• 제목/요약/키워드: Ricci curvature

검색결과 198건 처리시간 0.027초

ON ALMOST QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.603-611
    • /
    • 2020
  • The purpose of this note is to introduce a type of Riemannian manifold called an almost quasi Ricci symmetric manifold and investigate the several properties of such a manifold on which some geometric conditions are imposed. And the existence of such a manifold is ensured by a proper example.

ON TRANSVERSALLY HARMONIC MAPS OF FOLIATED RIEMANNIAN MANIFOLDS

  • Jung, Min-Joo;Jung, Seoung-Dal
    • 대한수학회지
    • /
    • 제49권5호
    • /
    • pp.977-991
    • /
    • 2012
  • Let (M,F) and (M',F') be two foliated Riemannian manifolds with M compact. If the transversal Ricci curvature of F is nonnegative and the transversal sectional curvature of F' is nonpositive, then any transversally harmonic map ${\phi}:(M,F){\rightarrow}(M^{\prime},F^{\prime})$ is transversally totally geodesic. In addition, if the transversal Ricci curvature is positive at some point, then ${\phi}$ is transversally constant.

A NOTE ON (𝑘, 𝜇)'-ALMOST KENMOTSU MANIFOLDS

  • Yadav, Sunil Kumar;Mandal, Yadab Chandra;Hui, Shyamal Kumar
    • 호남수학학술지
    • /
    • 제43권4호
    • /
    • pp.571-586
    • /
    • 2021
  • The present paper deals with the study of generalized quasi-conformal curvature tensor inside the setting of (𝑘, 𝜇)'-almost Kenmotsu manifold with respect to 𝜂-Ricci soliton. Certain consequences of these curvature tensor on such manifold are likewise displayed. Finally, we illustrate some examples based on this study.

COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC CONNECTION FROM A RIEMANNIAN MANIFOLD TO ITS TANGENT BUNDLES

  • Uday Chand De ;Mohammad Nazrul Islam Khan
    • 대한수학회논문집
    • /
    • 제38권4호
    • /
    • pp.1233-1247
    • /
    • 2023
  • The aim of the present paper is to study complete lifts of a semi-symmetric non-metric connection from a Riemannian manifold to its tangent bundles. Some curvature properties of a Riemannian manifold to its tangent bundles with respect to such a connection have been investigated.

Some Triviality Characterizations on Gradient Almost Yamabe Solitons

  • Uday Chand De;Puja Sarkar;Mampi Howlader
    • Kyungpook Mathematical Journal
    • /
    • 제63권4호
    • /
    • pp.639-645
    • /
    • 2023
  • An almost Yamabe soliton is a generalization of the Yamabe soliton. In this article, we deduce some results regarding almost gradient Yamabe solitons. More specifically, we show that a compact almost gradient Yamabe soliton having non-negative Ricci curvature is trivial. Again, we prove that an almost gradient Yamabe soliton with a non-negative potential function and scalar curvature bound admitting an integral condition is trivial. Moreover, we give a characterization of a compact almost gradient Yamabe solitons.

GENERALIZED SASAKIAN SPACE FORMS ON W0-CURVATURE TENSOR

  • Tugba Mert ;Mehmet Atceken
    • 호남수학학술지
    • /
    • 제45권2호
    • /
    • pp.215-230
    • /
    • 2023
  • In this article, generalized Sasakian space forms are investigated on W0 -curvature tensor. Characterizations of generalized Sasakian space forms are obtained on W0-curvature tensor. Special curvature conditions established with the help of Riemann, Ricci, concircular, projective curvature tensors are discussed on W0-curvature tensor. With the help of these curvature conditions, important characterizations of generalized Sasakian space forms are obtained. In addition, the concepts of W0-pseudosymmetry and W0 -Ricci pseudosymmetry are defined and the behavior according to these concepts for the generalized Sasakian space form is examined.

ON GRADIENT RICCI SOLITONS AND YAMABE SOLITONS

  • Choi, Jin Hyuk;Kim, Byung Hak;Lee, Sang Deok
    • 충청수학회지
    • /
    • 제33권2호
    • /
    • pp.219-226
    • /
    • 2020
  • In this paper, we consider gradient Ricci solitons and gradient Yamabe solitons in the warped product spaces. Also we study warped product space with harmonic curvature related to gradient Ricci solitons and gradient Yamabe solitons. Consequently some theorems are generalized and we derive differential equations for a warped product space to be a gradient Ricci soliton.

SASAKIAN 3-MANIFOLDS ADMITTING A GRADIENT RICCI-YAMABE SOLITON

  • Dey, Dibakar
    • Korean Journal of Mathematics
    • /
    • 제29권3호
    • /
    • pp.547-554
    • /
    • 2021
  • The object of the present paper is to characterize Sasakian 3-manifolds admitting a gradient Ricci-Yamabe soliton. It is shown that a Sasakian 3-manifold M with constant scalar curvature admitting a proper gradient Ricci-Yamabe soliton is Einstein and locally isometric to a unit sphere. Also, the potential vector field is an infinitesimal automorphism of the contact metric structure. In addition, if M is complete, then it is compact.

*-Ricci Soliton on (κ < 0, µ)-almost Cosymplectic Manifolds

  • Rani, Savita;Gupta, Ram Shankar
    • Kyungpook Mathematical Journal
    • /
    • 제62권2호
    • /
    • pp.333-345
    • /
    • 2022
  • We study *-Ricci solitons on non-cosymplectic (κ, µ)-acs (almost cosymplectic) manifolds M. We find *-solitons that are steady, and such that both the scalar curvature and the divergence of the potential field is negative. Further, we study concurrent, concircular, torse forming and torqued vector fields on M admitting Ricci and *-Ricci solitons. Also, we provide some examples.