Browse > Article
http://dx.doi.org/10.4134/BKMS.b160675

VOLUME MEAN OPERATOR AND DIFFERENTIATION RESULTS ASSOCIATED TO ROOT SYSTEMS  

Rejeb, Chaabane (Universite de Tunis El Manar Faculte des Sciences de Tunis Laboratoire d'Analyse Mathematiques et Applications LR11ES11)
Publication Information
Bulletin of the Korean Mathematical Society / v.54, no.6, 2017 , pp. 1981-1990 More about this Journal
Abstract
Let R be a root system in $\mathbb{R}^d$ with Coxeter-Weyl group W and let k be a nonnegative multiplicity function on R. The generalized volume mean of a function $f{\in}L^1_{loc}(\mathbb{R}^d,m_k)$, with $m_k$ the measure given by $dmk(x):={\omega}_k(x)dx:=\prod_{{\alpha}{\in}R}{\mid}{\langle}{\alpha},x{\rangle}{\mid}^{k({\alpha})}dx$, is defined by: ${\forall}x{\in}\mathbb{R}^d$, ${\forall}r$ > 0, $M^r_B(f)(x):=\frac{1}{m_k[B(0,r)]}\int_{\mathbb{R}^d}f(y)h_k(r,x,y){\omega}_k(y)dy$, where $h_k(r,x,{\cdot})$ is a compactly supported nonnegative explicit measurable function depending on R and k. In this paper, we prove that for almost every $x{\in}\mathbb{R}^d$, $lim_{r{\rightarrow}0}M^r_B(f)(x)= f(x)$.
Keywords
generalized volume mean value operator; harmonic kernel; Dunkl-Laplace operator; Dunkl transform;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991), 123-138, Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992.
2 C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several variables, Cambridge Univ. Press, 2001.
3 L. Gallardo and C. Rejeb, Proprietes de moyenne pour les fonctions harmoniques et polyharmoniques au sens de Dunkl, C. R. Acad. Sci. Paris 353 (2015), no. 2, 105-109.   DOI
4 L. Gallardo, A new mean value property for harmonic functions relative to the Dunkl- Laplacian operator and applications, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3727-3753.
5 L. Gallardo, Support properties of the intertwining and the mean value operators in Dunkl theory, To appear in Proceedings of the AMS. hal-01331693.
6 J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, 1990.
7 M. F. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147-162.   DOI
8 R. Kane, Reflection Groups and Invariant Theory, CMS Books in Mathematics. Springer-Verlag, New York, 2001.
9 E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333-373.
10 M. Rosler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), no. 3, 445-463.   DOI
11 M. Rosler, Dunkl Operators: Theory and Applications, Orthogonal polynomials and special functions (Leuven, 2002), 93-135, Lecture Notes in Math., 1817, Springer, Berlin, 2003.
12 E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration and Hilbert Spaces, Princeton University Press, 2005.
13 C. F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227.   DOI
14 S. Thangavelu and Y. Xu, Convolution operator and maximal function for Dunkl transform, J. Anal. Math. 97 (2005), 25-56.   DOI
15 K. Trimeche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform. Spec. Funct. 12 (2001), no. 4, 394-374.
16 K. Trimeche, Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators, Integral Transform Spec. Func. 13 (2002), no. 1, 17-38.   DOI
17 L. Deleaval, Two results on the Dunkl maximal operator, Studia Math. 203 (2011), no. 1, 47-68.   DOI