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Abstract. An almost Yamabe soliton is a generalization of the Yamabe soliton. In

this article, we deduce some results regarding almost gradient Yamabe solitons. More

specifically, we show that a compact almost gradient Yamabe soliton having non-negative

Ricci curvature is trivial. Again, we prove that an almost gradient Yamabe soliton with a

non-negative potential function and scalar curvature bound admitting an integral condition

is trivial. Moreover, we give a characterization of a compact almost gradient Yamabe

solitons.

1. Introduction

Barbosa and Ribeiro [1] laid the foundation of almost Yamabe solitons. A com-
plete Riemannian manifold (Mn, g) of dimension n is known as an almost Yamabe
soliton if there is a complete vector field X on M as well as λ ∈ C∞(M) so that

1

2
£Xg = (R− λ)g,

where the notation R denotes the scalar curvature of g. If X becomes the gradient
vector field of some smooth function u on M , then the above equation reduces to
the following:

(1.1) ∇2u = (R− λ)g,

* Corresponding Author.
Received May 18, 2023; revised July 20, 2023; accepted July 24, 2023.
2020 Mathematics Subject Classification: 53C20, 53C21, 53E20.
Key words and phrases: Almost Yamabe soliton, Ricci curvature, Riemannian manifold.
The third author expresses gratitude to the UGC-NFSC for the Junior Research Fellow
award.

639



640 U. C. De, P. Sarkar and M. Howlader

where ∇2 denotes the Hessian operator. In this case, the almost Yamabe soliton
is known as the almost gradient Yamabe soliton and is denoted by (Mn, g, u, λ).
The functions u and λ are called the potential function and the soliton function,
respectively. If λ is a constant, then the almost Yamabe soliton takes the form of the
Yamabe soliton, which is a special type soliton to the Yamabe flow, introduced by
Hamilton [10] in studying the Yamabe metric on a compact Riemannian manifold.
For more work related to almost Yamabe solitons see [5, 6, 7]. All the manifolds in
this article are taken without boundary.

Curvature estimation in Yamabe solitons is an active field of research in the
area of differential geometry. In the case of compact Yamabe solitons, the scalar
curvature can be fully estimated. Daskalopoulos and Sesum [4] first showed that in
a compact gradient Yamabe soliton, the scalar curvature is constant. Later, Hsu
[11] gave a shorter proof by showing that scalar curvature equals to the soliton
constant. Barbosa and Ribeiro [1] proved that it is not possible for a compact
Riemannian manifold with negative Ricci curvature to satisfy the nontrivial almost
Yamabe soliton condition. For more work on Yamabe solitons see [3, 8, 12, 13]. In
this paper, it is shown that a compact almost gradient Yamabe soliton admitting
non-negative Ricci curvature is trivial. Our main results are the followings:

Theorem 1.1. Suppose (Mn, g, u, λ) is an n-dimensional (n ≥ 3) compact ori-
entable non-trivial almost gradient Yamabe soliton. If the Ricci curvature is non-
negative, then the soliton is trivial.

Theorem 1.2. Let (Mn, g, u, λ) be an n-dimensional (n ≥ 3) almost gradient Yam-
abe soliton with R ≥ λ and u ≥ 0. Then (Mn, g, u, λ) becomes trivial, if the following
condition holds

lim
r→∞

1

r

∫
Bp(r)

u2dv < ∞,

where Bp(r) indicates an open ball with radius r > 0 and center at p.

Since the subharmonic property of a smooth convex function is indicated by its
convexity [9], the following corollary can be easily drawn:

Corollary 1.1. Let (Mn, g, u, λ) be an n-dimensional (n ≥ 3) almost gradient
Yamabe soliton with non-negative convex potential function u. Then (Mn, g, u, λ)
becomes trivial, if the following condition holds

lim
r→∞

1

r

∫
Bp(r)

u2dv < ∞,

where Bp(r) indicates an open ball with radius r > 0 and center at p.

Theorem 1.3. Suppose (Mn, g, u, λ) is a compact n-dimensional (n ≥ 3) almost
gradient Yamabe soliton having non-negative Ricci curvature. Then, maxM (λ) ≥ 0.

From the above theorem, the following corollary follows immediately:
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Corollary 1.2. Suppose (Mn, g, u, λ) is a compact n-dimensional (n ≥ 3) gradient
Yamabe soliton having non-negative Ricci curvature. Then, the soliton is non-
expanding, i.e., λ ≥ 0.

2. Proofs

To prove Theorem 1.1, the following lemmas are required.

Lemma 2.1. ([1]) Suppose (Mn, g, u, λ) is a almost gradient Yamabe soliton, then

1. (R− λ)n = ∆u,

2. if M is compact and
∫
M
⟨∇λ,∇u⟩ ≥ 0, then the soliton is trivial.

Lemma 2.2. ([2]) Consider a compact Riemannian manifold admitting a conformal
vector field X, the following identity satisfies:∫

M

X ·Rdv = 0.

Proof. [Proof of Theorem 1.1]
As the Ricci curvature satisfies the non-negativity condition everywhere in M , we
can choose a constant K ≥ 0 such that

Ric ≥ (n− 1)K.

Consider the following smooth function defined on M

Q = |∇u|2 + 1

n
u2.

By using Ricci identity and the summation convention on repeated indices, we
compute

∆Q =
(
2ujuji +

2

n
uui

)
i

= 2u2
ji + 2ujujii +

2

n
u2
i +

2

n
u(∆u)

≥ 2u2
ii + 2Rijuiuj + 2uj(∆u)j +

2

n
|∇u|2 + 2

n
u(∆u)

≥ 2(uii)
2

n
+ 2Rijuiuj + 2uj(∆u)j +

2

n
|∇u|2 + 2

n
u(∆u)

≥ 2(n− 1)K|∇u|2 + 2nuj(R− λ)j +
2

n
|∇u|2 + 2

n

(1
2
∆(u2)− |∇u|2

)
≥ 2K|∇u|2 + 2uj(R− λ)j +

1

n
∆(u2)

= 2K|∇u|2 + 2n⟨∇R,∇u⟩ − 2n⟨∇λ,∇u⟩+ 1

n
∆(u2).(2.1)
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Again, the manifold is closed. Hence, Stokes theorem implies

(2.2)

∫
M

∆Qdv = 0.

Now, (2.1) and (2.2) together imply that

0 ≥
∫
M

{
2K|∇u|2 + 2n⟨∇R,∇u⟩ − 2n⟨∇λ,∇u⟩+ 1

n
∆(u2)

}
dv

= 2K

∫
M

|∇u|2 + 2n

∫
M

⟨∇R,∇u⟩ − 2n

∫
M

⟨∇λ,∇u⟩

= 2K

∫
M

|∇u|2 − 2n

∫
M

⟨∇λ,∇u⟩.

In the above inequality, we have used lemma 2.2 and the Divergence theorem.
Hence, we get

(2.3) n

∫
M

⟨∇λ,∇u⟩ ≥ K

∫
M

|∇u|2.

According to our assumption K ≥ 0, which implies that

(2.4)

∫
M

⟨∇λ,∇u⟩ ≥ 0,

which shows that, according to the lemma 2.1, the soliton is trivial.

Proof. [Proof of Theorem 1.2]
Putting the inequality R ≥ λ in the first equation of lemma 2.1, we get ∆u ≥ 0,
i.e., u is subharmonic. Consider a cut-off function φ ∈ C∞

0 (p, 2r) such that
0 ≤ φ ≤ 1 in Bp(2r)

φ = 1 in Bp(r)

φ = 0 on ∂Bp(2r)

|∇φ| ≤ C/2r in Bp(2r).

Using the product rule of Laplacian operator,

∆(u2) = 2u∆u+ 2|∇u|2,

we get

0 ≤ 2

∫
Bp(2r)

φ2u∆udv

= −2

∫
Bp(2r)

φ2|∇u|2dv +
∫
Bp(2r)

φ2∆(u2)dv

= −2

∫
Bp(2r)

φ2|∇u|2dv −
∫
Bp(2r)

⟨∇φ2,∇u2⟩dv

= −2

∫
Bp(2r)

φ2|∇u|2dv −
∫
Bp(2r)

φu⟨∇φ,∇u⟩dv.



Gradient Almost Yamabe Solitons 643

The Hölder inequality and the above inequality together imply that

∫
Bp(2r)

φ2|∇u|2dv ≤ −
∫
Bp(2r)

φu⟨∇φ,∇u⟩dv

≤
(∫

Bp(2r)

φ2|∇u|2dv
)1/2(∫

Bp(2r)

u2|∇φ|2dv
)1/2

.

It follows that ∫
Bp(2r)

|∇u|2dv ≤
∫
Bp(2r)

φ2|∇u|2dv

≤ 2

∫
Bp(2r)

u2|∇φ|2dv

≤ C

r2

∫
Bp(2r)

u2dv.

Now taking limit in both sides, we get

lim
r→∞

∫
Bp(2r)

|∇u|2dv ≤ 0,

which implies that u is constant and the almost Yamabe soliton becomes trivial.

Proof. [Proof of Theorem 1.3]
Let p ∈ M . Now choose an orthonormal basis {e1, · · · , en} of TpM in such a way
that

Ricp(ei) = µiei ∀i = 1, 2, · · · , n,

where each µi’s is non-zero real number. Then, for any v ∈ Sn−1, we have

v = xiei.

Therefore,

n∑
i=1

x2
i = 1, and Rp =

n∑
i=1

µi.
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Now, using the Stokes theorem, we calculate∫
M

∫
v∈Sn−1

Ricp(v)dsdv =

∫
M

∫
x∈Sn−1

n∑
i=1

x2
iµ

2
i dxdv

=

∫
M

{ n∑
i=1

µ2
i

∫
x∈Sn−1

x2
i dx

}
dv

=
V ol(Sn−1)

n

∫
M

R(p)dv

=
V ol(Sn−1)

n

∫
M

{∆u

n
+ λ

}
dv

≤ V ol(Sn−1)

n
max M (λ)V ol(M).

Since the left hand side is non-negative, it shows that max M (λ) ≥ 0.

Acknowledgements. We would like to thank the referees and the editor for re-
viewing the paper carefully and for their valuable comments to improve the quality
of the paper.

References

[1] E. Barbosa and E. Ribeiro, On conformal solutions of the Yamabe flow, Arch. Math.,
101(1)(2013), 79–89.

[2] J. P. Bourguignon and J. P. Ezin, Scalar curvature functions in a conformal class
of metrics and conformal transformations, Trans. Amer. Math. Soc., 301(2)(1987),
723–736.

[3] B-Y. Chen and S. Deshmukh, Yamabe and Quasi-Yamabe Solitons on Euclidean Sub-
manifolds, Mediterr. J. Math., 15(194)(2018), 1–9.

[4] P. Daskalopoulos and N. Sesum, The classification of locally conformally flat Yamabe
solitons, Adv. Math., 240(2013), 346–369.

[5] K. De, and U. C. De, Almost quasi-Yamabe solitons and gradient almost quasi-Yamabe
solitons in paracontact geometry, Quaest. Math., 44(11)(2021), 1429–1440.

[6] U. C. De and Y. J. Suh, Yamabe and quasi-Yamabe solitons in paracontact metric
manifolds, Int. J. Geom. Methods Mod. Phys., 18(12)(2021), 9 pp.

[7] U. C. De, S. K. Chaubey and Y. J. Suh, Gradient Yamabe and Gradient m-Quasi
Einstein Metrics on Three-dimensional Cosymplectic Manifolds, Mediterr. J. Math.,
18 (2021), 1–14.

[8] S. Deshmukh and B-Y. Chen, A note on Yamabe solitons, Balkan J. Geom. Appl.,
23(1)(2018), 37–43.

[9] R. E. Greene and H. Wu, On the subharmonicity and plurisubharmonicity of a geodesic
convex function, Indiana Univ. Math. J., 22(1971), 641–653.



Gradient Almost Yamabe Solitons 645

[10] R. Hamilton, The Ricci flow on surfaces, Contem. Math., 71(1988), 237–261.

[11] S-Y. Hsu, A note on compact gradient Yamabe solitons, J. Math. Ann. Appl.,
388(2012), 725–726.

[12] Y. Wang, Yamabe solitons on three-dimensional Kenmotsu manifolds, Bull. Belg.
Math. Soc. Simon Stevin, 23(2016), 345–355.

[13] Y. Wang, Almost Kenmotsu (k, µ)′-manifolds with Yamabe solitons, RACSAM,
115(2021).


