• 제목/요약/키워드: R.M.R

검색결과 16,507건 처리시간 0.043초

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • 대한수학회보
    • /
    • 제20권1호
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

SOME RESULTS ON PP AND PF-MODULES

  • KHAKSARI, AHMAD
    • 호남수학학술지
    • /
    • 제28권3호
    • /
    • pp.377-386
    • /
    • 2006
  • For a commutative ring with unity R, it is proved that R is a PF-ring if and only if the annihilator, $ann_R(a)$, for each $a{\in}R$ is a pure ideal in R. Also it is proved that the polynomial ring, R[x], is a PF-ring if and only if R is a PF-ring. Finally, we prove that M as an R-module is PF-module if and only if M[x] is a PF R[x]-module. Also M is a PP R-module if and only if M[x] is a PP R[x]-module.

  • PDF

ON Φ-FLAT MODULES AND Φ-PRÜFER RINGS

  • Zhao, Wei
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1221-1233
    • /
    • 2018
  • Let R be a commutative ring with non-zero identity and let NN(R) = {I | I is a nonnil ideal of R}. Let M be an R-module and let ${\phi}-tor(M)=\{x{\in}M{\mid}Ix=0\text{ for some }I{\in}NN(R)\}$. If ${\phi}or(M)=M$, then M is called a ${\phi}$-torsion module. An R-module M is said to be ${\phi}$-flat, if $0{\rightarrow}{A{\otimes}_R}\;{M{\rightarrow}B{\otimes}_R}\;{M{\rightarrow}C{\otimes}_R}\;M{\rightarrow}0$ is an exact R-sequence, for any exact sequence of R-modules $0{\rightarrow}A{\rightarrow}B{\rightarrow}C{\rightarrow}0$, where C is ${\phi}$-torsion. In this paper, the concepts of NRD-submodules and NP-submodules are introduced, and the ${\phi}$-flat modules over a ${\phi}-Pr{\ddot{u}}fer$ ring are investigated.

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • 대한수학회지
    • /
    • 제53권2호
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

THE APPLICATIONS OF ADDITIVE MAP PRESERVING IDEMPOTENCE IN GENERALIZED INVERSE

  • Yao, Hongmei;Fan, Zhaobin;Tang, Jiapei
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.541-547
    • /
    • 2008
  • Suppose R is an idempotence-diagonalizable ring. Let n and m be two arbitrary positive integers with $n\;{\geq}\;3$. We denote by $M_n(R)$ the ring of all $n{\times}n$ matrices over R. Let ($J_n(R)$) be the additive subgroup of $M_n(R)$ generated additively by all idempotent matrices. Let ($D=J_n(R)$) or $M_n(R)$. In this paper, by using an additive idem potence-preserving result obtained by Coo (see [4]), I characterize (i) the additive preservers of tripotence from D to $M_m(R)$ when 2 and 3 are units of R; (ii) the additive preservers of inverses (respectively, Drazin inverses, group inverses, {1}-inverses, {2}-inverses, {1, 2}-inverses) from $M_n(R)$ to $M_n(R)$ when 2 and 3 are units of R.

  • PDF

COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO IDEALS OF DIMENSION ONE

  • Roshan-Shekalgourabi, Hajar
    • 호남수학학술지
    • /
    • 제40권2호
    • /
    • pp.211-218
    • /
    • 2018
  • Let R be a commutative Noetherian ring, a be an ideal of R and M be an R-module. It is shown that if $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}{\dim}\;M$, then the R-module $Ext^i_R(N,M)$ is minimax for all $i{\geq}0$ and for any finitely generated R-module N with $Supp_R(N){\subseteq}V(a)$ and dim $N{\leq}1$. As a consequence of this result we obtain that for any a-torsion R-module M that $Ext^i_R(R/a,M)$ is minimax for all $i{\leq}dim$ M, all Bass numbers and all Betti numbers of M are finite. This generalizes [8, Corollary 2.7]. Also, some equivalent conditions for the cominimaxness of local cohomology modules with respect to ideals of dimension at most one are given.

A NOTE ON MONOFORM MODULES

  • Hajikarimi, Alireza;Naghipour, Ali Reza
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.505-514
    • /
    • 2019
  • Let R be a commutative ring with identity and M be a unitary R-module. A submodule N of M is called a dense submodule if $Hom_R(M/N,\;E_R(M))=0$, where $E_R(M)$ is the injective hull of M. The R-module M is said to be monoform if any nonzero submodule of M is a dense submodule. In this paper, among the other results, it is shown that any kind of the following module is monoform. (1) The prime R-module M such that for any nonzero submodule N of M, $Ann_R(M/N){\neq}Ann_R(M)$. (2) Strongly prime R-module. (3) Faithful multiplication module over an integral domain.

THE STRUCTURE OF SEMIPERFECT RINGS

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제45권2호
    • /
    • pp.425-433
    • /
    • 2008
  • Let R be a ring with identity $1_R$ and let U(R) denote the group of all units of R. A ring R is called locally finite if every finite subset in it generates a finite semi group multiplicatively. In this paper, some results are obtained as follows: (1) for any semilocal (hence semiperfect) ring R, U(R) is a finite (resp. locally finite) group if and only if R is a finite (resp. locally finite) ring; U(R) is a locally finite group if and only if U$(M_n(R))$ is a locally finite group where $M_n(R)$ is the full matrix ring of $n{\times}n$ matrices over R for any positive integer n; in addition, if $2=1_R+1_R$ is a unit in R, then U(R) is an abelian group if and only if R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set of all idempotents in R, is commuting, then $R/J\cong\oplus_{i=1}^mD_i$ where each $D_i$ is a division ring for some positive integer m and |E(R)|=$2^m$; in addition, if 2=$1_R+1_R$ is a unit in R, then every idempotent is central.

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS

  • Rejeb, Chaabane
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1981-1990
    • /
    • 2017
  • Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.