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ON TRANSVERSALLY HARMONIC MAPS OF
FOLIATED RIEMANNIAN MANIFOLDS

MIN JOoO JUNG AND SEOUNG DAL JUNG

ABSTRACT. Let (M, F) and (M’,F’) be two foliated Riemannian mani-
folds with M compact. If the transversal Ricci curvature of F is nonneg-
ative and the transversal sectional curvature of F’ is nonpositive, then
any transversally harmonic map ¢ : (M, F) — (M’,F’) is transversally
totally geodesic. In addition, if the transversal Ricci curvature is positive
at some point, then ¢ is transversally constant.

1. Introduction

Transversally harmonic maps of foliated Riemannian manifolds were intro-
duced by Konderak and Wolak [6] in 2003. Let (M,F) and (M', F') be two
foliated Riemannian manifolds and let ¢ : M — M’ be a smooth foliated map,
i.e., ¢ is a smooth leaf-preserving map. Then ¢ is said to be transversally
harmonic if the transversal tension field 7,(¢) vanishes. See Section 3 and [6]
for details. Equivalently, it is a critical point of the transversal energy func-
tional on any compact domain of M, which is defined in Section 4 (cf. [7]).
Also, transversally harmonic maps are considered as harmonic maps between
the leaf spaces [6, 7]. So, for the point foliation, transversally harmonic maps
are harmonic maps. Therefore transversally harmonic maps are considered as
generalizations of harmonic maps. In this paper, we study transversally har-
monic maps and give some interesting facts relating to them. The paper is
organized as follows. In Section 2, we review the well-known facts on a foliated
Riemannian manifold. In Section 3, we review the properties of the transver-
sally harmonic map, which were studied in [7] and give some results. In Section
4, we give a new proof of the first normal variational formula for the transver-
sal energy Ep(¢) (Theorem 4.1). In the last section, we study the generalized
Weitzenbock formula and give some applications (Theorem 5.3 and Theorem
5.4).
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2. Preliminaries

Let (M, g, F) be a (p + ¢)-dimensional foliated Riemannian manifold with
a foliation F of codimension g and a bundle-like metric g with respect to F
[8, 13]. A foliated Riemannian manifold means a Riemannian manifold with
a Riemannian foliation. Let T'M be the tangent bundle of M, L the tangent
bundle of F, and Q@ = TM/L the corresponding normal bundle of . Then we
have an exact sequence of vector bundles

(2.1) 0— L —TM_"Q —0,

where 7 : TM — @ is a projection and o : Q — L' is a bundle map satisfying
moo = id. Let gg be the holonomy invariant metric on ) induced by g =
gr, + gr1; that is,

(2.2) ga(s,t) =g(o(s),o(t)) Vs, telqQ.

This means that (X)gg = 0 for X € 'L, where 6(X) is the transverse Lie
derivative. So we have an identification L+ with @ via an isometric splitting
(Q,90) = (L*,g7,1). We denote by V? the transverse Levi-Civita connection
on the normal bundle @ [13, 14]. The transversal curvature tensor R? of
V@ =V is defined by R?(X,Y) = [Vx,Vy]—V[x,y for any X,Y € TTM. It
is trivial that i(X)R% = 0 for any X € T'L, where i(X) is the interior product.
Let K€, Ric? and 0@ be the transversal sectional curvature, transversal Ricci
operator and transversal scalar curvature with respect to V, respectively. The
foliation F is said to be minimal if kK = 0, where « is the mean curvature form of
F [13]. Let Q% (F) be the space of all basic r-forms, i.e., ¢ € Q5 (F) if and only
ifi(X)¢ =0and §(X)¢p = 0 for any X € I'L. Then Q*(M) = Q5(F)oQ5(F)*
[1]. Let kg be the basic part of k. Then kg is closed, i.e., dkg = 0 [1]. Now,
we define the basic Laplacian Ap acting on Q5 (F) by

(2.3) Ap =dpgdp + dpdp,

where ¢p is the formal adjoint of dg = d Q3 (F) [11]. Let {E,}q=1,... 4 be alocal
orthonormal basic frame on Q. We define V;,V, : Q5 (F) — QF(F) by

(2.4) ViVe=-> Vi g +V ‘S

where V%{,Y = VxVy — vagy for any X,Y € I'TM and VM denotes the
Levi-Civita connection of M. Then the operator Vi Vy, is positive definite
and formally self adjoint on the space of basic forms [3]. Let V(F) be the
space of all transversal infinitesimal automorphisms Y of F, ie., [Y,Z] € 'L
for all Z € 'L [5]. Let

(2.5) V(F)={V ==(Y) | Y € V(F)}.

Note that V(F) = QL(F) [10]. For later use, we recall the transversal diver-
gence theorem [16] on a foliated Riemannian manifold.
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Theorem 2.1 (Transversal divergence theorem). Let (M, gar, F) be a closed,
oriented Riemannian manifold with a transversally oriented foliation F and a
bundle-like metric gy with respect to F. Then

(2.6) / divg X = [ go(X,5%)
M M
for all X € V(F), where divy X denotes the transversal divergence of X with

respect to the connection V.

Now we define the bundle map Ay : A"Q* — A"Q* for any Y € V(F) [5]
by

(2.7) Aydp =0(Y)p — Vyo.
It is well-known [5] that for any s € I'Q
(28) Ays = 7VYSY,

where Yy is the vector field such that m(Ys) = s. So Ay depends only on
Y =n(Y). Since 6(X)¢p = Vx¢ for any X € 'L, Ay preserves the basic forms
and depends only on Y. Now, we recall the generalized Weitzenbock formula
on Q% (F).

Theorem 2.2 ([3]). On a foliated Riemannian manifold (M, F), we have
(29) Dpo = ViV + F(0) + Ay 6. 6 € Qp(F),

where F(¢) =3, , 0°Ni(Ey)RY (Ey, E,)¢. If ¢ is a basic 1-form, then F($)* =
Ric?(¢f).

Now we recall a very important lemma for later use. From Proposition 4.1
in [11], it is well-known that Ap — ,‘iuB on all basic functions is the restriction
of A — kf on all functions. Hence, by maximum and minimum principles, we
have the following lemma.

Lemma 2.3 ([4]). Let (M,g,F) be a compact Riemannian manifold with a
foliation F and a bundle-like metric g. If (Ap — IﬁuB)f >0 (or <0) for any
basic function f, then f is constant.

3. Transversally harmonic maps

Let (M,g,F) and (M’,g',F') be two foliated Riemannian manifolds. Let
VM and VM’ be the Levi-Civita connections of M and M’ , respectively. Let
V and V’ be the transverse Levi-Civita connections on @ and @', respectively.
Let ¢ : (M,g,F) — (M',¢',F') be a smooth foliated map, i.e., dp(L) C L.
Then we define dr¢ : Q — Q' by

(3.1) dr¢ =7 odpoo.

Then dr¢ is a section in Q*®¢~1Q’, where ¢~ 1Q’ is the pull-back bundle on M.
Let V¥ and V be the connections on ¢~ 'Q’ and Q*®¢~'Q’, respectively. Then
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a foliated map ¢ : (M, F) — (M',F') is called transversally totally geodesic if
it satisfies

(32) 6trdTQS =0,

where (Vi:dro)(X,Y) = (Vxdro)(Y) for any X,Y € I'Q. Note that if ¢ :
M — M’ is transversally totally geodesic with d¢(Q) C @', then, for any
transversal geodesic v in M, ¢ o~ is also transversal geodesic. The transversal
tension field of ¢ is defined by

(3.3) n(¢) = troVdrd = Y (Vg,dre)(Ea),

a=1

where {E,} is a local orthonormal basic frame of (). Trivially, the transversal
tension field 7,(¢) is a section of ¢~1Q’.

Definition 3.1. Let ¢ : (M,g,F) — (M’,¢',F’) be a smooth foliated map.
Then ¢ is said to be transversally harmonic if the transversal tension field of ¢
vanishes, i.e., 7,(¢) = 0.

Now we recall the O’Neill tensors A and 7 [9] on a foliated manifold (M, F),
which are defined by

(3.4) AxY =7 (Vix)m(Y)) + (Vi 7 (Y)),

(35) Tx¥ = 5V 7(V) + 7V (1))

for any X,Y € I'TM, where 7t : TM — L. Tt is well-known [9] that
(3.6) Arxym(Y) = Tt [7(X), m(Y)]

for any vector fields X,Y on M. Then 7 = 0 is equivalent to the property
that all leaves of F are totally geodesic submanifolds of (M, g) and A = 0 is
equivalent to the integrability of Q.

Let {E;}i=1....p be alocal orthonormal basis of L and {E, }4=1,... 4 be a local
orthonormal basic frame on ). Then we have the following.

Theorem 3.2. Let ¢ : (M,g,F) — (M',¢', F') be a smooth foliated map.
Then

7(8)=T(0]5) + () — drd(k*) + tr,¢* T' + trge* A’
+ > Amt VMo TS (Ea) + 7V mhdg(Ea) —mtd$(V e, Ea)}

+ 3 7V sop,Tdd(Ea),

where (@) is the tension field of ¢ and
(3.7) T(¢lr) =Y (VEde)(E).

(2
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Proof. Let {E;, Ey}i=1,... pia=1,...,q be a local orthonormal frame of TM such
that E; e 'L, E, € I'Q. By the definition of the tension field, we have

P

(3.8) 7(¢) =Y (VE,do)(E:) + Y (VE,de)(E.).

i=1 a=1

Since ¢ is a foliated map, 7dp(E;) = 0 and 71d¢(E;) = dé(E;). Therefore, we
have
P

>_(Vedg)(E:) = 7(815) + Y _{mV il () — do(VE B}

i=1
and

> (Vi,do)(E,)

a=1

= Tp ¢) + Z{ﬂ'lv%,(b(Ea)ﬂ'dd)(Ea) + V;V[d:b(Ea)Wldgb(Ea)}
+ > AV ypTdO(Ea) + VI o mhdd(Ea) — nhdg (Vi Ea)}.

From (3.6), we have FLV%;(EQ)F(Z¢(EG) =1tV E, = 0. Hence, from (3.4)
and (3.5), we have

7(9) = 7(817) + 70(9) = 76 (Y m(VEE)) + 3 T ag(mdo(Br)

3

+ D AT 4650 A0(Ba) + Aag(,)d9(Ba) + 7V 44,y mdd(Ea) }
+ 3wV T dO(Ea) + VA 5 7 dd(Ea) — dg(nV i Ea)}.

Since ), W(VJI\E{ E;) = k¥, the proof is completed. O

Corollary 3.3 ([15]). Let ¢ : (M,g,F) — (M’',¢', F') be a smooth foliated
map and dp(Q) C Q'. Then

7(¢) = 7(0l7) + 1(¢) — do(k*) + trLd" T,
where trp¢*T' =30 T ap(g,)dd(Es).
Proof. Since d¢(Q) C Q', mtdp(E,) = 0 for all a. Moreover, from (3.5) and

(3.6), A/ xX =0and T'xY =0 for any X,Y € I'Q’. From Theorem 3.2, the
desired result follows. O

Corollary 3.4 ([7]). Let ¢ : (M, g, F) — (M',g', F') be a smooth foliated map
and dp(Q) C Q'. Assume that F is minimal and F' is totally geodesic. Then ¢
18 harmonic if and only if ¢ is transversally harmonic and leaf-wise harmonic,

i.e., T(¢|]:) =0.
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Proof. Since F is minimal and F’ is totally geodesic, i.e, k = 0 and 7’ = 0, by
Corollary 3.3, we have

7(¢) = 7(¢lF) + 1(9),
which yields the results. ([l

Corollary 3.5. Let ¢: (M,g,F) — (M',g', F') be a smooth foliated map and
dp(Q) C Q. Then ¢ is a transversally harmonic map if and only if

m(7(9)) = trp ™ T’ — do(r*).

Now, let F be a Riemannian flow defined by a unit vector field V on a
Riemannian manifold (M"™*! g). Then

(3.9) & =n(VYV) = VMV

In fact, V{‘,/[ V is already orthogonal to the leaves since g(V@I V,V) = 0. More-
over, it is trivial that F is totally geodesic if and only if F is minimal, i.e.,
T = 0 if and only if x* = 0. Let F and F’ be two Riemannian flows defined
by unit vector fields V' and V' on Riemannian manifolds (M, g) and (M’,¢’),
respectively. Let ¢ : (M, F) — (M', F') be a smooth foliated map. Then

(3.10) T(8lF) = VIOV = atde(s?), A= (¢"w)(V),

where w’ is a dual 1-form of V’'. Hence if d¢(Q) C Q’, then ¢ is leaf-wise
harmonic if and only if X is basic, i.e., V(A) = 0. Hence we have the following
corollary.

Corollary 3.6. Let F and F' be two Riemannian flows defined by a unit
vector fields V and V' on a Riemannian manifolds M and M’, respectively.
Assume that F and F' are minimal. Let ¢ : (M,g,F) — (M',q', F') be a
smooth foliated map and dp(Q) C Q'. Then ¢ is harmonic if and only if ¢ is
transversally harmonic and ¢*(w')(V) is basic.

Proof. Since F is minimal, from (3.10)
T(@lF) =V, A= (¢") (V).

Hence the proof follows from Corollary 3.4. (]

Let ¢: (M, F) —» (M',F')and ¢ : (M', F') — (M",F") be smooth foliated
maps. Then the composition ¢ o ¢ : (M, F) — (M", F") is a smooth foliated
map. Moreover, we have
(311) dT(’(/} o ¢) = dTTJ) o dT(b
Hence we have the following proposition.

Proposition 3.7. Let ¢ : (M,F) = (M",F') and ¢ : (M', F') = (M",F")
be smooth foliated maps. Then

(3.12) Vidr (o ¢) = drp(Viedrd) + ¢*Vidry),
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where } .
(@"Vurdr)(X,Y) = (Vargx)dr) (dr(Y))
for any X,Y € I'Q.

Proof. From (3.11), we have that, for any X, Y € T'Q,
(Vudr(v 0 6))(X,Y) = Vidr (b0 ¢)(Y) = dr (1 0 ) (VxY)

= (Vagox)dr) (drd(Y)) + drio((Vxdre) (V)

= (¢*Vurdrt) (X, Y) + drto(Verdr o) (X, Y),
which proves (3.12). O
Corollary 3.8. Let ¢ : (M, F) — (M',F') and ¢ : (M',F") — (M",F") be
smooth foliated maps. Then the transversal tension field of the composition is
given by
(3.13) (1 0 ¢) = drip(y(0)) + trod* Viedrip,
where

q
10" Vardrt) = Y (Vapg(e,)drd) (dré(El)).
a=1

Corollary 3.9. Let ¢ : (M, F) — (M',F’') be a transversally harmonic map
and let o : (M', F') — (M",F") be a transversally totally geodesic map. Then
Yoo (M,F)— (M",F") is a transversally harmonic map.

4. The first normal variational formula

Let ¢ : (M,g,F) — (M',¢g',F') be a smooth foliated map. Let 2 be a
compact domain of M. Then the transversal energy of ¢ on Q C M is defined
by

(1.1) Bo(:9) = 5 [ larof .

where |dr¢|? = Y, 9o/ (drd(Eq), dr¢(E,)) and pas is the volume element of
M.

Let V € ¢~'Q’. Obviously, V may be considered as a vector field on @’
along ¢. Then there is a 1-parameter family of foliated maps ¢; with ¢g = ¢
and %h:o = V. The family {¢:} is said to be a foliated variation of ¢ with
the normal variation vector field V. Then we have the first normal variational
formula(cf. [7]).

Theorem 4.1. (The first normal variational formula) Let ¢ : (M,F) —
(M',F') be a smooth foliated map. Let {¢:} be a smooth foliated variation
of ¢ supported in a compact domain Q2. Then

(42) BB (G0 Dleo = = [ (Ver(0) = droef
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where V = %H:O is the normal variation vector field of {¢+} and (-,-) is the
pull-back metric on ¢~ 1Q’.

Proof. Let Q be a compact domain of M and let {¢:} be a foliated variation
of ¢ supported in € with the normal variation vector field V € ¢~1Q’. Choose
a local orthonormal basic frame {E,} on @ such that (VE,)(xz) = 0. Define
O : M x (—e,e) = M by ®&(z,t) = ¢¢(v) and set £ = & 1Q'. Let V?
denote the pull-back connection on E. Obviously, dr®(E, ) = dr¢+(E,) and
d@(%) = %. Moreover, we have V% o m = V‘I’ E, = VE 5 = 0. Hence we

have

4 Bo(o,0 /Zv dr®(E,), dr®(E,) s

/Z (Ve d<I> ), dr®(Ey)) s

- /QZ{E (0 drou(B) — (28 % drou(B)) i

= [ S m G e~ [ G @

Now we define a normal vector field W; by

Wt—Z<djf dry(Ea)) Ea

Then we have
. d
v = 3R O drou(BL).
By the transversal divergence theorem (Theorem 2.1), we have
d . doy
‘g d _ [ &2
T EB(on Q) = /Q ivo Wi /Q< g (@)
d
= [ Wb~ [ (ot (o
Q Q
d
== [ (o) = dnot

which proves (4.2). O

Corollary 4.2. Let ¢ : (M, F) — (M', F') be a smooth foliated map. Assume
that F is minimal. Then ¢ is transversally harmonic if and only if ¢ is a
critical point of the trasnversal energy of ¢ supported in a compact domain.
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5. A generalized Weitzenbo6ck type formula and its applications

Let (M, g, F) and (M', ¢', F') be two foliated Riemannian manifolds and let
¢: (M, F)— (M',F') be a smooth foliated map. Note that |dr¢|> € Q% (F)
[6]. Let QL (E) = QF(F) ® E be the space of E-valued basic r-forms, where
E = ¢71Q'". We define dy : Q(E) — Q5 (E) by
(5.1) dy(w®s) = (-1)"wAV?s +dpw @ s

for any s € T'E and w € QF(F). Let dv be a formal adjoint of dy. Then we
have the following.

(5.2) dy =Y 0°AVg,, ov=-Y i(E)Vg, +i(xy),

a

where i(X)(w® s) = i{(X)w ® s for any X € I'TM. Then the Laplacian A on
Q5 (F) is defined by

(5.3) A = dyiy + dvdy.

Moreover, the operators Ax and 0(X) are extended to Q7 (E) as follows:
(5.4) Ax(w®s) = Axw ® s,

(5.5) X)) w®s)=0X)w®s+wVis

for any w® s € QR (F) and X € I'TM. Then 6(X) = dvi(X) + ¢(X)dy for
any X € I'TM. Hence ® € Q% (F) if and only if i(X)® = 0 and 6(X)® = 0 for
all X € T'L. Then the generalized Weitzenbock type formula (2.9) is extended
to Q5 (E) as follows:

(5.6) AP =V Vi, + F(D) + Ays @, YO € Qp(E),

where F(®) = 3%, 0% Ni(Ey)R(Ey, Eq)®. Note that dr¢ € Qi (E). Then
we have the following.

Theorem 5.1. Let ¢ : (M,g,F) — (M',¢',F') be a smooth foliated map.
Then the generalized Weitzenbock type formula is given by

SABldrof = (Adro, dr6) - [Vudrol> = (A,; dré,drd) — (F(drd), drd),
where

(5.7) (F(dr¢),drd)
= g/ (dr¢(Ric?(E,)), dré(Eq))

" 90/ (R (drd(By), drd(Ea))drd(Ea), dré(Ey)).

a,b
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Proof. Let {E,}(a =1,...,q) be alocal orthonormal basic frame such that at
x € M, (VE,), =0. Then, at =, we have from (2.4)

(5.8) %AB\de = (Vi Vudrd, dre) — [Viudrd|*.
From (5.6) and (5.8), we have
%ABWT@Q = (Adr¢, dro) — |Vudré|* — (At drd, dr¢) — (F(dr), dr o).

Now, we compute (F(dr¢),dro). Let {Vo}(a=1,...,¢’) be a local orthonor-
mal basic frame of ' and w® be its dual coframe field. Let f* = ¢*w®. Then
dr¢ is expressed by

(5.9) dré =Y [*@Va,
a=1

where V,, () = V,,(é(x)). By a direct calculation, we have
(5.10) R(Ea,BEy)dr¢ =Y RO(Eq, E)f* @ Va+ Y _ f* @ R (Eq, Ey)Va,

where R (Eq, Ey)Vy = R9 (dr¢(Ey), dr¢(Ey)) V. From (5.10), we have
(F(dre),drd) = (Y 0" Ni(Ey)R(Ey, Ea)drd, dro)
a,b

D (0% Ni(Ey) RO (Ey, Ba) f* ® Va, [P @ V)

a,b,a,
+ Y 900" Ni(E) f*, )90 (RE (Eas By)Va, Va).
a,b,a,
Note that dro(E,) =Y, f*(Fa)Va. Then we have
(5.11) > 90(0° Ni(By)RO(Ey, Ea) [, %)
a,b,«x

= 9o (dr(Ric?(E,)), dro(E,)).

From (5.11), we have
(F(dro),dro) = Y 9o (drd(Ric?(Ey)), drd(E,))

" 90/ (R (dr¢(Eo), drd(Ey))dré(Ey), drd(E,)),

a,b

which completes the proof. (I
Remark. (1) Let ¢ : (M, F) — (M', F') be a smooth foliated map. Then
(5.12) dy(dre) =0, dvdrd = —7y(¢) + i(k%)dro.
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(2) If a foliated map ¢ : (M, F) — (M’, F') is transversally harmonic, then
(5.13) Adp = dyi(r)dro.

Corollary 5.2. Let ¢ : (M,g,F) — (M',¢', F') be a transversally harmonic
map. Then

(14) L Apldrof = —[Vudro — (Fdro),dré) + 3r(ldrof?)
Proof. Since dy(dr¢) = 0, we have

(5.15) Axdpe = —Vxdro + dvi(X)dre, YX € TQ.

Hence (5.14) follows from (5.13) and (5.15). O

As applications of the generalized Weitzenbock formula, we have the follow-
ing theorems.

Theorem 5.3. Let (M, g, F) be a compact foliated Riemannian manifold of
nonnegative transversal Ricci curvature, and let (M’,g', F') be a foliated Rie-
mannian manifold of nonpositive transversal sectional curvature. If ¢ : (M, F)
— (M', F') is transversally harmonic, then ¢ is transversally totally geodesic,
i.e., Vidro = 0. Furthermore,

(1) If the transversal Ricci curvature Ric® of F is positive somewhere, then
¢ is transversally constant, i.e., the induced map between leaf spaces is
constant.

(2) If the transversal sectional curvature K< of F' is negative, then ¢ is
either transversally constant or ¢(M) is a transversally geodesic closed
curve.

Proof. Let ¢ : (M, F) — (M',F’) be a transversally harmonic map. Then,
from (5.14), we have

1 -
(5.16) 5 (85 = K)ldrdl* = = |Vudro|* — (F(dro), dre).
Since Ric® > 0 and K9 < 0, from (5.7) we have
(5.17) (F(dr¢),dre) > 0.

Hence (Ap —/<aﬁB)|dT¢|2 < 0. From Lemma 2.3, |dr¢| is constant. Hence again,
we have from (5.16)

(5.18) Viudrdl® + (F(dro), drg) = 0.

Hence Vi dré = 0 and by assumptions

(5.19) 9 (dr¢(Ric® (B,), dré(Ea)) = 0,

(5.20) 90/ (R (drd(Eq), drd(Ep))dr¢(Ey), drd(Ey)) = 0
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for any indices a and b. Therefore ¢ is transversally totally geodesic. Moreover,
from (5.19), if Ric? is positive at some point, then dr¢ = 0, i.e., ¢ is transver-
sally constant, which proves (1). For the proof of (2), if there exists a point
x € M such that at least two vectors in {dr¢(F,)} are linearly independent at
o(x), say, dr¢(FE7) and dr¢(Es), then from the hypothesis,

90/ (R? (drd(Er), dr¢(Es))drd(Es), dré(Er)) < 0,

which contradicts (5.20). Hence the rank of dr¢ < 2, that is, the rank of dr¢
is zero or one everywhere. If the rank of dr¢ is zero, then ¢ is transversally

constant. If the rank of dr¢ is one, then ¢(M) is closed transversally geodesic.
O

Next, we extend Theorem 5.3 under the weaker transversal sectional curva-
ture of F'. Let rankr(¢) be the rank of dr¢.

Theorem 5.4. Let (M, g, F) be a compact foliated Riemannian manifold and
let (M',g',F") be a foliated Riemannian manifold. Assume that Ric? > A\
id. and K9 < u for any positive constants \ and p. Let ¢ : (M, F) —
(M',F") be a transversally harmonic map with max{rankr(¢)} < C, where
C > 2 is constant. If |dr¢|? < %, then ¢ is transversally constant or

¢ is transversally totally geodesic. In particular, if |dr¢|? < %, then ¢ 1is
transversally constant.

Proof. Let {E,} be a local orthonormal basic frame of Q. From (5.7), we have
(5.21) (F(dr¢),dro)
= ZQQ’(dT¢(RiCQ(Ea))adT(b(Ea))

= S {ldré(E)Pldrd(B)? - g0 (drd(Ea), drd(E)*}KS,.
a,b

where
Kg, = 9/ (RY (dr(Ea), dré(Ey))dr ¢(Ey), dr(Ea))
is the transversal sectional curvature spanned by dr¢(E,) and dr¢(Ey). Let
ranky(¢) =r < C. Now, we choose a local orthonormal basic frame {E,} such
that g/ (dr(Ey), dr(Ep))|e = Aadap and Ay > Ay > -+ > X\ > 0. Then, from
(5.14) and (5.21), we have
1
§AB\dT¢\2
- 1 .
= = Vudro® + 5r(drol) = 3 9o (dro(Ric® (Ea)), dro(Ea))

+ > {ldro(Ba) 2ldré(Ep)[* - gor (dré(Ba), dré(Er))* K
a,b
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- 1 r
< — |Vudre|? + 5&”3(IdT¢|2) = Ndrél® + p{ldro[* =Y A2}

Using the Schwarz’s inequality, we have

(5.22) dro|* = ZA Ao s% (A2 +AD)
ab=1
- Tz A2 < Z
a=1
From (5.22), we have
(5.23) |dro|* — Z A2 < |dT¢>|4
From (5.23), we have
(G24)  SAsldro]
<~ udrol + 3rb(ldrof) — ldroP D~ C D o)
< 5wb(1drof).
Hence, from Lemma 2.3, |dr¢| is constant and then
(5.25) Veedrdl® + [dro*{A - %\dmﬁ} =0

Therefore Vidr¢ = 0 and |dr¢|[2{\ — LC})“|dT¢|2} = 0. Hence ¢ is transver-
sally totally geodesic. If dp¢ = 0, then ¢ is transversally constant. If dr¢ # 0,

then |dr¢|? = “(éc_yl) and ¢ is transversally totally geodesic. In particular, if
|dro|? < %, then ¢ is transversally constant. O

Remark. For the point foliation, Theorem 5.3 and Theorem 5.4 are found in
[2, page 124] and [12], respectively.

Example. Let T? be the flat 2-torus parametrized by the angles (u,v) with
0 <wu,v <27 Let ¢ : T? — S3 be defined by

é(u,v) = (cosu,sinu, cosv,sinv)/v/2,

considered as a point in R*. Then ¢ is harmonic but not totally geodesic [2,
page 132]. Now let (F,h) and (F',h’') be Riemannian manifolds. Consider
the foliations on T2 x F and S® x F’ given by the projections on the first
component 7y : T? x F — T?%, my : 83 x F' — S3, respectively. Then the
projections m;(i = 1,2) are Riemannian fibrations, and so the foliations are
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Riemannian. Let ¢ : T? x F — 83 x F’ be a foliated smooth map, which is
given by

(b((u’ U),Z‘) = (¢(u,v),f(u,v,a;))

for any = € F', where f : T? x F — F' is smooth. Then ¢ is transversally
harmonic because ¢ is harmonic. But ¢ is not totally geodesic because ¢ is not
totally geodesic [6, Theorem 3.1].
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