totally geodesic ascreen null hypersurfaces of a conformally flat (LCS)-manifold.

1. Introduction

Since the middle of the twentieth century, Riemannian geometry has had a
substantial influence on several main areas of mathematical sciences. Primarily,
semi-Riemannian (in particular, Lorentzian [3]) geometry has its roots in Rieman-
nian geometry. On the other hand, the situation is quite different for null manifolds
with a degenerate metric, since one fails to use, in the usual way, the theory of
non-null geometry. Null submanifolds have numerous applications in mathematical
physics and General relativity (see [16] for details). This prompted Duggal-Bejancu
[6] and Duggal-Sahin [8] to introduce the geometry of null submanifolds. They in-
troduced a non-degenerate screen distribution to construct a null transversal vector
bundle which is non-intersecting to its null tangent bundle and developed local ge-
ometry of null curves, hypersurfaces, and submanifolds. Their approach is extrinsic
contrary to the intrinsic approach of Kupeli [12]. Based on the above books, many
authors picked interest in null geometry, for instance, see [1, 2, 5, 9, 10, 11, 13, 15]
and many more references cited therein.

In [17, 18], the geometry of Lorentzian concircular structure (LCS)-manifolds
is extensively studied. As these spaces are semi-Riemannian, they naturally ad-
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mit null subspaces. The aim of this paper is to introduce the geometry of null
subspaces of (LCS)-manifolds. In particular, we study the geometry of null hyper-
surfaces of these spaces. Unlike the null hypersurfaces of Sasakian manifolds, null
hypersurfaces (LCS)-manifolds are never tangent to the characteristic vector field
of (LCS)-manifolds. Moreover, an ascreen null hypersurface admits a symmetric
Ricci tensor. In case of a conformally flat (LCS)-manifolds, we prove that no totally
geodesic ascreen null hypersurfaces can be admitted. Moreover, a screen conformal
or screen totally umbilic null hypersurface is proper totally umbilic. The paper is
arranged as follows; In Section 2, we quote some basic notions on (LCS)-manifolds
and null hypersurfaces of semi-Riemannian manifolds. Section 3, we prove several
new characterization theorems on null hypersurfaces of (LCS)-manifolds.

2. Preliminaries

An (n+2)-dimensional Lorentzian manifold M is a smooth connected paracom-
pact Hausdorff manifold with a Lorentzian metric g, that is, M admits a smooth
symmetric tensor field g of type (0, 2) such that for each point p ∈ M , the tensor
g : TpM ×TpM −→ R is a non-degenerate inner product of signature (−,+, . . . ,+),
where TpM denotes the tangent vector space of M at p and R is the real number
space. A non-zero vector v ∈ TpM is said to be timelike (resp., non-spacelike, null,
spacelike) if it satisfies gp(v, v) < 0 (resp., ≤ 0,= 0, > 0) [6, 8, 16]. Furthermore,
the category to which a given vector falls is called its causal character. From now
on, we denote by Γ(E) the module of smooth sections of a vector bundle E over M .

Let (M, g) be a Lorentzian manifold. A vector field V defined by g(X,V ) =
A(X), for any X ∈ Γ(TM), is said to be a concircular [17, 18] vector field if, for
any X,Y ∈ Γ(TM), we have (∇XA)Y = α[g(X,Y ) − ω(X)A(Y )], where α is a
non-vanishing smooth function and ω is a closed 1-form. Here, ∇ denotes the Levi-
Civita connection of M with respect to g. Suppose that M admits a unit timelike
concircular vector field ζ, called the characteristic vector field of the manifold. Then,
we have

g(ζ, ζ) = −1.(2.1)

Since ζ is a unit concircular vector field, it follows that there exists a non-zero
1-form θ such that for

g(X, ζ) = θ(X), ∀X ∈ Γ(TM),(2.2)

and the following relation holds

(∇Xθ)Y = α[g(X,Y ) + θ(X)θ(Y )],(2.3)

for all X,Y ∈ Γ(TM), and α is a non-vanishing smooth function satisfying

Xα = dα(X) = ρθ(X).(2.4)
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Here, ρ is a smooth function given by ρ = −ζα.
Let us put

φX = (1/α)∇Xζ, ∀X ∈ Γ(TM).(2.5)

Then, by (2.3) and (2.5), we have

φX = X + θ(X)ζ,(2.6)

which follows that φ is a symmetric (1, 1) tensor field called the structure tensor
field of the manifold. Thus, the Lorentzian manifold M together with the unit
timelike concircular vector field ζ, its associated 1-form θ and a (1, 1) tensor field φ is
said to be a Lorentzian concircular structure manifold (briefly, an (LCS)-manifold)
[17, 18]. In particular, if α = 1, then we obtain the LP-Sasakian structure of
Matsumoto [14]. In an (LCS)-manifold, the following relations hold for all vector
fields X,Y ∈ Γ(TM):

φ
2
X = X+θ(X)ζ, φζ = 0, θ ◦ φ = 0, θ(ζ) = −1,(2.7)

g(φX, φY ) = g(X,Y ) + θ(X)θ(Y ),(2.8)

(∇Xφ)Y = α[g(X,Y )ζ + 2θ(X)θ(Y )ζ + θ(Y )X], ∇Xζ = αφX.(2.9)

Let (M, g) be a null hypersurface of M . This means that, at each x ∈ M the
restriction g = g|TxM is degenerate. That is; there exists a non-zero U ∈ TxM such
that g(U,X) = 0, for all X ∈ TxM . Therefore, in null setting, the normal bundle
TM⊥ of the null hypersurface M is a rank 1 vector subbundle of the tangent
bundle TM , contrary to the classical theory of non-degenerate hypersurfaces for
which the normal bundle has trivial intersection {0} with the tangent one and plays
an important role in the introduction of the main induced geometric objects on
M . The approach of [6, 8], which we adopt here, consist of fixing, on the null
hypersurface, a geometric data formed by a null section and a screen distribution.
By screen distribution on M , we mean a complimentary bundle of TM⊥ in TM .
It is then a rank n non-degenerate distribution over M . In fact, there are infinitely
many possibilities of choices for such a distribution provided the hypersurface M be
paracompact, but each of them is canonically isomorphic to the factor vector bundle
TM/TM⊥ [12]. We denote by S(TM) the screen distribution over M . Then we
have the decomposition

TM = S(TM) ⊥ TM⊥,(2.10)

where ⊥ denotes the orthogonal direct sum. From [6] or [8], it is known that for
a null hypersurface equipped with a screen distribution, there exists a unique rank
1 vector subbundle tr(TM) of TM over M , such that for any non-zero section ξ
of TM⊥ on a coordinate neighborhood U ⊂ M , there exists a unique section N of
tr(TM) on U satisfying

g(N, ξ) = 1, g(N,N) = g(N,W ) = 0,∀W ∈ Γ(S(TM)|U).(2.11)
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It then follows that

TM |M = S(TM) ⊥ {TM⊥ ⊕ tr(TM)} = TM ⊕ tr(TM),(2.12)

where ⊕ denote the direct (non-orthogal) sum. We call tr(TM) a (null) transversal
vector bundle along M . In fact, from (2.11) and (2.12) one shows that, conversely,
a choice of a transversal bundle tr(TM) determines uniquely the screen distribu-
tion S(TM). A vector field N as in (2.11) is called a null transversal vector field
of M . It is then noteworthy that the choice of a null transversal vector field N
along M determines both the null transversal vector bundle, the screen distribution
S(TM) and a unique radical vector field, say ξ, satisfying (2.11). The name screen
distribution is justified as follows; in the case M is a null cone of a 4-dimensional
Lorentzian manifold, the integral curves of vector fields in TM⊥ are null (lightlike)
rays and fibers of S(TM) can be visualized as screen that are transversal to these
rays.

Let ∇ and ∇∗ denote the induced connections on M and S(TM), respectively,
and P be the projection of TM onto S(TM), then the local Gauss-Weingarten
equations of M and S(TM) are the following [6]

∇XY = ∇XY +B(X,Y )N,(2.13)

∇XN = −ANX + τ(X)N,(2.14)

∇XPY = ∇∗XPY + C(X,PY )ξ,(2.15)

∇Xξ = −A∗ξX − τ(X)ξ, A∗ξξ = 0,(2.16)

for all X,Y ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)). In the above setting, B is
the local second fundamental form of M and C is the local second fundamental form
on S(TM). AN and A∗ξ are the shape operators on TM and S(TM) respectively,
while τ is a 1-form on TM . The above shape operators are related to their local
fundamental forms by

g(A∗ξX,Y ) = B(X,Y ), g(ANX,PY ) = C(X,PY ),(2.17)

for any X,Y ∈ Γ(TM). Moreover, g(A∗ξX,N) = 0, and g(ANX,N) = 0, for all
X ∈ Γ(TM). From these relations, we notice that A∗ξ and AN are both screen-
valued operators. Let ϑ = g(N, ·) be a 1-form metrically equivalent to N defined
on M . Take η = i∗ϑ to be its restriction on M , where i : M → M is the inclusion
map. Then it is easy to show that

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ),(2.18)

for all X,Y, Z ∈ Γ(TM). Consequently, ∇ is generally not a metric connection with
respect to g. However, the induced connection ∇∗ on S(TM) is a metric connection.

Denote by R the curvature tensor of the connection ∇ on M . Using the Gauss-
Weingarten formulae (2.13)–(2.16), we obtain the following curvature relations (see
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details in [6, 8]).

g(R(X,Y )Z, ξ) =(∇XB)(Y,Z)− (∇YB)(X,Z) + τ(X)B(Y,Z)

− τ(Y )B(X,Z),(2.19)

g(R(X,Y )PZ,N) =(∇XC)(Y, PZ)− (∇Y C)(X,PZ)− τ(X)C(Y, PZ)

+ τ(Y )C(X,PZ),(2.20)

for all X,Y, Z ∈ Γ(TM), ξ ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)).

3. Classification Results

Let us start off with the following important observation. Let (M, g) be a
null hypersurface of a (LCS)-manifold (M, g). As M is Lorenztian, any screen
distribution over M is Riemannian. Next, since ζ is a global vector field of M , we
decompose it as follows;

ζ = W + aξ + bN,(3.1)

where a and b are smooth functions given by

a = θ(N) and b = θ(ξ),(3.2)

and W a smooth section tangent to S(TM). Using (3.1) and (2.1), we have
g(W,W ) + 2ab = −1. Suppose that a or b vanishes, then it follows that g(W,W ) =
−1. Consequently, W is a unit timelike vector field of S(TM). This is a contradic-
tion as S(TM) is Riemannian. Thus, we have the following.

Lemma 3.1. There exist no null hypersurface of a (LCS)-manifold (M, g) such
that ζ is tangent or transversal to M .

In the theory of null hypersurfaces of Sasakian manifolds, it is possible to select
a screen distribution S(TM) containing φTM⊥ and φtr(TM) as subbundles. See
[8, 11, 10] for details. This does not hold for null hypersurfaces of a (LCS)-manifold
(M, g). More precisely, we have the following result.

Theorem 3.2. Let (M, g) be a null hypersurface of a (LCS)-manifold (M, g).
Then φTM⊥ 6⊂ S(TM) and φtr(TM) 6⊂ S(TM). Moreover, φTM⊥ ∩ TM⊥ = {0}
and φtr(TM) ∩ tr(TM) = {0}.
Proof. First, we not that φξ or φN are non-zero sections. In fact, suppose that
φξ = 0 then using (2.8) and (3.2), we have 0 = g(φξ, φξ) = b2. This, together with
(3.1), suggests that ζ is tangent to M . This is a contraction in view of Lemma 3.1.
In the same way, one can show that φN 6= 0. Next, assume that φξ belongs to
S(TM). Then, by (2.6) and (2.10), we have 0 = g(φξ, ξ) = b2, from which ζ turns
out to be tangent to M which is a contradiction by Lemma 3.1. In the same way,
if φN belongs to S(TM) we see from (2.11) and (2.6) that 0 = g(φN,N) = a2.
In this case (3.1) gives ζ = W + bN . As ζ is timelike, we obtain g(W,W ) = −1.
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This is a contradiction as S(TM) is Riemannian. Therefore, φTM⊥ 6⊂ S(TM)
and φtr(TM) 6⊂ S(TM). Next, suppose that φTM⊥ ∩ TM⊥ 6= {0}. Then there
exist a non-vanishing smooth function β such that φξ = βξ. Applying φ to this
equation and using (2.7), we get (β2 − 1)φξ = bζ. Applying φ to this last relation
and considering (2.7), one gets β(β2 − 1)ξ = 0, which implies that β = ±1 since
β 6= 0. Now let β = −1 such that φξ + ξ = 0. Taking the inner product of this
relation with ξ and using (2.6), we get b2 = 0. This is a contradiction since by
Lemma 3.1, ζ can not be tangent to M . On the other hand, if β = 1 we get
φξ = ξ. But (2.6) implies φξ = ξ + bζ. From these two relations we deduce that
bζ = 0. Since ζ is a unit timelike vector field, the last relation gives b = 0, which is
a contradiction as before. Thus, φTM⊥ ∩ TM⊥ = {0}. In the same way, one can
show that φtr(TM) ∩ tr(TM) = {0}, which completes the proof. 2

Using the language of [11], we will say that a null hypersurface (M, g) of a
(LCS)-manifold (M, g) is ascreen if the characteristic vector field ζ belongs to
S(TM)⊥[= TM⊥ ⊕ tr(TM)]. Equivalently, M is ascreen if W = 0. On an ascreen
null hypersurface, the following holds.

Theorem 3.3. Let (M, g) be a null hypersurface of a (LCS)-manifold M . Then
M is an ascreen null hypersurface of M if and only if φTM⊥ = φtr(TM).

Proof. Following the method of [11], suppose that M is ascreen null hypersurface,
then (2.1) reduces to ζ = aξ + bN , where a = θ(N) and b = θ(ξ) are non-vanishing
smooth functions. Applying φ to this relation and using the fact that φζ = 0, we
get φξ + bφN = 0. Thus, one gets φξ = ωφN , where ω = − b

a 6= 0, a non vanishing

smooth function. This implies that φTM⊥ ∩φtr(TM) 6= {0}. Since rank φTM⊥ =
rank φtr(TM) = 1, it follows that φTM⊥ = φtr(TM). Conversely, suppose that
φTM⊥ = φtr(TM). Then, there exists a non-vanishing smooth function ω such
that φξ = ωφN . Taking the inner product of this relation with respect to φξ and
φN in turn, we get b2 = ω(ab + 1) and ωa2 = ab + 1, respectively. Since ω 6= 0,
we have a 6= 0, b 6= 0 and b2 = (ωa)2. The latter gives b = ±ωa. The case b = ωa
implies that ab = ωa2 = ab + 1, which is a contradiction. Thus b = −ωa, from
which 2ab = −1. Since ω = − b

a , a 6= 0 and φξ = ωφN , it is easy to see that

aφξ + bφN = 0. Applying φ to this equation, and using b2 = ω(ab + 1) together
with 2ab = −1, we get ζ = aξ + bN . Therefore, M is ascreen null hypersurface of
M , which completes the proof. 2

Now, we will construct an example of this class of hypersurface in (LCS)-
manifold.

Example 3.4. Consider a 3-dimensional manifold M = {(x, y, z) ∈ R3}, where
(x, y, z) are the standard coordinates in R3. Let {E1, E2, E3} be linearly indepen-
dent global frame on M given by E1 = e−z(∂x+y∂y), E2 = e−z∂y and E3 = e−2z∂z.
Let g be the Lorentzian metric defined by g(E1, E2) = g(E1, E3) = g(E2, E3) = 0,
g(E1, E1) = g(E2, E2) = 1 and g(E3, E3) = −1. Let θ be the 1-form defined by
θ(X) = g(X,E3), for any X ∈ Γ(TM). Let φ be a (1,1) tensor field defined by
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φE1 = E1, φE2 = E2 and φE3 = E3. Then using the linearity of φ and g we

have θ(E3) = −1, φ
2
X = X + θ(X)E3 and g(φX, φY ) = g(X,Y ) + θ(X)θ(Y ),

for any X,Y ∈ Γ(TM). Thus, for ζ = E3, (φ, ζ, θ, g) defines a Lorentzian
paracontact structure on M , which is also a (LCS)-structure. Consequently,
(M,φ, ζ, θ, g) is a (LCS)-manifold with α = e−2z such that Xα = ρθ(X), where
ρ = 2e−4z (see [18]). Now, we define a null hypersurface M of (M,φ, ζ, θ, g)
as M = {(x, y, z) ∈ R3 : y = z}. Thus, TM is spanned by U1 = E1 and
U2 = ∂y + ∂z, in which TM⊥ is spanned by ξ = U2. The transversal bundle
tr(TM) is spanned by N , where N = (α/2)(∂y − ∂z). By using the definition of
φ, we have φN = (α/2)φξ. Hence, by Theorem 3.3 we have φTM⊥ = φtr(TM).
Next, applying φ to ζ = aξ + bN and considering the previous relations, we get
2a+ αb = 0. Since 2ab+ 1 = 0, we obtain ζ = (

√
α/2)ξ − (1/

√
α)N . Therefore, M

is an ascreen null hypersurface of M .

A null hypersurface (M, g) of a semi-Riemannian manifold (M, g) is called to-
tally umbilic [6, p. 106] if there exist a smooth function µ on a coordinate neigh-
borhood U ⊂M such that A∗EX = µPX, or equivalently,

B(X,PY ) = µg(X,Y ), ∀X,Y ∈ Γ(TM).(3.3)

In case µ = 0 on U, we say that M is totally geodesic otherwise it is proper totally
umbilic in M . Furthermore, M is screen totally umbilic [6, p. 109] if there exist a
smooth function % on a coordinate neighborhood U ⊂ M such that ANX = %PX,
or equivalently,

C(X,PY ) = %g(X,Y ), ∀X,Y ∈ Γ(TM).(3.4)

In case % = 0 on U, we say that M is screen totally geodesic otherwise it is proper
screen totally umbilic in M .

Let (M, g) be a null hypersurface. We say that M is screen conformal [8, p. 60]
if there exist a non-vanishing smooth function ψ on a coordinate neighborhood U

such that ANX = ψA∗EX, or equivalently,

C(X,PY ) = ψB(X,Y ), ∀X,Y ∈ Γ(TM).(3.5)

In case ψ is a constant function, we say that M is screen homothetic.
Suppose that M is an ascreen null hypersurface of M . In view of (3.1), we have

ζ = aξ + bN , where a and b are given by (3.2). Differentiating this relation and
using (2.14) and (2.16), we get

αφX = −aA∗ξX − bANX + [Xa− aτ(X)]ξ + [Xb+ bτ(X)]N,(3.6)

for any X ∈ Γ(TM). Taking the inner product of (3.6) with N and ξ, in turn, we
get

Xa− aτ(X) = αη(X) + αaθ(X), Xb+ bτ(X) = αbθ(X),(3.7)
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in which we have used the fact X = PX + η(X)ξ, for any X ∈ Γ(TM). Replacing
X with ξ in (3.7), gives

ξa− aτ(ξ) = (1/2)α and ξb+ bτ(ξ) = αb2.(3.8)

On the other hand, taking the inner product of (3.6) with PY , where Y ∈ Γ(TM),
we have

aB(X,PY ) + bC(X,PY ) = −αg(PX,PY ).(3.9)

Notice from (3.9) that C is symmetric on S(TM). Setting X = ξ in (3.9) and using
(2.16) together with the fact b 6= 0, we get

C(ξ, PY ) = 0, ∀Y ∈ Γ(TM).(3.10)

In view of (3.3), (3.4), (3.5), (3.7), (3.9) and (3.10), we have the following result.

Theorem 3.5. Let (M, g) be an ascreen null hypersurface of a (LCS)-manifold M .
Then the following holds;

(1) zero is an eigenvalue of AN with respect to ξ,

(2) M is a screen integrable null hypersurface and locally isometric to Cξ ×M ′,
where Cξ is a null curve tangent to TM⊥ and M ′ is a leaf of S(TM),

(3) a screen conformal or screen totally umbilic M is proper totally umbilic,

(4) a screen totally geodesic M is never totally geodesic,

(5) there exist no M with a or b constant and τ = 0.

Proof. Parts (1), (3), (4) and (5) are obvious. Part (2) follows from (3.9) and similar
arguments as in [7], and the proof is completed. 2

Remark 3.6. In [11], it was proved (see Theorem 3.4 therein) that a Sasakian
manifold does not admit any ascreen null hypersurfaces which are screen totally
umbilic or screen conformal. We remark, based on Theorem 3.5, that this is not
the case with ascreen null hypersurfaces of (LCS)-manifolds. Futhermore, it was
shown, by the same author in Theorem 3.5, that S(TM) is never parallel, and if
dimM > 3 then S(TM) is not integrable. We note once again that this is not the
same with ascreen null hypersurfaces of (LCS)-manifolds.

It is well-known that the Ricci tensor of null hypersurface (and generally of null
submanifold) is not symmetric. This is because the induced connection is not a
metric connection (see relation (2.18)). In line with the above, the authors in [6, p.
99] (also see [8]) proves the following result.

Theorem 3.7.([6]) Let (M, g) be a null hypersurface of a semi-Riemannian man-
ifold (M, g). Then the Ricci tensor of the induced connection ∇ is symmetric, if
and only if, each 1-form τ induced by S(TM) is closed, i.e., dτ = 0, on U ⊂M .
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With reference to Theorem 3.7, we have the following result.

Theorem 3.8. The Ricci tensor of an ascreen null hypersurface (M, g) of a (LCS)-
manifold (M, g) is symmetric.

Proof. By the second relation in (3.7) and the fact that b 6= 0, we have

τ(X) = αθ(X)− Xb

b
, ∀X ∈ Γ(TM).(3.11)

Differentiating (3.11) and using (2.9) and (2.13), we get

Y τ(X) = (Y α)θ(X) + αθ(∇YX) + aαB(X,Y )

+ α2g(X,φY )− Y (Xb)

b
+

(Xb)(Y b)

b2
,(3.12)

for any X,Y ∈ Γ(TM). Interchanging X and Y in (3.12) and subtracting (3.12)
from the new relation, we get

Xτ(Y )− Y τ(X) = (Xα)θ(Y )− (Y α)θ(X) + αθ([X,Y ])

+
Y (Xb)

b
− X(Y b)

b
,(3.13)

in which we have used the symmetries of B and φ. On the other hand, (3.11) gives

τ([X,Y ]) = αθ([X,Y ])− [X,Y ]b

b
.(3.14)

Then, by (3.13), (3.14) and the definition of dτ , we get

2dτ(X,Y ) = [Xτ(Y )− Y τ(X)− τ([X,Y ])]

= (Xα)θ(Y )− (Y α)θ(X),(3.15)

in which we have considered the fact Y (Xb) − X(Y b) + [X,Y ]b = 0. In view of
(2.4), we have Xα = ρθ(X), and hence (3.15) reduces to

2dτ(X,Y ) = ρ[θ(X)θ(Y )− θ(Y )θ(X)] = 0.(3.16)

Finally, considering (3.16) and Theorem 3.7, we see that the Ricci tensor of M is
symmetric. This completes the proof. 2

Remark 3.9. A similar conclusion, as in Theorem 3.8, can be arrived at if the first
relation of (3.7), i.e., τ(X) = [Xa− αη(X)− aαθ(X)]/a is used. In fact, differenti-
ating this relation with respect to Y ∈ Γ(TM) and considering (2.9), (2.13), (2.14)
and (2.17), we derive

Y τ(X) =
Y (Xa)

a
− (Xa)(Y a)

a2
− η(X)Y

(α
a

)
− α

a
η(∇YX)

− α

a
τ(Y )η(X) +

α

a
C(Y, PX)− aαB(X,Y )− αθ(∇YX)

− α2g(X,φY )− (Y α)θ(X).(3.17)
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Interchanging X and Y in (3.17) and subtracting, while considering the facts B, φ
are symmetric and Xα = ρθ(X) (see (2.4)), we get

Xτ(Y )− Y τ(X) =
X(Y a)

a
− Y (Xa)

a
+ Y

(α
a

)
η(X)−X

(α
a

)
η(Y )

− α

a
η([X,Y ]) +

α

a
τ(X)η(Y )− α

a
τ(Y )η(X)

+
α

a
C(X,PY )− α

a
C(Y, PX)− αθ([X,Y ]).(3.18)

On the other hand, using the expression for Xa in (3.7), we derive

Y
(α
a

)
η(X)−X

(α
a

)
η(Y ) =

[
Y α

a
− α2

a
θ(Y )

]
η(X)

−
[
Xα

a
− α2

a
θ(X)

]
η(Y ) +

α

a
τ(X)η(Y )− α

a
τ(Y )η(X).(3.19)

Also, by (3.9), we have

τ([X,Y ]) =
[X,Y ]a

a
− α

a
η([X,Y ])− αθ([X,Y ])(3.20)

Thus, putting (3.18), (3.19), (3.20) and (2.4) together, we derive

2dτ(X,Y ) =

[
Y α

a
− α2

a
θ(Y )

]
η(X)−

[
Xα

a
− α2

a
θ(X)

]
η(Y )

+
α

a
[C(X,PY )− C(Y, PX)].

=
α2 − ρ
a

[θ(X)η(Y )− θ(Y )η(X)] +
α

a
[C(X,PY )− C(Y, PX)].(3.21)

Observe that the right hand side of (3.21) vanishes on M since S(TM) is integrable
(see Theorem 3.5) and that C(ξ, PX) = 0, for all X ∈ Γ(TM), by (3.10). That is
dτ = 0 and thus, by Theorem 3.8, M admits a symmetric Ricci tensor.

Let ξ̃ = λξ, then it follows that Ñ = (1/λ)N . Moreover, B̃ = B and

τ(X) = τ̃(X) +X ln(λ), ∀X ∈ Γ(TM|U).(3.22)

This shows that B and τ depend on the section ξ on U. By Theorem 3.8 and
Poincaré’s lemma we obtain τ(X) = Xf , where f is a smooth function on U. Let
λ = exp(f) in (3.22), then, τ̃ = 0 on U. Thus, we have

Corollary 3.10. Let (M, g) be an ascreen null hypersurface of a (LCS)-manifold
(M, g). There exist a pair {ξ,N} on U such that the corresponding 1-form τ from
the Weingarten equation vanishes.
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A semi-Riemannian manifold (M, g) of constant sectional curvature c is called a
semi-Riemannian space form (see [16, p. 80]) and denoted by M(c). The curvature
tensor field R of M(c) is given by

(3.23) R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y }, ∀X,Y, Z ∈ Γ(TM).

Let M(c) be a (LCS)-manifold of constant curvature c. Then by Proposition 3.1 of
[18, p. 451], c satisfies c = (α2 − ρ). Using this fact together with (3.9) and (3.23),
we get the following result.

Theorem 3.11. Let (M, g) be a screen totally geodesic ascreen null hypersurface
of a (LCS)-space form M(α2 − ρ) then α2 = ρ. Moreover, M is a proper totally
umbilic null hypersurface whose immersion into M is affinely equivalent to the graph
immersion of a certain function F : M −→ R.

Proof. A proof follows easily as in [6]. 2

The notion of quasi-constant curvature was introduced by Chen and Yano [4].
Moreover, it was shown in [18] that a conformally flat (LCS)-manifold (M, g) is of
quasi-constant curvature and its curvature tensor R satisfies

R(X,Y, Z,W ) = c1[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]

+c2[g(X,W )θ(Y )θ(Z)− g(Y,W )θ(X)θ(Z) + g(Y, Z)θ(X)θ(W )

− g(X,Z)θ(Y )θ(W )], ∀X,Y, Z,W ∈ Γ(TM),(3.24)

where c1 and c2(6= 0) are smooth functions. We denote such a manifold byM(c1, c2).
The following result holds.

Theorem 3.12. Let (M, g) be an ascreen null hypersurface of a conformally flat
(LCS)-manifold M(c1, c2) of dimension > 3. Then, M is totally umbilic if and only
if the umbiliciy factor µ in (3.3) is a solution of the following differential equations

ξµ+ µτ(ξ)− µ2 − c2b2 = 0 and PXµ+ µτ(PX) = 0, ∀X ∈ Γ(TM).

Moreover, if M is totally umbilic then it is a screen totally umbilic null hypersurface
with screen umbilicity factor % := −(α+ aµ)/b in (3.4) satisfying the following pair
of differential equations

ξ%− %τ(ξ)− µ%− c1 +
c2
2

= 0 and PX%− %τ(PX) = 0, ∀X ∈ Γ(TM).

Proof. Replacing W,Z by ξ, PZ, respectively, in (3.24) and using the fact b = θ(ξ),
we get

R(X,Y, PZ, ξ) = c2bθ(X)g(Y, PZ)− c2bθ(Y )g(X,PZ),(3.25)
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for all X,Y, Z ∈ Γ(TM). On the other hand, using (2.19), (2.15), (2.16), (2.18) and
(3.3), we get

R(X,Y, PZ, ξ) = [Xµ+ µτ(X)− µ2η(X)]g(Y, PZ)

− [Y µ+ µτ(Y )− µ2η(Y )]g(X,PZ).(3.26)

In view of (3.25) and (3.26), we have

[Xµ+ µτ(X)− µ2η(X)− c2bθ(X)]g(Y, PZ)

= [Y µ+ µτ(Y )− µ2η(Y )− c2bθ(Y )]g(X,PZ),(3.27)

for anyX,Y, Z ∈ Γ(TM). ReplacingX (or Y ) by ξ, we get ξµ+µτ(ξ)−µ2−c2b2 = 0.
Again replacing X,Y by PX,PY , respectively, in (3.27) and using the fact that
S(TM) is non-degenerate, we have

[PXµ+ µτ(PX)]PY = [PY µ+ µτ(PY )]PX.(3.28)

Next, suppose that there exist X ′ ∈ Γ(TM|U) such that PX ′µ + µτ(PX ′) 6= 0 at
x ∈ M . It then follows from (3.28) that all vectors from the fiber S(TM)x are
collinear with (PX ′)x. This is a contradiction as dim(S(TM))x > 1, which proves
the first part of the theorem.

Observe, from (3.9), that M is also screen totally umbilic with % := −(α+aµ)/b.
Following the same steps as above, this time with (2.20), (2.15), (2.18), (3.4), (3.10)
and (3.24), we get

[X%− %τ(X)− %µη(X)− c1η(X)− c2aθ(X)]g(Y, PZ)

= [Y %− %τ(Y )− %µη(Y )− c1η(Y )− c2aθ(Y )]g(X,PZ),(3.29)

for all X,Y, Z ∈ Γ(TM). Replacing X (or Y ) by ξ in (3.29) and using the fact
b = θ(ξ), we get ξ% − %τ(ξ) − %µ − c1 − c2ab = 0. As M is ascreen, we have
2ab+ 1 = 0. Considering these two relations, we have ξ%−%τ(ξ)−µ%− c1 + c2

2 = 0.
The last differential equation follows as in (3.28) and the following arguments. This
completes the proof. 2

It then follows from Theorem 3.12 that the following result holds.

Corollary 3.13.

(1) There exist no totally geodesic ascreen null hypersurfaces of a conformally
flat (LCS)-manifold M(c1, c2).

(2) There exist no screen totally geodesic ascreen null hypersurfaces of a confor-
mally flat (LCS)-manifold M(c1, c2) with c1 = 0.
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