COMPLETE LIFTS OF A SEMI-SYMMETRIC NON-METRIC CONNECTION FROM A RIEMANNIAN MANIFOLD TO ITS TANGENT BUNDLES

Uday Chand De and Mohammad Nazrul Islam Khan

Abstract

The aim of the present paper is to study complete lifts of a semi-symmetric non-metric connection from a Riemannian manifold to its tangent bundles. Some curvature properties of a Riemannian manifold to its tangent bundles with respect to such a connection have been investigated.

1. Introduction

Investigating lifts in connections and geometrical structures enables us to examine the manifold \mathcal{M} on the tangent bundle $\mathcal{T} \mathcal{M}$. Altunbas et al. ($[3,4]$) studied lifts of metallic structures on tangent bundles of LP-Sasakian manifolds and established conditions for their parallelity. Lifts of various connections and geometric structures from a manifold to its tangent bundles have been studied by Akpinar [2], Das and Khan [10], Kazan and Karadag [18], Khan ([20,25,26]), Peyghan et al. [29]. For more contemporary research on lifts of connections, partial differential equations and geometric structures, see ($[6,11,13-15,22-24$, $28,33]$) and a number of other references.

Semi-symmetric connection on a differentiable manifold was first proposed by Friedmann and Schouten [16] in 1924. If the torsion tensor T of a linear connection $\widetilde{\nabla}$ on a differentiable manifold \mathcal{M} fulfills

$$
\begin{equation*}
T\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right)=\mathfrak{u}\left(\mathfrak{X}_{2}\right) \mathfrak{X}_{1}-\mathfrak{u}\left(\mathfrak{X}_{1}\right) \mathfrak{X}_{2}, \tag{1}
\end{equation*}
$$

where \mathfrak{u} is a 1 -form, for all vector fields $\mathfrak{X}_{1} \in \chi(\mathcal{M}), \chi(\mathcal{M})$ is the set of all differentiable vector fields on \mathcal{M}, then such a connection is named semisymmetric connection.

[^0]Hayden [17] proposed semi-symmetric metric connections on a Riemannian manifold (\mathcal{M}, g). A semi-symmetric connection $\widetilde{\nabla}$ is said to be

- a semi-symmetric metric connection if $\widetilde{\nabla} g=0$.
- a semi-symmetric non metric connection (briefly, SSNMC) if $\widetilde{\nabla} g \neq 0$.

Singh and Pandey [31], Ozen et al. [39], Zhao et al. [40, 41], Velimirović et al. ([34,35]) and many others contributed to advancement of the study of semisymmetric metric connection. After a long gap the study of a semi-symmetric connection $\widetilde{\nabla}$ satisfying

$$
\begin{equation*}
\widetilde{\nabla} g \neq 0 \tag{2}
\end{equation*}
$$

was initiated by Prvanović [30] with the name pseudo-metric semi-symmetric connection and was just followed by Andonie [5].

Agashe and Chafle [1], De and Biswas [7], Liang [27], Smaranda and Andonie [32], Chaki [8], Yano et al. [36,37] and many others contributed to advancement of the study of SSNMC.

De et al. [12] introduced a linear connection $\bar{\nabla}$ given by

$$
\begin{align*}
\bar{\nabla}_{\mathfrak{X}_{1}} \mathfrak{X}_{2} & =\nabla_{\mathfrak{X}_{1}} \mathfrak{X}_{2}+a \omega\left(\mathfrak{X}_{1}\right) \mathfrak{X}_{2}+b \omega\left(\mathfrak{X}_{2}\right) \mathfrak{X}_{1}, \tag{3}\\
\bar{T}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) & =(b-a) \omega\left(\mathfrak{X}_{2}\right) \mathfrak{X}_{1}-(b-a) \omega\left(\mathfrak{X}_{1}\right) \mathfrak{X}_{2}=\pi\left(\mathfrak{X}_{2}\right) \mathfrak{X}_{1}-\pi\left(\mathfrak{X}_{1}\right) \mathfrak{X}_{2}, \\
\omega\left(\mathfrak{X}_{1}\right) & =g\left(\mathfrak{X}_{1}, \rho\right),
\end{align*}
$$

where $a, b \neq 0$ (real numbers), $\mathfrak{X}_{1} \in \chi(\mathcal{M})$ and \bar{T} is the torsion tensor with respect to $\bar{\nabla}$ and $\pi\left(\mathfrak{X}_{1}\right)=(b-a) \omega\left(\mathfrak{X}_{1}\right)$ and ρ is a vector field.

Thus $\bar{\nabla}$ is a semi-symmetric connection.
In addition

$$
\begin{aligned}
\left(\bar{\nabla}_{\mathfrak{X}_{1}} g\right)\left(\mathfrak{X}_{2}, \mathfrak{X}_{3}\right) & =-2 a \omega\left(\mathfrak{X}_{1}\right) g\left(\mathfrak{X}_{2}, \mathfrak{X}_{3}\right)-b \omega\left(\mathfrak{X}_{2}\right) g\left(\mathfrak{X}_{1}, \mathfrak{X}_{3}\right)-b \omega\left(\mathfrak{X}_{3}\right) g\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \\
& \neq 0 .
\end{aligned}
$$

Hence $\bar{\nabla}$ given by (3) is an SSNMC.
In the present paper, we investigate complete lifts of an SSNMC from a Riemannian manifold \mathcal{M} to its tangent bundles and deduce some curvature tensors on $\mathcal{T} \mathcal{M}$. The aim of this study is stated as follows:

- We have studied complete lifts of an SSNMC from \mathcal{M} to $\mathcal{T} \mathcal{M}$.
- We have developed the relationship of the curvature tensors between ∇ and $\bar{\nabla}$ from \mathcal{M} to $\mathcal{T} \mathcal{M}$.
- Weyl projective curvature tensor on \mathcal{M} to $\mathcal{T} \mathcal{M}$ endowed with an SSNMC is studied.
- Some properties of Ricci-semisymmetric Riemannian manifolds endowed with an SSNMC on $\mathcal{T} \mathcal{M}$ has been done.
- Applications of an SSNMC from \mathcal{M} to $\mathcal{T} \mathcal{M}$ has been shown.

2. Preliminaries

Let $\mathcal{T M}$ be the tangent bundle of a manifold \mathcal{M} and let the function, a 1 -form, a vector field and a tensor field (1,1) type be symbolized as $f, \eta, \mathfrak{X}_{1}$ and ϕ and ∇, respectively. The complete and vertical lifts of $f, \eta, \mathfrak{X}_{1}$ and ϕ are symbolized as $f^{C}, \eta^{C}, \mathfrak{X}_{1}{ }^{C}, \phi^{C}$ and $f^{V}, \eta^{V}, \mathfrak{X}_{1}{ }^{V}, \phi^{V}$, respectively. Let $\Im_{r}^{s}(\mathcal{M})$ and $\Im_{r}^{s}(\mathcal{T} \mathcal{M})$ be symbolised as the elements of \mathcal{M} and $\mathcal{T} \mathcal{M}$, respectively. The following operations on $f, \eta, \mathfrak{X}_{1}$ and ϕ are defined by $[9,38]$
(6) $\quad(f X)^{V}=f^{V} X^{V},(f X)^{C}=f^{C} X^{V}+f^{V} X^{C}$,
(7) $\quad \mathfrak{X}_{1}{ }^{V} f^{V}=0, \mathfrak{X}_{1}{ }^{V} f^{C}=\mathfrak{X}_{1}{ }^{C} f^{V}=(X f)^{V}, \mathfrak{X}_{1}{ }^{C} f^{C}=(X f)^{C}$,

$$
\begin{align*}
& \eta^{V}\left(f^{V}\right)=0, \eta^{V}\left(\mathfrak{X}_{1}{ }^{C}\right)=\eta^{C}\left(\mathfrak{X}_{1}{ }^{V}\right)=\eta\left(\mathfrak{X}_{1}\right)^{V}, \eta^{C}\left(\mathfrak{X}_{1}{ }^{C}\right)=\eta\left(\mathfrak{X}_{1}\right)^{C}, \tag{8}\\
& \phi^{V} X^{C}=\left(\phi \mathfrak{X}_{1}\right)^{V}, \phi^{C} X^{C}=\left(\phi \mathfrak{X}_{1}\right)^{C}, \tag{9}\\
& {\left[\mathfrak{X}_{1}, \mathfrak{X}_{2}\right]^{V}=\left[\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{V}\right]=\left[\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{2}{ }^{C}\right],\left[\mathfrak{X}_{1}, \mathfrak{X}_{2}\right]^{C}=\left[\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right],} \tag{10}\\
& \nabla_{\mathfrak{X}_{1}}^{C}{ }_{X_{2}}{ }^{C}=\left(\nabla_{\mathfrak{X}_{1}} \mathfrak{X}_{2}\right)^{C}, \nabla_{\mathfrak{X}_{1}}^{C}{ }_{X_{2}}{ }^{V}=\left(\nabla_{\mathfrak{X}_{1}} \mathfrak{X}_{2}\right)^{V}, \tag{11}
\end{align*}
$$

where ∇ being the Levi-Civita connection.
Applying complete lifts by mathematical operators on (1)-(4), we infer

$$
\begin{align*}
& T^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)=\mathfrak{u}^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\mathfrak{u}^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}-\mathfrak{u}^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V} \\
& -\mathfrak{u}^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}, \tag{12}\\
& \mathfrak{u}^{C}\left(\mathfrak{X}_{1}{ }^{C}\right)=g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \rho_{1}^{C}\right), \tag{13}\\
& \widetilde{\nabla}^{C} g^{C}=0, \tag{14}\\
& \bar{\nabla}^{C} g^{C} \neq 0, \tag{15}\\
& \bar{\nabla}_{\mathfrak{X}_{1}}^{C} \mathfrak{X}_{2}{ }^{C}=\nabla_{\mathfrak{X}_{1} C}^{C} \mathfrak{X}_{2}{ }^{C}+a\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right) \\
& +b\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right), \tag{16}\\
& \bar{T}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)=(b-a)\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right) \\
& -(b-a)\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right) \\
& =\pi^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\pi^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C} \\
& -\left(\pi^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\pi^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right), \tag{17}
\end{align*}
$$

where $\pi^{C}\left(\mathfrak{X}_{1}{ }^{C}\right)=(b-a) \omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right)$ and $\pi^{V}\left(\mathfrak{X}_{1}{ }^{C}\right)=(b-a) \omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right)$. Thus $\bar{\nabla}^{C}$ is a semi-symmetric connection.

In addition,

$$
\begin{aligned}
& \left(\bar{\nabla}_{\mathfrak{X}_{1}{ }^{C}}^{C} g^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \\
= & -2 a\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& -b\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)\right. \\
& -b\left(\omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{2}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{X}_{2}^{C}\right)\right) \neq 0 .
\end{aligned}
$$

Hence $\bar{\nabla}^{C}$ defined by (16) is an SSNMC.

3. Existence of the complete lift of an SSNMC of a manifold to its tangent bundle

Let $\bar{\nabla}$ and ∇ be the Levi-Civita connection and the linear connection of \mathcal{M}, respectively. Then

$$
\begin{equation*}
\bar{\nabla}_{\mathfrak{X}_{1}} \mathfrak{X}_{2}=\nabla_{\mathfrak{X}_{1}} \mathfrak{X}_{2}+F\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right), \tag{19}
\end{equation*}
$$

where $F \in \Im_{1}^{2}(M), \mathfrak{X}_{1}, \mathfrak{X}_{2} \in \Im_{0}^{1}(M)[19,21]$.
For $\bar{\nabla}$ to be an SSNMC in \mathcal{M}, we have

$$
\begin{align*}
F\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right)= & \frac{1}{2}\left[\bar{T}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right)-\dot{T}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right)+\dot{T}\left(\mathfrak{X}_{2}, \mathfrak{X}_{1}\right)\right] \\
& +a \omega\left(\mathfrak{X}_{2}\right) \mathfrak{X}_{1}+b \omega\left(\mathfrak{X}_{1}\right) \mathfrak{X}_{2}, \tag{20}
\end{align*}
$$

where $g\left(\mathfrak{X}_{1}, \rho\right)=\omega\left(\mathfrak{X}_{1}\right)$ and $\dot{T} \in \Im_{1}^{2}(M)$ such that

$$
\begin{equation*}
g\left(\bar{T}\left(\mathfrak{X}_{3}, \mathfrak{X}_{1}\right), \mathfrak{X}_{2}\right)=g\left(\dot{T}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right), \mathfrak{X}_{3}\right) . \tag{21}
\end{equation*}
$$

Applying the complete lifts by mathematical operators on (19), (20) and (21), we infer

$$
\begin{align*}
& \bar{\nabla}_{\mathfrak{X}_{1}{ }_{C} \mathfrak{X}_{2}{ }^{C}=}= \nabla_{\mathfrak{X}_{1}{ }^{C}} \mathfrak{X}_{2}{ }^{C}+F^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right), \tag{22}\\
& F^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)= \frac{1}{2}\left[\bar{T}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}\right)-\dot{T}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)+\dot{T}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{1}{ }^{C}\right)\right] \\
&+a\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right) \\
& \quad-b\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{1}^{C}\right) \mathfrak{X}_{2}^{C}\right), \\
& g^{C}\left(\bar{T}^{C}\left(\mathfrak{X}_{3}{ }^{C}, \mathfrak{X}_{1}{ }^{C}\right), \mathfrak{X}_{2}{ }^{C}\right)=g^{C}\left(\dot{T}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right), \mathfrak{X}_{3}{ }^{C}\right) . \tag{24}
\end{align*}
$$

(17) and (24) implies that

$$
\dot{T}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)=\pi^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\pi^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}
$$

$$
\begin{equation*}
-g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \rho^{V}-g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{2}{ }^{C}\right) \rho^{C}, \tag{25}
\end{equation*}
$$

$$
\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \text { and } \pi^{V}\left(\mathfrak{X}_{1}{ }^{C}\right)=(b-a) \omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) .
$$

In view of $(17),(23)$ and (25) yield

$$
\begin{align*}
F\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right)= & a\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}^{C}\right) \\
& -b\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{1}^{C}\right) \mathfrak{X}_{2}^{C}\right) . \tag{26}
\end{align*}
$$

Therefore, the SSNMC on a Riemannian manifold is given by

$$
\begin{align*}
\bar{\nabla}_{\mathfrak{X}_{1} C}^{C} \mathfrak{X}_{2}{ }^{C}= & \nabla_{\mathfrak{X}_{1}{ }^{C}} \mathfrak{X}_{2}{ }^{C}+a\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right) \\
& -b\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right) . \tag{27}
\end{align*}
$$

In contrast, we demonstrate that $\bar{\nabla}^{C}$ such that

$$
\begin{aligned}
\bar{\nabla}_{\mathfrak{X}_{1}{ }_{C}{ }_{\mathfrak{X}}^{2}}{ }^{C}= & \nabla_{\mathfrak{X}_{1}{ }^{C}} \mathfrak{X}_{2}{ }^{C}+a\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right) \\
& -b\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right)
\end{aligned}
$$

is an SSNMC of \mathcal{M} on $\mathcal{T} \mathcal{M}$.
The torsion tensor \bar{T} of the connection is given by

$$
\begin{align*}
\bar{T}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)= & (b-a)\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right) \\
& -(b-a)\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right) \\
= & \pi^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\pi^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C} \\
& -\left(\pi^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\pi^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right) . \tag{28}
\end{align*}
$$

Thus from (28), $\bar{\nabla}^{C}$ is a semi-symmetric connection of \mathcal{M} on $\mathcal{T} \mathcal{M}$. In addition, we infer

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathfrak{X}_{1}{ }^{C}}^{C} g^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \\
= & -2 a\left(\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)\right) \\
& -b\left(\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)\right) \\
& -b\left(\omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{2}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)\right) \neq 0 . \tag{29}
\end{align*}
$$

As a result, we can say that the connection $\bar{\nabla}$ is an SSNMC.

4. Some calculations on the curvature tensor of the SSNMC of a manifold to its tangent bundle

In [12], De et al. produced the formula for the curvature tensor $\overline{\mathcal{R}}$ of \mathcal{M} with respect to the SSNMC $\bar{\nabla}$ as

$$
\begin{equation*}
\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \mathfrak{X}_{3}=\bar{\nabla}_{\mathfrak{X}_{1}} \bar{\nabla}_{\mathfrak{X}_{2}} \mathfrak{X}_{3}-\bar{\nabla}_{\mathfrak{X}_{2}} \bar{\nabla}_{\mathfrak{X}_{1}} \mathfrak{X}_{3}-\bar{\nabla}_{\left[\mathfrak{X}_{1}, \mathfrak{X}_{2}\right]} \mathfrak{X}_{3}, \tag{30}
\end{equation*}
$$

where $\forall \mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{X}_{3} \in \chi(\mathcal{M})$.
Applying the complete lifts by mathematical operators on (30), we infer

$$
\begin{align*}
& \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C} \\
= & \bar{\nabla}_{\mathfrak{X}_{1} C}^{C} \bar{\nabla}_{\mathfrak{X}_{2}{ }^{C}}^{C} \mathfrak{X}_{3}{ }^{C}-\bar{\nabla}_{\mathfrak{X}_{2} C}^{C} \bar{\nabla}_{\mathfrak{X}_{1}}^{C} \mathfrak{X}_{3}{ }^{C}-\bar{\nabla}_{\left[\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right]}^{C} \mathfrak{X}_{3}{ }^{C} . \tag{31}
\end{align*}
$$

Using (16) in (31), we infer

$$
\begin{aligned}
\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}= & \mathcal{R}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C} \\
& -a\left\{\left(\nabla_{\mathfrak{X}_{2}} \omega\right)^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{3}{ }^{V}+\left(\nabla_{\mathfrak{X}_{2}} \omega\right)^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}\right\} \\
& +a\left\{\left(\nabla_{\mathfrak{X}_{1}} \omega\right)^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{V}+\left(\nabla_{\mathfrak{X}_{1}} \omega\right)^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}\right\} \\
& -b\left\{\left(\nabla_{\mathfrak{X}_{2}} \omega\right)^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\left(\nabla_{\mathfrak{X}_{2}} \omega\right)^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right\} \\
& +b\left\{\left(\nabla_{\mathfrak{X}_{1}} \omega\right)^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\left(\nabla_{\mathfrak{X}_{1}} \omega\right)^{V}\left(\mathfrak{X}_{3}^{C}\right) \mathfrak{X}_{2}{ }^{C}\right\} \\
& +b^{2}\left\{\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right\}-b^{2}\left\{\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}\right. \\
& \left.+\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}^{C}\right\} . \tag{32}
\end{align*}
$$

From (17), we infer
(33) $\left(\bar{\nabla}_{\mathfrak{X}_{1}{ }_{C}}^{C} \mathcal{C}_{1}^{1} \bar{T}^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}\right)=(n-1) \pi^{C}\left(\mathfrak{X}_{2}{ }^{C}\right)=(n-1)(b-a)\left(\bar{\nabla}_{\mathfrak{X}_{1}} \omega\right)^{C}\left(\mathfrak{X}_{2}{ }^{C}\right)$,
where \mathcal{C}_{1}^{1} symbolizes the contraction.
Suppose the torsion tensor \bar{T} with respect to the SSNMC is pseudo symmetric, that is,

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathfrak{X}_{1}{ }_{C}{ }^{C}} \bar{T}^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \\
= & \omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \bar{T}^{V}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \bar{T}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \\
& +\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \bar{T}^{V}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \bar{T}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \\
& +\omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \bar{T}^{V}\left(\mathfrak{X}_{2}^{C}, \mathfrak{X}_{1}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) \bar{T}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{1}^{C}\right) \\
& +g^{C}\left(\bar{T}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right), \mathfrak{X}_{1}{ }^{C}\right) \rho^{V}+g^{C}\left(\bar{T}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right), \mathfrak{X}_{1}{ }^{C}\right) \rho^{V}, \tag{34}
\end{align*}
$$

$$
\text { where } \omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right)=g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \rho^{C}\right) \text {. }
$$

Contracting over \mathfrak{X}_{3} in (34) and using (17), we infer

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathfrak{X}_{1}{ }_{C}}^{C} \mathcal{C}_{1}^{1} \bar{T}^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}\right) \\
= & 4(n-1)(b-a)\left\{\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right)\right\} \\
& -(b-a)\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{2}^{C}\right)+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)\right\} . \tag{35}
\end{align*}
$$

Combining (33) and (35), we infer

$$
\begin{aligned}
& \left(\bar{\nabla}_{\mathfrak{X}_{1}} \omega\right)^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \\
= & 4\left\{\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right)+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
-\frac{1}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{2}{ }^{C}\right)+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right)\right\} . \tag{36}
\end{equation*}
$$

Therefore, from (55) and (36), it follows that

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathfrak{X}_{1}} \omega\right)^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \\
= & (a+b+4)\left\{\omega^{C}\left(\mathfrak{X}_{1}^{C}\right) \omega^{V}\left(\mathfrak{X}_{2}^{C}\right)+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{2}^{C}\right)\right\} \\
& -\frac{1}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{2}^{C}\right)+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{X}_{2}^{C}\right)\right\} . \tag{37}
\end{align*}
$$

From (37), (32) becomes

$$
\begin{aligned}
& \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C} \\
= & \mathcal{R}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}-b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}\right. \\
& \left.+\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right\} \\
& +b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right\} \\
& +\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right. \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right\}-\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}\right. \\
& \left.+\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}^{C}+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}^{C}\right\} . \tag{38}
\end{align*}
$$

From (38), we infer

$$
\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}=-\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C},
$$

and
(39) $\quad \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}+\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}+\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{3}{ }^{C}, \mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}=0$.

The equation (39) represents the first Bianchi identity with respect to the SSNMC $\bar{\nabla}^{C}$.

Applying the inner product of (38) with \mathfrak{u}, we infer

$$
\begin{aligned}
& { }^{\prime} \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right) \\
= & { }^{\prime} \mathcal{R}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}\right) \mathfrak{X}_{3}{ }^{C}-b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& \left.+\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right)+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right)\right\} \\
& +b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& \left.+\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right)+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{u}^{C}\right)\right\} \\
& +\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{u}^{C}\right)\right\} \\
& -\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{u}^{C}\right) \\
(40) \quad & \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{u}^{C}\right)\right\},
\end{aligned}
$$

where
${ }^{\prime} \overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{X}_{3}, \mathfrak{u}\right)=g\left(\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \mathfrak{X}_{3}, \mathfrak{u}\right)$ and ${ }^{\prime} \mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{X}_{3}, \mathfrak{u}\right)=g\left(\mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \mathfrak{X}_{3}, \mathfrak{u}\right)$.
Suppose that $\left\{e_{1}^{C}, \ldots, e_{n}^{C}\right\}$ is an orthonormal basis of $\mathcal{T} \mathcal{M}$. Place $\mathfrak{X}_{1}=\mathfrak{u}=$ e_{i} in (40) and putting summation before $i, 1 \leq i \leq n$, we infer

$$
\begin{align*}
\overline{\mathcal{S}}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)= & \mathcal{S}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)+b\left\{\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right)\right. \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right)\right\} \\
& -b(n-1)(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right)\right. \\
& \left.+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right)\right\}, \tag{41}
\end{align*}
$$

where $\overline{\mathcal{S}}^{C}$ and \mathcal{S}^{C} denote the complete lift of the Ricci tensors $\overline{\mathcal{S}}$ and \mathcal{S}.
The above discussions help us to conclude:
Theorem 4.1. Let $\mathcal{T} \mathcal{M}$ be the tangent bundle of a Riemannian manifold \mathcal{M} endowed with an SSNMC $\bar{\nabla}^{C}$ whose torsion tensor is pseudo symmetric. Then
(i) The curvature tensor $\overline{\mathcal{R}}^{C}$ is given by (40).
(ii) $\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}=-\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}$.
(iii) $\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}+\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}+\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{3}{ }^{C}, \mathfrak{X}_{1}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}=0$.
(iv) The Ricci tensor $\overline{\mathcal{S}}^{C}$ is given by (41).
(v) $\overline{\mathcal{S}}^{C}$ is symmetric.

Let $\overline{\mathcal{R}}^{C}=0$ and put it in (38), we deduce

$$
\begin{align*}
{ }^{\prime} \mathcal{R}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}= & b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right)\right\} \\
& -b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{3}^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right)\right\} \\
& -\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right)\right\} \\
& +\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C} U^{C}\right)\right\} . \tag{42}
\end{align*}
$$

Substituting $a=-4$ in (42), we infer

$$
\begin{align*}
{ }^{\prime} \mathcal{R}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}= & -\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{u}^{C}\right)\right\} \\
& +\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C} U^{C}\right)\right\} . \tag{43}
\end{align*}
$$

This outcome indicates that the manifold is of constant curvature.
Hence, we can make the following statement:

Theorem 4.2. Let $\mathcal{T} \mathcal{M}$ be the tangent bundle of a Riemannian manifold \mathcal{M} endowed with an SSNMC $\bar{\nabla}^{C}$. If the curvature tensor vanishes, that is, $\overline{\mathcal{R}}^{C}=0$ and the torsion tensor is pseudo symmetric, then the manifold \mathcal{M} is of constant curvature with respect to ∇^{C} on $\mathcal{T} \mathcal{M}$ subject to $a=-4$.

5. Proposed theorem on Weyl projective curvature tensor on a Riemannian manifold to its tangent bundles endowed with the SSNMC

The Weyl projective curvature tensor \bar{P} with respect to the SSNMC is given by

$$
\begin{equation*}
\bar{P}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \mathfrak{X}_{3}=\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \mathfrak{X}_{3}-\frac{1}{n-1}\left[\overline{\mathcal{S}}\left(\mathfrak{X}_{2}, \mathfrak{X}_{3}\right) \mathfrak{X}_{1}-\overline{\mathcal{S}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{3}\right) \mathfrak{X}_{2}\right] . \tag{44}
\end{equation*}
$$

Operating the complete lift on (44), we infer

$$
\begin{align*}
\bar{P}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}= & \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C} \\
& -\frac{1}{n-1}\left[\overline{\mathcal{S}}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{V}+\overline{\mathcal{S}}^{V}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{1}{ }^{C}\right] \\
& -\frac{1}{n-1}\left[\overline{\mathcal{S}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{V}+\overline{\mathcal{S}}^{V}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) \mathfrak{X}_{2}{ }^{C}\right] . \tag{45}
\end{align*}
$$

From (45), it follows that

$$
\begin{align*}
{ }^{\prime} \bar{P}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right)= & { }^{\prime} \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right) \\
& -\frac{1}{n-1}\left[\overline{\mathcal{S}}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& \left.+\overline{\mathcal{S}}^{V}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right)\right] \\
& -\frac{1}{n-1}\left[\overline{\mathcal{S}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& \left.+\overline{\mathcal{S}}^{V}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right)\right], \tag{46}
\end{align*}
$$

where ${ }^{\prime} \bar{P}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right)=g^{C}\left(\bar{P}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right)$ for all $\mathfrak{X}_{1}, \mathfrak{X}_{2}$, $\mathfrak{X}_{3}, \mathfrak{u} \in \operatorname{Im}_{0}^{1}(\mathcal{M})$.

From (40) and (41) in (46), we get

$$
\begin{equation*}
' \bar{P}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right)={ }^{\prime} P^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right), \tag{47}
\end{equation*}
$$

where

$$
\begin{align*}
{ }^{\prime} P^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right)= & { }^{\prime} \mathcal{R}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}, \mathfrak{u}^{C}\right) \\
& -\frac{1}{n-1}\left[\mathcal{S}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& \left.+\mathcal{S}^{V}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right)\right] \\
& -\frac{1}{n-1}\left[\mathcal{S}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, \mathfrak{u}^{C}\right)\right. \\
& \left.+\mathcal{S}^{V}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{3}{ }^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right)\right] . \tag{48}
\end{align*}
$$

Thus we have the following:
Theorem 5.1. Let $\mathcal{T} \mathcal{M}$ be the tangent bundle of a Riemannian manifold \mathcal{M} endowed with an SSNMC $\bar{\nabla}^{C}$ whose torsion tensor is pseudo symmetric. Then the Weyl projective curvature tensors with respect to ∇^{C} and ∇^{C} are equal.

6. Proposed theorem on Ricci-semisymmetric manifolds on the tangent bundle

In [12], De et al. produced that a Riemannian manifold is said to Riccisemisymmetric with respect to the ∇ if

$$
\left(\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \cdot \overline{\mathcal{S}}\right)(\mathfrak{u}, W)=0
$$

where $\mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{u}, W \in \chi(\mathcal{M})$.
Applying the complete lift on the above equation, we infer

$$
\begin{align*}
\left(\left(\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \cdot \overline{\mathcal{S}}\right)(\mathfrak{u}, W)\right)^{C}= & \overline{\mathcal{S}}^{C}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{u}^{C}, W^{C}\right) \\
& +\overline{\mathcal{S}}^{C}\left(\mathfrak{u}^{C}, \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}\right) W^{C}\right) . \tag{49}
\end{align*}
$$

From (41) in (49), we infer

$$
\begin{aligned}
\left(\left(\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \cdot \overline{\mathcal{S}}\right)(\mathfrak{u}, W)\right)^{C}= & \mathcal{S}^{C}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{u}^{C}, W^{C}\right) \\
& +\mathcal{S}^{C}\left(\mathfrak{u}^{C}, \overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) W^{C}\right) \\
& +b\left\{\omega^{C}\left(\rho^{C}\right) g^{V}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{u}^{C}, W^{C}\right)\right. \\
& +\omega^{V}\left(\rho^{C}\right) g^{C}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}\right) \mathfrak{u}^{C}, W^{C}\right) \\
& +\omega^{C}\left(\rho^{C}\right) g^{V}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) W^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) g^{C}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}\right) W^{C}, \mathfrak{u}^{C}\right)\right\} \\
& -b(n-1)(a+4)\left[\omega^{C}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) \mathfrak{u}^{C}\right) \omega^{V}\left(W^{C}\right)\right. \\
& +\omega^{V}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}\right) \mathfrak{u}^{C}\right) \omega^{C}\left(W^{C}\right) \\
& +\omega^{C}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}^{C}\right) W^{C}\right) \omega^{V}\left(\mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\overline{\mathcal{R}}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}{ }^{C}\right) W^{C}\right) \omega^{C}\left(\mathfrak{u}^{C}\right)\right] .
\end{aligned}
$$

Using (38) and (50), we infer

$$
\begin{aligned}
\left(\left(\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \cdot \overline{\mathcal{S}}\right)(\mathfrak{u}, W)\right)^{C}= & \left(\left(\mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \cdot \overline{\mathcal{S}}\right)(\mathfrak{u}, W)\right)^{C} \\
& +b\left\{\omega^{C}\left(\rho^{C}\right)\left({ }^{\prime} \mathcal{R}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}, \mathfrak{u}, W\right)\right)^{V}\right. \\
& \left.+\omega^{V}\left(\rho^{C}\right)\left({ }^{\prime} \mathcal{R}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{X}_{2}, \mathfrak{u}, W\right)\right)^{C}\right\} \\
& -\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{V}, W^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) \mathcal{S}^{V}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, W^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right) g^{C}\left(\mathfrak{X}_{1}{ }^{C}, W^{C}\right)\right\}
\end{aligned}
$$

$$
\begin{align*}
& +\frac{b}{n-1}\left\{\omega^{C}\left(\rho^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right) g^{C}\left(\mathfrak{X}_{2}{ }^{V}, W^{C}\right)\right. \\
& +\omega^{C}\left(\rho^{C}\right) \mathcal{S}^{V}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, W^{C}\right) \\
& \left.+\omega^{V}\left(\rho^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{1}{ }^{C}, \mathfrak{u}^{C}\right) g^{C}\left(\mathfrak{X}_{2}^{C}, W^{C}\right)\right\} \\
& -b(n-1)(a+4)\left\{\omega^{C}\left(\mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \mathfrak{u}\right)^{C} \omega^{V}\left(W^{C}\right)\right. \\
& \left.+\omega^{V}\left(\mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \mathfrak{u}\right)^{C} \omega^{C}\left(W^{C}\right)\right\} \\
& -b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{2}^{C}\right) \omega^{C}\left(\mathfrak{u}^{C}\right) \mathcal{S}^{V}\left(\mathfrak{X}_{1}^{C}, W^{C}\right)\right. \\
& +\omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right) \omega^{V}\left(\mathfrak{u}^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{1}{ }^{C}, W^{C}\right) \\
& \left.+\omega^{V}\left(\mathfrak{X}_{2}^{C}\right) \omega^{C}\left(\mathfrak{u}^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{1}^{C}, W^{C}\right)\right\} \\
& +b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{1}^{C}\right) \omega^{C}\left(\mathfrak{u}^{C}\right) \mathcal{S}^{V}\left(\mathfrak{X}_{2}^{C}, W^{C}\right)\right. \\
& +\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{u}^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{2}^{C}, W^{C}\right) \\
& \left.+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{u}^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{2}{ }^{C}, W^{C}\right)\right\} \\
& -b(n-1)(a+4)\left\{\omega^{C}\left(\mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) W\right)^{C} \omega^{V}\left(\mathfrak{u}^{C}\right)\right. \\
& +\omega^{V}\left(\mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) W^{C} \omega^{C}\left(\mathfrak{u}^{C}\right)\right\} \\
& -b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{2}^{C}\right) \omega^{C}\left(W^{C}\right) \mathcal{S}^{V}\left(\mathfrak{X}_{1}^{C}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\mathfrak{X}_{2}^{C}\right) \omega^{V}\left(W^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\mathfrak{X}_{2}^{C}\right) \omega^{C}\left(W^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{1}^{C}, \mathfrak{u}^{C}\right)\right\} \\
& +b(a+4)\left\{\omega^{C}\left(\mathfrak{X}_{1}^{C}\right) \omega^{C}\left(W^{C}\right) \mathcal{S}^{V}\left(\mathfrak{X}_{2}^{C}, \mathfrak{u}^{C}\right)\right. \\
& +\omega^{C}\left(\mathfrak{X}_{1}^{C}\right) \omega^{V}\left(W^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{2}^{C}, \mathfrak{u}^{C}\right) \\
& \left.+\omega^{V}\left(\mathfrak{X}_{1}^{C}\right) \omega^{C}\left(W^{C}\right) \mathcal{S}^{C}\left(\mathfrak{X}_{2}{ }^{C}, \mathfrak{u}^{C}\right)\right\} . \tag{51}
\end{align*}
$$

Setting $a+4=0$ in (51) and from (5.4), we infer

$$
\begin{align*}
& \left(\left(\overline{\mathcal{R}}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \cdot \overline{\mathcal{S}}\right)(\mathfrak{u}, W)\right)^{C} \\
= & \left(\left(\mathcal{R}\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}\right) \cdot \overline{\mathcal{S}}\right)(\mathfrak{u}, W)\right)^{C} \\
& +b \omega^{C}\left(\rho^{C}\right)\left[\left({ }^{\prime} P\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{u}, W\right)\right)^{V}+\left({ }^{(} P\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}, W, \mathfrak{u}\right)\right)^{V}\right] \\
& +b \omega^{V}\left(\rho^{C}\right)\left[\left({ }^{\prime} P\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{u}, W\right)\right)^{C}+\left({ }^{\prime} P\left(\mathfrak{X}_{1}, \mathfrak{X}_{2}, W, \mathfrak{u}\right)\right)^{C}\right] . \tag{52}
\end{align*}
$$

Thus we have the following:

Theorem 6.1. Let $\mathcal{T} \mathcal{M}$ be the tangent bundle of a Riemannian manifold \mathcal{M} endowed with an SSNMC $\bar{\nabla}^{C}$. Then Ricci semi-symmetry of M on $\mathcal{T} \mathcal{M}$ with respect to ∇^{C} and $\bar{\nabla}^{C}$ are equivalent, subject to $a+4=0$ and ρ^{C} is a null vector.

7. Applications

In this section, we have discussed the applications of an irrotational field and geodesics with respect to the Levi-Civita connection and an SSNMC of \mathcal{M} to $\mathcal{T} \mathcal{M}$.

Let us recall the essentials of an irrotational vector field and geodesics.
The vector field ρ is irrotational if $g\left(\mathfrak{X}_{2}, \nabla_{\mathfrak{X}_{1}} \rho\right)=g\left(\mathfrak{X}_{1}, \nabla_{\mathfrak{X}_{2}} \rho\right)$ and the integral curves of the vector field ρ are geodesic if $\nabla_{\rho} \rho=0$.
Definition. The 1 -form ω is closed with respect to ∇ if

$$
\begin{equation*}
\left(\nabla_{\mathfrak{X}_{1}} \omega\right)\left(\mathfrak{X}_{2}\right)-\left(\nabla_{\mathfrak{X}_{2}} \omega\right)\left(\mathfrak{X}_{1}\right)=0 . \tag{53}
\end{equation*}
$$

Theorem 7.1. Let $\mathcal{T} \mathcal{M}$ be the tangent bundle of a Riemannian manifold \mathcal{M} endowed with a semi-symmetric non-metric connection. Then
(i) The 1-form ω^{C} is closed with respect to the Levi-Civita connection ∇ if and only if ω^{C} is closed with respect to the $S S N M C \bar{\nabla}^{C}$ on $\mathcal{T} \mathcal{M}$.
(ii) The vector field ρ^{C} is irrotational with respect to ∇^{C} if and only if ρ^{C} is irrotational with respect to $\bar{\nabla}^{C}$ on $\mathcal{T} \mathcal{M}$.
(iii) The integral curves of the unit vector field ρ^{C} are geodesic with respect to ∇^{C} if and only if the integral curves of the unit vector field ρ^{C} is geodesic with respect to $\bar{\nabla}^{C}$.

Proof. Applying the complete lift on (53), we acquire

$$
\begin{equation*}
\left(\nabla_{\mathfrak{X}_{1} C}^{C} \omega^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}\right)-\left(\nabla_{\mathfrak{X}_{2} C}^{C} \omega^{C}\right)\left(\mathfrak{X}_{1}{ }^{C}\right)=0 . \tag{54}
\end{equation*}
$$

In view of (16), we deduce

$$
\begin{align*}
\left(\bar{\nabla}_{\mathfrak{X}_{1}{ }^{C}} \omega^{C}\right)\left(\mathfrak{X}_{2}^{C}\right)= & \left(\nabla_{\left.\mathfrak{X}_{1}{ }_{C} \omega^{C}\right)\left(\mathfrak{X}_{2}^{C}\right)-(a+b)\left\{\omega^{C}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{V}\left(\mathfrak{X}_{2}{ }^{C}\right)\right.}\right. \\
& \left.+\omega^{V}\left(\mathfrak{X}_{1}{ }^{C}\right) \omega^{C}\left(\mathfrak{X}_{2}{ }^{C}\right)\right\} . \tag{55}
\end{align*}
$$

From (55), we deduce

$$
\begin{align*}
& \left(\bar{\nabla}_{\mathfrak{X}_{1} C}^{C} \omega^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}\right)-\left(\bar{\nabla}_{\mathfrak{X}_{2}{ }^{C}}^{C} \omega^{C}\right)\left(\mathfrak{X}_{1}{ }^{C}\right) \\
= & \left(\nabla_{\mathfrak{X}_{1} C}^{C} \omega^{C}\right)\left(\mathfrak{X}_{2}{ }^{C}\right)-\left(\nabla_{\mathfrak{X}_{2} C}^{C} \omega^{C}\right)\left(\mathfrak{X}_{1}{ }^{C}\right) . \tag{56}
\end{align*}
$$

Thus the proof of (i) is completed.
Setting $\mathfrak{X}_{2}=\rho$ in (16), we provide

$$
\begin{align*}
\bar{\nabla}_{\mathfrak{X}_{1} C}^{C} \rho^{C}= & \nabla_{\mathfrak{X}_{1} C}^{C} \rho^{C}+a\left(\omega^{C}\left(\mathfrak{X}_{1}^{C}\right) \rho^{V}+\omega^{V}\left(\mathfrak{X}_{1}^{C}\right) \rho^{C}\right) \\
& +b\left(\omega^{C}\left(\rho^{C}\right) \mathfrak{X}_{1}{ }^{V}+\omega^{V}\left(\rho^{C}\right) \mathfrak{X}_{1}{ }^{C}\right) . \tag{57}
\end{align*}
$$

The equation (57) yields

$$
\begin{aligned}
& g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \bar{\nabla}_{\mathfrak{X}_{1} C}^{C} \rho^{C}\right)-g^{C}\left(\mathfrak{X}_{1}{ }^{C}, \bar{\nabla}_{\mathfrak{X}_{2}{ }^{C}}^{C} \rho^{C}\right) \\
= & g^{C}\left(\mathfrak{X}_{2}{ }^{C}, \nabla_{\mathfrak{X}_{1} C}^{C} \rho^{C}\right)-g^{C}\left(\mathfrak{X}_{1}^{C}, \nabla_{\mathfrak{X}_{2}{ }^{C}}^{C} \rho^{C}\right) .
\end{aligned}
$$

Thus the proof of (ii) is completed.
Setting $\mathfrak{X}_{1}=\rho$ in (57), we deduce

$$
\begin{equation*}
\bar{\nabla}_{\rho^{C}}^{C} \rho^{C}=\nabla_{\rho^{C}}^{C} \rho^{C}+(a+b)\left(\omega^{C}\left(\rho^{C}\right) \rho^{V}+\omega^{V}\left(\rho^{C}\right) \rho^{C}\right) \tag{58}
\end{equation*}
$$

If $a+b=0$, then from (58), it follows that

$$
\bar{\nabla}_{\rho^{C}}^{C} \rho^{C}=\nabla_{\rho^{C}}^{C} \rho^{C}
$$

Thus the proof of (iii) is completed.
Acknowledgment. Researcher would like to thank the Deanship of Scientific Research, Qassim University, for funding publication of this project.

References

[1] N. S. Agashe and M. R. Chafle, A semi-symmetric nonmetric connection on a Riemannian manifold, Indian J. Pure Appl. Math. 23 (1992), no. 6, 399-409.
[2] R. C. Akpinar, Weyl connection on tangent bundle of hypersurface, Int. J. Maps Math. 4 (2021), no. 1, 2-13.
[3] M. Altunbas, L. Bilen, and A. Gezer, Remarks about the Kaluza-Klein metric on tangent bundle, Int. J. Geom. Methods Mod. Phys. 16 (2019), no. 3, 1950040, 13 pp. https: //doi.org/10.1142/S0219887819500403
[4] M. Altunbas and C. Şengül, Metallic structures on tangent bundles of Lorentzian paraSasakian manifolds, Journal of Mahani Mathematical Research, 12 (2023), no. 1, 137149.
[5] O. C. Andonie, On semi-symmetric non-metric connection on a Riemannian manifold, Ann. Fac. Sci. De Kinshasa, Zaire Sect. Math. Phys. 2 (1976).
[6] T. Q. Binh, On semi-symmetric connections, Period. Math. Hungar. 21 (1990), no. 2, 101-107. https://doi.org/10.1007/BF01946849
[7] S. C. Biswas and U. C. De, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Ganita 48 (1997), no. 2, 91-94.
[8] M. C. Chaki, On pseudo symmetric manifolds, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Secţ. I a Mat. 33 (1987), no. 1, 53-58.
[9] L. S. K. Das and M. N. I. Khan, Almost r-contact structures on the tangent bundle, Differ. Geom. Dyn. Syst. 7 (2005), 34-41.
[10] L. S. K. Das and M. N. I. Khan, Symmetric and Ricci LP-Sasakian manifold, Math. Sci. Research J. 17 (2013) no. 10, 263-268.
[11] L. S. K. Das, R. Nivas, and M. N. I. Khan, On submanifolds of codimension 2 immersed in a Hsu-quaternion manifold, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 25 (2009), no. 1, 129-135.
[12] U. C. De, Y. Han, and P. Zhao, A special type of semi-symmetric non-metric connection on a Riemannian manifold, Facta Univ. Ser. Math. Inform. 31 (2016), no. 2, 529-541.
[13] M. H. Dida and F. Hathout, Ricci soliton on the tangent bundle with semi-symmetric metric connection, Bull. Transilv. Univ. Braşov Ser. III. Math. Comput. Sci. 1(63) (2021), no. 2, 37-52.
[14] M. H. Dida, F. Hathout, and M. Djaa, On the geometry of the second order tangent bundle with the diagonal lift metric, Int. J. Math. Anal. (Ruse) 3 (2009), no. 9-12, 443-456.
[15] M. H. Dida and A. Ikemakhen, A class of metrics on tangent bundles of pseudoRiemannian manifolds, Arch. Math. (Brno) 47 (2011), no. 4, 293-308.
[16] A. Friedmann and J. A. Schouten, Über die Geometrie der halbsymmetrischen Übertragungen, Math. Z. 21 (1924), no. 1, 211-223. https://doi.org/10.1007/ BF01187468
[17] H. A. Hayden, Sub-spaces of a space with torsion, Proc. London Math. Soc. (2) 34 (1932), no. 1, 27-50. https://doi.org/10.1112/plms/s2-34.1.27
[18] A. Kazan and H. B. Karadağ, Locally decomposable golden Riemannian tangent bundles with Cheeger-Gromoll metric, Miskolc Math. Notes 17 (2016), no. 1, 399-411. https: //doi.org/10.18514/MMN.2016.1534
[19] M. N. I. Khan, Quarter-symmetric semi-metric connection on Sasakian manifold, Tensor (N.S.) 68 (2007), no. 2, 154-157.
[20] M. N. I. Khan, Lifts of hypersurfaces with quarter-symmetric semi-metric connection to tangent bundles, Afr. Mat. 25 (2014), no. 2, 475-482. https://doi.org/10.1007/ s13370-013-0150-x
[21] M. N. I. Khan, Lift of semi-symmetric non-metric connection on a Kähler manifold, Afr. Mat. 27 (2016), no. 3-4, 345-352. https://doi.org/10.1007/s13370-015-0350-7
[22] M. N. I. Khan, Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold, Chaos, Solitons \& Fractals 146 (2021), 110872.
[23] M. N. I. Khan, Proposed theorems for lifts of the extended almost complex structures on the complex manifold, Asian-Eur. J. Math. 15 (2022), no. 11, Paper No. 2250200, 13 pp. https://doi.org/10.1142/S179355712250200X
[24] M. N. I. Khan and U. C. De, Liftings of metallic structures to tangent bundles of order r, AIMS Math. 7 (2022), no. 5, 7888-7897. https://doi.org/10.3934/math. 2022441
[25] M. N. I. Khan and U. C. De, Lifts of metallic structure on a cross-section, Filomat 36 (2022), no. 18, 6369-6373.
[26] M. N. I. Khan, U. C. De, and L. S. Velimirovic, Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle, Mathematics 11 (2023), 53.
[27] Y. X. Liang, On semi-symmetric recurrent-metric connection, Tensor (N.S.) 55 (1994), no. 2, 107-112.
[28] P. Pandey and B. B. Chaturvedi, On a Kähler manifold equipped with lift of quarter symmetric non-metric connection, Facta Univ. Ser. Math. Inform. 33 (2018), no. 4, 539-546.
[29] E. Peyghan, F. Firuzi, and U. C. De, Golden Riemannian structures on the tangent bundle with g-natural metrics, Filomat 33 (2019), no. 8, 2543-2554.
[30] M. S. Prvanović, On pseudo metric semi-symmetric connections, Publ. Inst. Math. (Beograd) (N.S.) 18(32) (1975), 157-164.
[31] R. N. Singh and G. Pandey, On the W_{2}-curvature tensor of the semi-symmetric nonmetric connection in a Kenmotsu manifold, Novi Sad J. Math. 43 (2013), no. 2, 91-105.
[32] D. Smaranda and O. C. Andonie, On semi-symmetric connection, Ann. Fac. Sci. Univ. Nat. Zaï re (Kinshasa) Sect. Math.-Phys. 2 (1976), no. 2, 265-270.
[33] M. Tani, Prolongations of hypersurfaces to tangent bundles, Kodai Math. Sem. Rep. 21 (1969), 85-96. http://projecteuclid.org/euclid.kmj/1138845833
[34] L. S. Velimirović, S. M. Minčić, and M. Stanković, Infinitesimal deformations of curvature tensors at non-symmetric affine connection space, Mat. Vesnik 54 (2002), no. 3-4, 219-226.
[35] L. S. Velimirović, S. M. Minčić, and M. Stanković, Infinitesimal deformations and Lie derivative of a non-symmetric affine connection space, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 42 (2003), 111-121.
[36] K. Yano, On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
[37] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Mathematics Studies, No. 32, Princeton Univ. Press, Princeton, NJ, 1953.
[38] K. Yano and S. Ishihara, Tangent and cotangent bundles: differential geometry, Pure and Applied Mathematics, No. 16, Marcel Dekker, Inc., New York, 1973.
[39] F. Ö. Zengin, S. A. Uysal, and S. A. Demirbağ, On sectional curvature of a Riemannian manifold with semi-symmetric metric connection, Ann. Polon. Math. 101 (2011), no. 2, 131-138. https://doi.org/10.4064/ap101-2-3
[40] P. Zhao, Invariant of projective transformation of semisymmetric metric-recurrent connections and curvature tensor expressions, J. Engineering Math. 17 (2000), no. 2, 105108.
[41] P. Zhao, H. Z. Song, and X. P. Yang, Some invariant properties of semi-symmetric metric recurrent connections and curvature tensor expressions, Chinese Quart. J. Math. 19 (2004), no. 4, 355-361.

Uday Chand De
Department of Pure Mathematics
University of Calcutta 35, Ballygaunge Circular Road
Kolkata 700019, West Bengal, India
Email address: uc_de@yahoo.com
Mohammad Nazrul Islam Khan
Department of Computer Engineering
College of Computer
Qassim University
Buraydah 51452, Saudi Arabia
Email address: m.nazrul@qu.edu.sa

[^0]: Received January 13, 2023; Accepted May 9, 2023.
 2020 Mathematics Subject Classification. Primary 53C05, 53C25, 58A30.
 Key words and phrases. Complete lift, tangent bundle, semi-symmetric non-metric connection, curvature tensor, Weyl curvature tensor, mathematical operators, Ricci tensor, Riccisemisymmetric, partial differential equations.

