DOI QR코드

DOI QR Code

RICCI CURVATURE OF WARPED PRODUCT POINTWISE BI-SLANT SUBMANIFOLDS

  • Received : 2021.09.20
  • Accepted : 2022.09.06
  • Published : 2023.03.25

Abstract

In this paper, we study doubly warped product point-wise bi-slant submanfolds of S-space form. Here we try to establish an inequality containing the Ricci curvature, squared norm of mean curvature and the warping function.

Keywords

References

  1. A. Ali, P. Laurian-Ioan, and Ali H. Al-Khalidi, Ricci curvature on warped prod- uct submanifolds in spheres with geometric applications, J. of Geom. and Phys. 146 (2019), 103510.
  2. A. Ali, P. Laurian-Ioan, A. H. Al-Khalidi, and L. S. Alqahtani, Ricci curvature on warped product submanifolds of complex space forms and its applications, Int. J. of Geom. Methods in Modern Phys. 16 (2019), 1950142.
  3. K. Arslan, R. Ezentas, I. Mihai, C. Murathan, and C. Ozgur, Ricci curvature of submanifolds in Kenmotsu space forms, Int. J. Math. Math. Sci. 29 (2002), 719-726. https://doi.org/10.1155/S0161171202012863
  4. R. L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49. https://doi.org/10.1090/S0002-9947-1969-0251664-4
  5. J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Semi-slant submanifoldsof a Sasakian manifold, Geom. Dedicata 78 (1999), no. 2, 183-199. https://doi.org/10.1023/A:1005241320631
  6. B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds, Monatsh. Math. 133 (2001), no. 3, 177-195. https://doi.org/10.1007/s006050170019
  7. B.-Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds II, Monatsh. Math. 134 (2001), no. 2, 103-119. https://doi.org/10.1007/s006050170002
  8. B.Y. Chen, On isometric minimal immersions from warped products into real space forms, Proc. Edinb. Math. Soc. 45 (2002), 579-587. https://doi.org/10.1017/S001309150100075X
  9. B.-Y. Chen, Geometry of warped product submanifolds: A survey, J. Adv. Math. Stud. 6 (2013), no. 2, 1-43.
  10. M. Faghfouri and A. Majidi, On doubly warped product immersions, J. Geom. 106 (2015), 243-254. https://doi.org/10.1007/s00022-014-0245-z
  11. S. Hong and M. M. Tripathi, On Ricci curvature of submanifolds of generalized Sasakian space forms, Int. J. Pure Appl. Math. Sci. 2 (2005), 173-201.
  12. M. A. Khan and I. Aldayel, Ricci curvature inequalities for skew CR-warped Product submanifolds in complex space forms, March 2021, AIMS Mathematics.
  13. M. A. Khan, Warped product pointwise semi-slant submanifolds of the complex space forms, Rendiconti del Circolo Matematico di Palermo Series 69 (2020), 195-207. https://doi.org/10.1007/s12215-018-00396-8
  14. P. Mandal, T. Pal, and S. K. Hui, Ricci curvature on warped product submanifolds of Sasakian-space-forms, Filomat 34 (2020), 3917-3930. https://doi.org/10.2298/FIL2012917M
  15. K. Matsumoto, Doubly warped product manifolds and submanifolds, In: Global analysis and applied mathematics, AIP Conf. Proc. 729, pp.218-224, Am. Inst. Phys., Melville, 2004.
  16. I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc. 72 (2002), 247-256. https://doi.org/10.1017/S1446788700003888
  17. H. Nagawa, On framed f-manifolds, Kodai Math. Sem. Rep. 18 (1966), 293-306.
  18. A. Olteanu, A general inequality for doubly warped product submanifolds, Math. J. Okayama Univ. 52 (2010), 133-142.
  19. S. Sular and C. Ozgur, Doubly warped product submanifolds of (κ, µ)-contact metric manifolds, Annales Polonici Mathematici 100 (2011), no. 3, 223-236. https://doi.org/10.4064/ap100-3-2
  20. B. Unal, Doubly warped products, ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.). University of Missouri, Columbia, 2000.
  21. B. Unal, Doubly warped products, Differ. Geom. Appl. 15 (2001), no. 3, 253-263. https://doi.org/10.1016/S0926-2245(01)00051-1
  22. S. Uddin, B.-Y. Chen, and F. R. Al-Solamy, Warped product bi-slant immersions in Kaehler manifolds, Mediterr. J. Math. 14 (2017), Article Number 95.
  23. A. Q. Wang and X. M. Liu, Ricci curvature of semi-invariant submanifolds in cosymplectic space forms, J. Math. Res. Exposition 27 (2007), 195-200.