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COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC

CONNECTION FROM A RIEMANNIAN MANIFOLD TO ITS

TANGENT BUNDLES

Uday Chand De and Mohammad Nazrul Islam Khan

Abstract. The aim of the present paper is to study complete lifts of a
semi-symmetric non-metric connection from a Riemannian manifold to

its tangent bundles. Some curvature properties of a Riemannian mani-

fold to its tangent bundles with respect to such a connection have been
investigated.

1. Introduction

Investigating lifts in connections and geometrical structures enables us to
examine the manifold M on the tangent bundle T M. Altunbas et al. ([3, 4])
studied lifts of metallic structures on tangent bundles of LP-Sasakian manifolds
and established conditions for their parallelity. Lifts of various connections and
geometric structures from a manifold to its tangent bundles have been studied
by Akpinar [2], Das and Khan [10], Kazan and Karadag [18], Khan ([20,25,26]),
Peyghan et al. [29]. For more contemporary research on lifts of connections,
partial differential equations and geometric structures, see ([6,11,13–15,22–24,
28,33]) and a number of other references.

Semi-symmetric connection on a differentiable manifold was first proposed
by Friedmann and Schouten [16] in 1924. If the torsion tensor T of a linear

connection ∇̃ on a differentiable manifold M fulfills

(1) T (X1,X2) = u(X2)X1 − u(X1)X2,

where u is a 1-form, for all vector fields X1 ∈ χ(M), χ(M) is the set of
all differentiable vector fields on M, then such a connection is named semi-
symmetric connection.
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Hayden [17] proposed semi-symmetric metric connections on a Riemannian

manifold (M, g). A semi-symmetric connection ∇̃ is said to be

• a semi-symmetric metric connection if ∇̃g = 0.

• a semi-symmetric non metric connection (briefly, SSNMC) if ∇̃g ̸= 0.

Singh and Pandey [31], Ozen et al. [39], Zhao et al. [40, 41], Velimirović et
al. ([34,35]) and many others contributed to advancement of the study of semi-
symmetric metric connection. After a long gap the study of a semi-symmetric

connection ∇̃ satisfying

(2) ∇̃g ̸= 0

was initiated by Prvanović [30] with the name pseudo-metric semi-symmetric
connection and was just followed by Andonie [5].

Agashe and Chafle [1], De and Biswas [7], Liang [27], Smaranda and Andonie
[32], Chaki [8], Yano et al. [36,37] and many others contributed to advancement
of the study of SSNMC.

De et al. [12] introduced a linear connection ∇̄ given by

∇̄X1
X2 = ∇X1

X2 + aω(X1)X2 + bω(X2)X1,(3)

T̄ (X1,X2) = (b− a)ω(X2)X1 − (b− a)ω(X1)X2 = π(X2)X1 − π(X1)X2,(4)

ω(X1) = g(X1, ρ),(5)

where a, b ̸= 0 (real numbers), X1 ∈ χ(M) and T̄ is the torsion tensor with
respect to ∇̄ and π(X1) = (b− a)ω(X1) and ρ is a vector field.

Thus ∇̄ is a semi-symmetric connection.
In addition(

∇̄X1
g
)
(X2,X3) = −2aω(X1)g(X2,X3)− bω(X2)g(X1,X3)− bω(X3)g(X1,X2)

̸= 0.

Hence ∇̄ given by (3) is an SSNMC.
In the present paper, we investigate complete lifts of an SSNMC from a

Riemannian manifold M to its tangent bundles and deduce some curvature
tensors on T M. The aim of this study is stated as follows:

• We have studied complete lifts of an SSNMC from M to T M.
• We have developed the relationship of the curvature tensors between
∇ and ∇̄ from M to T M.

• Weyl projective curvature tensor on M to T M endowed with an SS-
NMC is studied.

• Some properties of Ricci-semisymmetric Riemannian manifolds endow-
ed with an SSNMC on T M has been done.

• Applications of an SSNMC from M to T M has been shown.
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2. Preliminaries

Let T M be the tangent bundle of a manifold M and let the function, a
1-form, a vector field and a tensor field (1,1) type be symbolized as f , η, X1

and ϕ and ∇, respectively. The complete and vertical lifts of f , η, X1 and ϕ are
symbolized as fC , ηC , X1

C , ϕC and fV , ηV , X1
V , ϕV , respectively. Let ℑs

r(M)
and ℑs

r(T M) be symbolised as the elements of M and T M, respectively. The
following operations on f , η, X1 and ϕ are defined by [9, 38]

(fX)V = fV XV , (fX)C = fCXV + fV XC ,(6)

X1
V fV = 0, X1

V fC = X1
CfV = (Xf)V , X1

CfC = (Xf)C ,(7)

ηV (fV ) = 0, ηV (X1
C) = ηC(X1

V ) = η(X1)
V , ηC(X1

C) = η(X1)
C ,(8)

ϕV XC = (ϕX1)
V , ϕCXC = (ϕX1)

C ,(9)

[X1, X2]
V = [X1

C , X2
V ] = [X1

V , X2
C ], [X1, X2]

C = [X1
C , X2

C ],(10)

∇C
X1

CX2
C = (∇X1

X2)
C , ∇C

X1
CX2

V = (∇X1
X2)

V ,(11)

where ∇ being the Levi-Civita connection.
Applying complete lifts by mathematical operators on (1)-(4), we infer

TC(X1
C ,X2

C) = uC(X2
C)X1

V + uV (X2
C)X1

C − uC(X1
C)X2

V

− uV (X1
C)X2

C ,(12)

(13) uC(X1
C) = gC

(
X1

C , ρC1

)
,

(14) ∇̃CgC = 0,

(15) ∇̄CgC ̸= 0,

∇̄C
X1

CX2
C = ∇C

X1
CX2

C + a(ωC(X1
C)X2

V + ωV (X1
C)X2

C)

+ b(ωC(X2
C)X1

V + ωV (X2
C)X1

C),(16)

T̄C(X1
C ,X2

C) = (b− a)(ωC(X2
C)X1

V + ωV (X2
C)X1

C)

− (b− a)(ωC(X1
C)X2

V + ωV (X1
C)X2

C)

= πC(X2
C)X1

V + πV (X2
C)X1

C

− (πC(X1
C)X2

V + πV (X1
C)X2

C),(17)

where πC(X1
C) = (b− a)ωC(X1

C) and πV (X1
C) = (b− a)ωV (X1

C). Thus ∇̄C

is a semi-symmetric connection.
In addition,(

∇̄C
X1

Cg
C
)
(X2

C ,X3
C)

= − 2a(ωC(X1
C)gC(X2

V ,X3
C) + ωV (X1

C)gC(X2
C ,X3

C))
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− b(ωC(X2
C)gC(X1

V ,X3
C) + ωV (X2

C)gC(X1
C ,X3

C))

− b(ωC(X3
C)gC(X1

V ,X2
C) + ωV (X3

C)gC(X1
C ,X2

C)) ̸= 0.(18)

Hence ∇̄C defined by (16) is an SSNMC.

3. Existence of the complete lift of an SSNMC of a manifold to its
tangent bundle

Let ∇̄ and ∇ be the Levi-Civita connection and the linear connection of M,
respectively. Then

∇̄X1
X2 = ∇X1

X2 + F (X1,X2),(19)

where F ∈ ℑ2
1(M), X1,X2 ∈ ℑ1

0(M) [19,21].
For ∇̄ to be an SSNMC in M, we have

F (X1,X2) =
1

2
[T̄ (X1,X2)− Ṫ (X1,X2) + Ṫ (X2,X1)]

+ aω(X2)X1 + bω(X1)X2,(20)

where g(X1, ρ) = ω(X1) and Ṫ ∈ ℑ2
1(M) such that

(21) g(T̄ (X3,X1),X2) = g(Ṫ (X1,X2),X3).

Applying the complete lifts by mathematical operators on (19), (20) and (21),
we infer

∇̄C
X1

CX2
C = ∇C

X1
CX2

C + FC(X1
C ,X2

C),(22)

FC(X1
C ,X2

C) =
1

2
[T̄C(X1

C ,X2
C)− ṪC(X1

C ,X2
C) + ṪC(X2

C ,X1
C)]

+ a(ωC(X2
C)X1

V + ωV (X2
C)X1

C)

− b(ωC(X1
C)X2

V + ωV (X1
C)X2

C),(23)

gC(T̄C(X3
C ,X1

C),X2
C) = gC(ṪC(X1

C ,X2
C),X3

C).(24)

Combining (17) and (24) implies that

ṪC(X1
C ,X2

C) = πC(X1
C)X2

V + πV (X1
C)X2

C

− gC(X1
C ,X2

C)ρV − gC(X1
V ,X2

C)ρC ,(25)

where πC(X1
C) = (b− a)ωC(X1

C) and πV (X1
C) = (b− a)ωV (X1

C).
In view of (17), (23) and (25) yield

F (X1,X2) = a(ωC(X2
C)X1

V + ωV (X2
C)X1

C)

− b(ωC(X1
C)X2

V + ωV (X1
C)X2

C).(26)

Therefore, the SSNMC on a Riemannian manifold is given by

∇̄C
X1

CX2
C = ∇C

X1
CX2

C + a(ωC(X2
C)X1

V + ωV (X2
C)X1

C)

− b(ωC(X1
C)X2

V + ωV (X1
C)X2

C).(27)
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In contrast, we demonstrate that ∇̄C such that

∇̄C
X1

CX2
C = ∇C

X1
CX2

C + a(ωC(X2
C)X1

V + ωV (X2
C)X1

C)

− b(ωC(X1
C)X2

V + ωV (X1
C)X2

C)

is an SSNMC of M on T M.
The torsion tensor T̄ of the connection is given by

T̄C(X1
C ,X2

C) = (b− a)(ωC(X2
C)X1

V + ωV (X2
C)X1

C)

− (b− a)(ωC(X1
C)X2

V + ωV (X1
C)X2

C)

= πC(X2
C)X1

V + πV (X2
C)X1

C

− (πC(X1
C)X2

V + πV (X1
C)X2

C).(28)

Thus from (28), ∇̄C is a semi-symmetric connection of M on T M. In addition,
we infer (

∇̄C
X1

Cg
C
)
(X2

C ,X3
C)

= − 2a(ωC(X1
C)gC(X2

V ,X3
C) + ωV (X1

C)gC(X2
C ,X3

C))

− b(ωC(X2
C)gC(X1

V ,X3
C) + ωV (X2

C)gC(X1
C ,X3

C))

− b(ωC(X3
C)gC(X1

V ,X2
C) + ωV (X3

C)gC(X1
C ,X2

C)) ̸= 0.(29)

As a result, we can say that the connection ∇̄ is an SSNMC.

4. Some calculations on the curvature tensor of the SSNMC of a
manifold to its tangent bundle

In [12], De et al. produced the formula for the curvature tensor R̄ of M with
respect to the SSNMC ∇̄ as

(30) R̄(X1,X2)X3 = ∇̄X1
∇̄X2

X3 − ∇̄X2
∇̄X1

X3 − ∇̄[X1,X2]X3,

where ∀X1,X2,X3 ∈ χ(M).
Applying the complete lifts by mathematical operators on (30), we infer

R̄C(X1
C ,X2

C)X3
C

= ∇̄C
X1

C ∇̄C
X2

CX3
C − ∇̄C

X2
C ∇̄C

X1
CX3

C − ∇̄C
[X1

C ,X2
C ]X3

C .(31)

Using (16) in (31), we infer

R̄C(X1
C ,X2

C)X3
C = RC(X1

C ,X2
C)X3

C

− a{(∇X2
ω)

C
(X1

C)X3
V + (∇X2

ω)
V
(X1

C)X3
C}

+ a{(∇X1
ω)

C
(X2

C)X3
V + (∇X1

ω)
V
(X2

C)X3
C}

− b{(∇X2
ω)

C
(X3

C)X1
V + (∇X2

ω)
V
(X3

C)X1
C}

+ b{(∇X1
ω)

C
(X3

C)X2
V + (∇X1

ω)
V
(X3

C)X2
C}

+ b2{ωC(X2
C)ωC(X3

C)X1
V + ωC(X2

C)ωV (X3
C)X1

C
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+ ωV (X2
C)ωC(X3

C)X1
C} − b2{ωC(X1

C)ωC(X3
C)X2

V

+ ωC(X1
C)ωV (X3

C)X2
C + ωV (X1

C)ωC(X3
C)X2

C}.(32)

From (17), we infer

(33)
(
∇̄C

X1
CC1

1 T̄
C
)
(X2

C) = (n−1)πC(X2
C) = (n−1)(b−a)

(
∇̄X1

ω
)C

(X2
C),

where C1
1 symbolizes the contraction.

Suppose the torsion tensor T̄ with respect to the SSNMC is pseudo sym-
metric, that is,(

∇̄C
X1

C T̄
C
)
(X2

C ,X3
C)

= ωC(X1
C)T̄V (X2

C ,X3
C) + ωV (X1

C)T̄C(X2
C ,X3

C)

+ ωC(X2
C)T̄V (X1

C ,X3
C) + ωV (X2

C)T̄C(X1
C ,X3

C)

+ ωC(X3
C)T̄V (X2

C ,X1
C) + ωV (X3

C)T̄C(X2
C ,X1

C)

+ gC(T̄C(X2
C ,X3

C),X1
C)ρV + gC(T̄C(X2

C ,X3
C),X1

C)ρV ,(34)

where ωC(X1
C) = gC(X1

C , ρC).
Contracting over X3 in (34) and using (17), we infer(

∇̄C
X1

CC1
1 T̄

C
)
(X2

C)

= 4(n− 1)(b− a){ωC(X1
C)ωV (X2

C) + ωV (X1
C)ωC(X2

C)}

− (b− a){ωC(ρC)gC(X1
V ,X2

C) + ωV (ρC)gC(X1
C ,X2

C)}.(35)

Combining (33) and (35), we infer(
∇̄X1

ω
)C

(X2
C)

= 4{ωC(X1
C)ωV (X2

C) + ωV (X1
C)ωC(X2

C)}

− 1

n− 1
{ωC(ρC)gC(X1

V ,X2
C) + ωV (ρC)gC(X1

C ,X2
C)}.(36)

Therefore, from (55) and (36), it follows that(
∇̄X1

ω
)C

(X2
C)

= (a+ b+ 4){ωC(X1
C)ωV (X2

C) + ωV (X1
C)ωC(X2

C)}

− 1

n− 1
{ωC(ρC)gC(X1

V ,X2
C) + ωV (ρC)gC(X1

C ,X2
C)}.(37)

From (37), (32) becomes

R̄C(X1
C ,X2

C)X3
C

= RC(X1
C ,X2

C)X3
C − b(a+ 4){ωC(X2

C)ωC(X3
C)X1

V

+ ωC(X2
C)ωV (X3

C)X1
C + ωV (X2

C)ωC(X3
C)X1

C}

+ b(a+ 4){ωC(X1
C)ωC(X3

C)X2
V



COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC CONNECTION 1239

+ ωC(X1
C)ωV (X3

C)X2
C + ωV (X1

C)ωC(X3
C)X2

C}

+
b

n− 1
{ωC(ρC)gC(X2

C ,X3
C)X1

V + ωC(ρC)gC(X2
V ,X3

C)X1
C

+ ωV (ρC)gC(X2
C ,X3

C)X1
C} − b

n− 1
{ωC(ρC)gC(X1

C ,X3
C)X2

V

+ ωC(ρC)gC(X1
V ,X3

C)X2
C + ωV (ρC)gC(X1

C ,X3
C)X2

C}.(38)

From (38), we infer

R̄C(X1
C ,X2

C)X3
C = −R̄C(X2

C ,X1
C)X3

C ,

and

R̄C(X1
C ,X2

C)X3
C + R̄C(X2

C ,X3
C)X1

C + R̄C(X3
C ,X1

C)X2
C = 0.(39)

The equation (39) represents the first Bianchi identity with respect to the
SSNMC ∇̄C .

Applying the inner product of (38) with u, we infer

′R̄C(X1
C ,X2

C ,X3
C , uC)

= ′RC(X1
C ,X2

C)X3
C − b(a+ 4){ωC(X2

C)ωC(X3
C)gC(X1

V , uC)

+ ωC(X2
C)ωV (X3

C)gC(X1
C , uC) + ωV (X2

C)ωC(X3
C)gC(X1

C , uC)}

+ b(a+ 4){ωC(X1
C)ωC(X3

C)gC(X2
V , uC)

+ ωC(X1
C)ωV (X3

C)gC(X2
C , uC) + ωV (X1

C)ωC(X3
C)gC(X2

C , uC)}

+
b

n− 1
{ωC(ρC)gC(X2

C ,X3
C)gC(X1

V , uC)

+ ωC(ρC)gC(X2
V ,X3

C)gC(X1
C , uC)

+ ωV (ρC)gC(X2
C ,X3

C)gC(X1
C , uC)}

− b

n− 1
{ωC(ρC)gC(X1

C ,X3
C)gC(X2

V , uC)

+ ωC(ρC)gC(X1
V ,X3

C)gC(X2
C , uC)

+ ωV (ρC)gC(X1
C ,X3

C)gC(X2
C , uC)},(40)

where

′R̄(X1,X2,X3, u)=g(R̄(X1,X2)X3, u) and ′R(X1,X2,X3, u)=g(R(X1,X2)X3, u).

Suppose that
{
eC1 , . . . , e

C
n

}
is an orthonormal basis of T M. Place X1 = u =

ei in (40) and putting summation before i, 1 ≤ i ≤ n, we infer

S̄C(X2
C ,X3

C) = SC(X2
C ,X3

C) + b{ωV (ρC)gC(X2
V ,X3

C)

+ ωV (ρC)gC(X2
C ,X3

C)}

− b(n− 1)(a+ 4){ωC(X2
C)ωV (X3

C)

+ ωV (X2
C)ωC(X3

C)},(41)
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where S̄C and SC denote the complete lift of the Ricci tensors S̄ and S.
The above discussions help us to conclude:

Theorem 4.1. Let T M be the tangent bundle of a Riemannian manifold M
endowed with an SSNMC ∇̄C whose torsion tensor is pseudo symmetric. Then

(i) The curvature tensor R̄C is given by (40).

(ii) R̄C(X1
C ,X2

C)X3
C = −R̄C(X2

C ,X1
C)X3

C .

(iii) R̄C(X1
C ,X2

C)X3
C + R̄C(X2

C ,X3
C)X1

C + R̄C(X3
C ,X1

C)X2
C = 0.

(iv) The Ricci tensor S̄C is given by (41).
(v) S̄C is symmetric.

Let R̄C = 0 and put it in (38), we deduce

′RC(X1
C ,X2

C)X3
C = b(a+ 4){ωC(X2

C)ωC(X3
C)gC(X1

V , uC)

+ ωC(X2
C)ωV (X3

C)gC(X1
C , uC)

+ ωV (X2
C)ωC(X3

C)gC(X1
C , uC)}

− b(a+ 4){ωC(X1
C)ωC(X3

C)gC(X2
V , uC)

+ ωC(X1
C)ωV (X3

C)gC(X2
C , uC)

+ ωV (X1
C)ωC(X3

C)gC(X2
C , uC)}

− b

n− 1
{ωC(ρC)gC(X2

C ,X3
C)gC(X1

V , uC)

+ ωC(ρC)gC(X2
V ,X3

C)gC(X1
C , uC)

+ ωV (ρC)gC(X2
C ,X3

C)gC(X1
C , uC)}

+
b

n− 1
{ωC(ρC)gC(X1

C ,X3
C)gC(X2

V , uC)

+ ωC(ρC)gC(X1
V ,X3

C)gC(X2
C , uC)

+ ωV (ρC)gC(X1
C ,X3

C)gC(X2
CUC)}.(42)

Substituting a = −4 in (42), we infer

′RC(X1
C ,X2

C)X3
C = − b

n− 1
{ωC(ρC)gC(X2

C ,X3
C)gC(X1

V , uC)

+ ωC(ρC)gC(X2
V ,X3

C)gC(X1
C , uC)

+ ωV (ρC)gC(X2
C ,X3

C)gC(X1
C , uC)}

+
b

n− 1
{ωC(ρC)gC(X1

C ,X3
C)gC(X2

V , uC)

+ ωC(ρC)gC(X1
V ,X3

C)gC(X2
C , uC)

+ ωV (ρC)gC(X1
C ,X3

C)gC(X2
CUC)}.(43)

This outcome indicates that the manifold is of constant curvature.
Hence, we can make the following statement:
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Theorem 4.2. Let T M be the tangent bundle of a Riemannian manifold M
endowed with an SSNMC ∇̄C . If the curvature tensor vanishes, that is , R̄C = 0
and the torsion tensor is pseudo symmetric, then the manifold M is of constant
curvature with respect to ∇C on T M subject to a = −4.

5. Proposed theorem on Weyl projective curvature tensor on a
Riemannian manifold to its tangent bundles endowed with the

SSNMC

The Weyl projective curvature tensor P̄ with respect to the SSNMC is given
by

(44) P̄ (X1,X2)X3 = R̄(X1,X2)X3 −
1

n− 1
[S̄(X2,X3)X1 − S̄(X1,X3)X2].

Operating the complete lift on (44), we infer

P̄C(X1
C ,X2

C)X3
C = R̄C(X1

C ,X2
C)X3

C

− 1

n− 1
[S̄C(X2

C ,X3
C)X1

V + S̄V (X2
C ,X3

C)X1
C ]

− 1

n− 1
[S̄C(X1

C ,X3
C)X2

V + S̄V (X1
C ,X3

C)X2
C ].(45)

From (45), it follows that

′P̄C(X1
C ,X2

C ,X3
C , uC) = ′R̄C(X1

C ,X2
C ,X3

C , uC)

− 1

n− 1
[S̄C(X2

C ,X3
C)gC(X1

V , uC)

+ S̄V (X2
C ,X3

C)gC(X1
C , uC)]

− 1

n− 1
[S̄C(X1

C ,X3
C)gC(X2

V , uC)

+ S̄V (X1
C ,X3

C)gC(X2
C , uC)],(46)

where ′P̄C(X1
C ,X2

C ,X3
C , uC) = gC(P̄C(X1

C ,X2
C)X3

C , uC) for all X1, X2,
X3, u ∈ Im1

0(M).
From (40) and (41) in (46), we get

(47) ′P̄C(X1
C ,X2

C ,X3
C , uC) = ′PC(X1

C ,X2
C ,X3

C , uC),

where
′PC(X1

C ,X2
C ,X3

C , uC) = ′RC(X1
C ,X2

C ,X3
C , uC)

− 1

n− 1
[SC(X2

C ,X3
C)gC(X1

V , uC)

+ SV (X2
C ,X3

C)gC(X1
C , uC)]

− 1

n− 1
[SC(X1

C ,X3
C)gC(X2

V , uC)

+ SV (X1
C ,X3

C)gC(X2
C , uC)].(48)
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Thus we have the following:

Theorem 5.1. Let T M be the tangent bundle of a Riemannian manifold M
endowed with an SSNMC ∇̄C whose torsion tensor is pseudo symmetric. Then
the Weyl projective curvature tensors with respect to ∇̄C and ∇C are equal.

6. Proposed theorem on Ricci-semisymmetric manifolds on the
tangent bundle

In [12], De et al. produced that a Riemannian manifold is said to Ricci-
semisymmetric with respect to the ∇̄ if

(R̄(X1,X2) · S̄)(u,W ) = 0,

where X1,X2, u,W ∈ χ(M).
Applying the complete lift on the above equation, we infer

((R̄(X1,X2) · S̄)(u,W ))C = S̄C(R̄C(X1
C ,X2

C)uC ,WC)

+ S̄C(uC , R̄C(X1
C ,X2

C)WC).(49)

From (41) in (49), we infer

((R̄(X1,X2) · S̄)(u,W ))C = SC(R̄C(X1
C ,X2

C)uC ,WC)

+ SC(uC , R̄C(X1
C ,X2

C)WC)

+ b{ωC(ρC)gV (R̄C(X1
C ,X2

C)uC ,WC)

+ ωV (ρC)gC(R̄C(X1
C ,X2

C)uC ,WC)

+ ωC(ρC)gV (R̄C(X1
C ,X2

C)WC , uC)

+ ωV (ρC)gC(R̄C(X1
C ,X2

C)WC , uC)}

− b(n− 1)(a+ 4)[ωC(R̄C(X1
C ,X2

C)uC)ωV (WC)

+ ωV (R̄C(X1
C ,X2

C)uC)ωC(WC)

+ ωC(R̄C(X1
C ,X2

C)WC)ωV (uC)

+ ωV (R̄C(X1
C ,X2

C)WC)ωC(uC)].(50)

Using (38) and (50), we infer

((R̄(X1,X2) · S̄)(u,W ))C = ((R(X1,X2) · S̄)(u,W ))C

+ b{ωC(ρC)(′R(X1
C ,X2, u,W ))V

+ ωV (ρC)(′R(X1
C ,X2, u,W ))C}

− b

n− 1
{ωC(ρC)SC(X2

C , uC)gC(X1
V ,WC)

+ ωC(ρC)SV (X2
C , uC)gC(X1

C ,WC)

+ ωV (ρC)SC(X2
C , uC)gC(X1

C ,WC)}
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+
b

n− 1
{ωC(ρC)SC(X1

C , uC)gC(X2
V ,WC)

+ ωC(ρC)SV (X1
C , uC)gC(X2

C ,WC)

+ ωV (ρC)SC(X1
C , uC)gC(X2

C ,WC)}
− b(n− 1)(a+ 4){ωC(R(X1,X2)u)

CωV (WC)

+ ωV (R(X1,X2)u)
CωC(WC)}

− b(a+ 4){ωC(X2
C)ωC(uC)SV (X1

C ,WC)

+ ωC(X2
C)ωV (uC)SC(X1

C ,WC)

+ ωV (X2
C)ωC(uC)SC(X1

C ,WC)}

+ b(a+ 4){ωC(X1
C)ωC(uC)SV (X2

C ,WC)

+ ωC(X1
C)ωV (uC)SC(X2

C ,WC)

+ ωV (X1
C)ωC(uC)SC(X2

C ,WC)}
− b(n− 1)(a+ 4){ωC(R(X1,X2)W )CωV (uC)

+ ωV (R(X1,X2)W )CωC(uC)}

− b(a+ 4){ωC(X2
C)ωC(WC)SV (X1

C , uC)

+ ωC(X2
C)ωV (WC)SC(X1

C , uC)

+ ωV (X2
C)ωC(WC)SC(X1

C , uC)}

+ b(a+ 4){ωC(X1
C)ωC(WC)SV (X2

C , uC)

+ ωC(X1
C)ωV (WC)SC(X2

C , uC)

+ ωV (X1
C)ωC(WC)SC(X2

C , uC)}.(51)

Setting a+ 4 = 0 in (51) and from (5.4), we infer

((R̄(X1,X2) · S̄)(u,W ))C

= ((R(X1,X2) · S̄)(u,W ))C

+ bωC(ρC)[(′P (X1,X2, u,W ))V + (′P (X1,X2,W, u))V ]

+ bωV (ρC)[(′P (X1,X2, u,W ))C + (′P (X1,X2,W, u))C ].(52)

Thus we have the following:

Theorem 6.1. Let T M be the tangent bundle of a Riemannian manifold M
endowed with an SSNMC ∇̄C . Then Ricci semi-symmetry of M on T M with
respect to ∇C and ∇̄C are equivalent, subject to a + 4 = 0 and ρC is a null
vector.
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7. Applications

In this section, we have discussed the applications of an irrotational field
and geodesics with respect to the Levi-Civita connection and an SSNMC of M
to T M.

Let us recall the essentials of an irrotational vector field and geodesics.
The vector field ρ is irrotational if g (X2,∇X1

ρ) = g (X1,∇X2
ρ) and the

integral curves of the vector field ρ are geodesic if ∇ρρ = 0.

Definition. The 1-form ω is closed with respect to ∇ if

(53) (∇X1
ω) (X2)− (∇X2

ω) (X1) = 0.

Theorem 7.1. Let T M be the tangent bundle of a Riemannian manifold M
endowed with a semi-symmetric non-metric connection. Then

(i) The 1-form ωC is closed with respect to the Levi-Civita connection ∇
if and only if ωC is closed with respect to the SSNMC ∇̄C on T M.

(ii) The vector field ρC is irrotational with respect to ∇C if and only if ρC

is irrotational with respect to ∇̄C on T M.
(iii) The integral curves of the unit vector field ρC are geodesic with respect

to ∇C if and only if the integral curves of the unit vector field ρC is
geodesic with respect to ∇̄C .

Proof. Applying the complete lift on (53), we acquire

(54)
(
∇C

X1
Cω

C
)
(X2

C)−
(
∇C

X2
Cω

C
)
(X1

C) = 0.

In view of (16), we deduce(
∇̄C

X1
Cω

C
)
(X2

C) =
(
∇C

X1
Cω

C
)
(X2

C)− (a+ b){ωC(X1
C)ωV (X2

C)

+ ωV (X1
C)ωC(X2

C)}.(55)

From (55), we deduce(
∇̄C

X1
Cω

C
)
(X2

C)−
(
∇̄C

X2
Cω

C
)
(X1

C)

=
(
∇C

X1
Cω

C
)
(X2

C)−
(
∇C

X2
Cω

C
)
(X1

C).(56)

Thus the proof of (i) is completed.
Setting X2 = ρ in (16), we provide

∇̄C
X1

Cρ
C = ∇C

X1
Cρ

C + a(ωC(X1
C)ρV + ωV (X1

C)ρC)

+ b(ωC(ρC)X1
V + ωV (ρC)X1

C).(57)

The equation (57) yields

gC
(
X2

C , ∇̄C
X1

Cρ
C
)
− gC

(
X1

C , ∇̄C
X2

Cρ
C
)

= gC
(
X2

C ,∇C
X1

Cρ
C
)
− gC

(
X1

C ,∇C
X2

Cρ
C
)
.
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Thus the proof of (ii) is completed.
Setting X1 = ρ in (57), we deduce

(58) ∇̄C
ρCρ

C = ∇C
ρCρ

C + (a+ b)(ωC(ρC)ρV + ωV (ρC)ρC).

If a+ b = 0, then from (58), it follows that

∇̄C
ρCρ

C = ∇C
ρCρ

C .

Thus the proof of (iii) is completed. □
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