1 |
B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469.
DOI
|
2 |
H. K. Pak and J. H. Park, Transversal harmonic transformations for Riemannian foliations, Ann. Global Anal. Geom. 30 (2006), no. 1, 97-105.
DOI
|
3 |
E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996), no. 6, 1249-1275.
DOI
|
4 |
H. C. J. Sealey, Harmonic maps of small energy, Bull. London Math. Soc. 13 (1981), no. 5, 405-408.
DOI
|
5 |
Ph. Tondeur, Foliations on Riemannian Manifolds, New-York, Springer-Verlag, 1988.
|
6 |
Ph. Tondeur, Geometry of Foliations, Basel: Birkhauser Verlag, 1997.
|
7 |
Y. L. Xin, Geometry of Harmonic Maps, Birkhauser, Boston, 1996.
|
8 |
S. Yorozu and T. Tanemura, Green's theorem on a foliated Riemannian manifold and its applications, Acta Math. Hungar. 56 (1990), no. 3-4, 239-245.
DOI
|
9 |
J. A. Alvarez Lopez, The basic component of the mean curvature of Riemannian foliations, Ann. Global Anal. Geom. 10 (1992), no. 2, 179-194.
DOI
|
10 |
J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 106-160.
|
11 |
S. D. Jung, The first eigenvalue of the transversal Dirac operator, J. Geom. Phys. 39 (2001), no. 3, 253-264.
DOI
ScienceOn
|
12 |
S. D. Jung, K. R. Lee, and K. Richardson, Generalized Obata theorem and its applications on foliations, J. Math. Anal. Appl. 376 (2011), no. 1, 129-135.
DOI
ScienceOn
|
13 |
F. W. Kamber and Ph. Tondeur, Infinitesimal automorphisms and second variation of the energy for harmonic foliations, Tohoku Math. J. (2) 34 (1982), no. 4 525-538.
DOI
|
14 |
P. Molino, Riemannian Foliations, translated from the French by Grant Cairns, Boston: Birkhaser, 1988.
|
15 |
J. Konderak and R. Wolak, Transversally harmonic maps between manifolds with Riemannian foliations, Q. J. Math. 54 (2003), no. 3, 335-354.
DOI
|
16 |
J. Konderak and R. Wolak, Some remarks on transversally harmonic maps, Glasg. Math. J. 50 (2008), no. 1, 1-16.
|