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RAD-SUPPLEMENTING MODULES

Salahattin Özdemir

Abstract. Let R be a ring, and let M be a left R-module. If M is Rad-
supplementing, then every direct summand of M is Rad-supplementing,
but not each factor module of M . Any finite direct sum of Rad-supple-
menting modules is Rad-supplementing. Every module with composition
series is (Rad-)supplementing. M has a Rad-supplement in its injective
envelope if and only if M has a Rad-supplement in every essential ex-
tension. R is left perfect if and only if R is semilocal, reduced and the
free left R-module (RR)(N) is Rad-supplementing if and only if R is re-

duced and the free left R-module (RR)(N) is ample Rad-supplementing.
M is ample Rad-supplementing if and only if every submodule of M is
Rad-supplementing. Every left R-module is (ample) Rad-supplementing
if and only if R/P (R) is left perfect, where P (R) is the sum of all left
ideals I of R such that Rad I = I.

1. Introduction

All rings consider in this paper will be associative with an identity element.
Unless otherwise stated, R denotes an arbitrary ring and all modules will be left
unitary R-modules. For a module M , by X ⊆ M , we mean X is a submodule
of M or M is an extension of X . As usual, RadM denotes the radical of M
and J denotes the Jacobson radical of the ring R. E(M) will be the injective
envelope of M . For an index set I, M (I) denotes the direct sum ⊕IM . By N,
Z and Q we denote as usual the set of natural numbers, the ring of integers
and the field of rational numbers, respectively. A submodule K ⊆ M is called
small in M (denoted by K ≪ M) if M 6= K + T for every proper submodule
T of M . Dually, a submodule L ⊆ M is called essential in M (denoted by
L E M) if L ∩X 6= 0 for every nonzero submodule X of M .

The notion of a supplement submodule was introduced in [12] in order to
characterize semiperfect modules, that is projective modules whose factor mod-
ules have projective cover. For submodules U and V of a module M , V is said
to be a supplement of U in M or U is said to have a supplement V in M if
U + V = M and U ∩ V ≪ V . The module M is called supplemented if every
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submodule of M has a supplement in M . See [19, §41] and [9] for results and
the definitions related to supplements and supplemented modules. Recently,
several authors have studied different generalizations of supplemented modules.
In [1], τ -supplemented modules were defined for an arbitrary preradical τ for
the category of left R-modules. For submodules U and V of a module M , V
is said to be a τ -supplement of U in M or U is said to have a τ -supplement

V in M if U + V = M and U ∩ V ⊆ τ(V ). M is called a τ -supplemented

module if every submodule of M has a τ -supplement in M . For the particu-
lar case τ = Rad, Rad-supplemented modules have been studied in [6]; rings
over which all modules are Rad-supplemented were characterized. Also, in the
recent paper [7], the relation between Rad-supplemented modules and local
modules have been investigated. See [18]; these modules are called generalized

supplemented modules. Note that Rad-supplements V of a module M are also
called coneat submodules which can be characterized by the fact that each
module with zero radical is injective with respect to the inclusion V ⊆ M ; see
[1], [9, §10] and [15]. On the other hand, modules that have supplements in
every module in which it is contained as a submodule have been studied in
[22]; the structure of these modules, which are called modules with the property

(E), has been completely determined over Dedekind domains. Such modules
are also called Moduln mit Ergänzungseigenschaft in [3] and supplementing

modules in [9, p. 255]. We follow the terminology and notation as in [9]. We
call a module M supplementing if it has a supplement in each module in which
it is contained as a submodule. By considering these modules we define and
study (ample) Rad-supplementing modules as a proper generalization of sup-
plementing modules. A module M is called (ample) Rad-supplementing if it
has a (an ample) Rad-supplement in each module in which it is contained as
a submodule, where a submodule U ⊆ M has ample Rad-supplements in M if
for every L ⊆ M with U + L = M , there is a Rad-supplement L′ of U with
L′ ⊆ L.

In Section 2, we investigate some properties of Rad-supplementing mod-
ules. It is clear that every supplementing module is Rad-supplementing, but
the converse implication fails to be true; Example 2.3. If a module M has a
Rad-supplement in its injective envelope, M need not be Rad-supplementing.
However, we prove that M has a Rad-supplement in its injective envelope if
and only if M has a Rad-supplement in every essential extension; Proposition
2.5. We prove that for modules A ⊆ B, if A and B/A are Rad-supplementing,
then so is B. Using this fact we also prove that every module with com-
position series is Rad-supplementing; Theorem 2.12. A factor module of a
Rad-supplementing module need not be Rad-supplementing; Example 2.15.
For modules A ⊆ B ⊆ C with C/A injective, we prove that if B is Rad-
supplementing, then so is B/A. As one of the main results, we prove that R
is left perfect if and only if R is semilocal, RR is reduced and (RR)(N) is Rad-
supplementing; Theorem 2.20. Finally, using a result of [22], we show that
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over a commutative ring R, a semisimple R-module M is Rad-supplementing
if and only if it is supplementing and that is equivalent the fact that M is
pure-injective; Theorem 2.21.

Section 3 contains some properties of ample Rad-supplementing modules.
It starts by proving a useful property that a module M is ample Rad-supple-
menting if and only if every submodule ofM is Rad-supplementing; Proposition
3.1. One of the main results of this part is that R is left perfect if and only if

RR is reduced and the free left R-module (RR)(N) is ample Rad-supplementing;
Theorem 3.3. In the proof of this result, Rad-supplemented modules plays
an important role as, of course, every ample Rad-supplementing module is
Rad-supplemented. Finally, using the characterization of Rad-supplemented
modules given in [6], we characterize the rings over which every module is (am-
ple) Rad-supplementing. We prove that every left R-module is (ample) Rad-
supplementing if and only if every reduced left R-module is Rad-supplementing
if and only if R/P (R) is left perfect; Theorem 3.4.

2. Rad-supplementing modules

A module M is called radical if RadM = M , and M is called reduced if it
has no nonzero radical submodule. See [21, p. 47] for details for the notion of
reduced and radical modules.

Proposition 2.1. Supplementing modules and radical modules are Rad-supple-

menting.

Proof. Let M be a module and N be any extension of M . If M is supple-
menting, then it has a supplement, and so a Rad-supplement in N . Thus M is
Rad-supplementing. Now, if RadM = M , then N is a Rad-supplement of M
in N . �

By P (M) we denote the sum of all radical submodules of the module M ,
that is,

P (M) =
∑

{U ⊆ M | RadU = U}.

Clearly M is reduced if P (M) = 0.
Since P (M) is a radical submodule of M we have the following corollary.

Corollary 2.2. For a module M , P (M) is Rad-supplementing.

A subset I of a ring R is said to be left T -nilpotent in case, for every sequence
{ak}∞k=1 in I, there is a positive integer n such that a1 · · · an = 0.

In general, Rad-supplementing modules need not be supplementing as the
following example shows.

Example 2.3. Let k be a field. In the polynomial ring k[x1, x2, . . .] with
countably many indeterminates xn, n ∈ N, consider the ideal I = (x2

1, x
2
2 −

x1, x
2
3 − x2, . . .) generated by x2

1 and x2
n+1 − xn for each n ∈ N. Then the

quotient ring R = k[x1, x2, . . .]/I is a local ring with the unique maximal ideal
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J = J2 (see [6, Example 6.2] for details). Now let M = J (N). Then we have
RadM = M , and so M is Rad-supplementing by Proposition 2.1. However, M
does not have a supplement in R(N). Because, otherwise, by [5, Theorem 1], J
would be a left T -nilpotent as R is semilocal, but this is impossible. Thus M
is not supplementing.

For instance, over a left max ring, supplementing modules and Rad-supple-
menting modules coincide, where R is called a left max ring if every left R-
module has a maximal submodule or equivalently, RadM ≪ M for every left
R-module M .

Proposition 2.4. Every direct summand of a Rad-supplementing module is

Rad-supplementing.

Proof. Let U be a direct summand of a Rad-supplementing module M , and let
N be any extension of U . Then M = A⊕ U for some submodule A ⊆ M . By
hypothesis M has a Rad-supplement in the module A⊕N containing M , that
is, there exists a submodule V of A⊕N such that

(A⊕ U) + V = A⊕N and (A⊕ U) ∩ V ⊆ RadV.

Now, let g : A⊕N → N be the projection onto N . Then

U + g(V ) = g(A⊕ U) + g(V ) = g((A⊕ U) + V ) = g(A⊕N) = N, and

U ∩ g(V ) = g((A⊕ U) ∩ V ) ⊆ g(RadV ) ⊆ Rad(g(V )).

Hence g(V ) is a Rad-supplement of U in N . �

If a moduleM has a Rad-supplement in its injective envelope E(M), M need
not be Rad-supplementing. For example, for R = Z, the R-module M = 2Z
has a Rad-supplement in E(M) = Q since RadQ = Q (and so Q is Rad-
supplemented). But, M does not have a Rad-supplement in Z, and thus M is
not Rad-supplementing. However, we have the following result.

Proposition 2.5. Let M be a module. Then the following are equivalent.

(i) M has a Rad-supplement in every essential extension;
(ii) M has a Rad-supplement in its injective envelope E(M).

Proof. (i)⇒(ii) is clear.
(ii)⇒(i) Let M ⊆ N with M E N , and let f : M → N and g : M → E(M)

be inclusion maps. Then we have the following commutative diagram with h
necessarily monic:

M � � f //
� _

g

��

N

h||②
②
②
②

E(M)

By hypothesis, M has a Rad-supplement in E(M), say K. That is, M +K =
E(M) and M ∩ K ⊆ RadK. Since M ⊆ h(N), we obtain that h(N) =
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h(N) ∩ E(M) = h(N) ∩ (M +K) = M + h(N) ∩K. Now, taking any n ∈ N ,
we have h(n) = m+ h(n1) = h(m+ n1) where m ∈ M and h(n1) ∈ h(N) ∩K.
So, n = m + n1 ∈ M + h−1(K) since h is monic, and so M + h−1(K) = N .
Moreover, M ∩ h−1(K) = h−1(M ∩K) ⊆ h−1(RadK) ⊆ Rad(h−1(K)) since
h−1(M) = M as h is monic. Hence h−1(K) is a Rad-supplement of M in
N . �

Proposition 2.6. Let B be a module, and let A be a submodule of B. If A
and B/A are Rad-supplementing, then so is B.

Proof. Let B ⊆ N be any extension of B. By hypothesis, there is a Rad-
supplement V/A of B/A in N/A and a Rad-supplement W of A in V . We
claim that W is a Rad-supplement of B in N . We have epimorphisms f :
W → V/A and g : V/A → N/B such that Ker f = W ∩ A ⊆ RadW and
Ker g = V/A ∩B/A ⊆ Rad(V/A). Then g ◦ f : W → N/B is an epimorphism
such that W ∩ B = Ker(g ◦ f) ⊆ RadW by [20, Lemma 1.1]. Finally, N =
V +B = (W +A) +B = W +B. �

Remark 2.7. The previous result holds for supplementing modules; see [22,
Lemma 1.3-(c)].

Corollary 2.8. If M1 and M2 are Rad-supplementing modules, then so is

M1 ⊕M2.

Proof. Consider the short exact sequence

0 → M1 → M1 ⊕M2 → M2 → 0.

Thus the result follows by Proposition 2.6. �

R is said to be a left hereditary ring if every left ideal of R is projective.

Corollary 2.9. If M/P (M) is Rad-supplementing, then M is Rad-supple-

menting. For left hereditary rings, the converse is also true.

Proof. Since P (M) is Rad-supplementing by Corollary 2.2, the result follows
by Proposition 2.6. Over left hereditary rings, any factor module of a Rad-
supplementing module is Rad-supplementing (see Corollary 2.18). �

We give the proof of the following known fact for completeness.

Lemma 2.10. Every simple submodule S of a module M is either a direct

summand of M or small in M .

Proof. Suppose that S is not small in M , then there exists a proper submodule
K of M such that S + K = M . Since S is simple and K 6= M , S ∩ K = 0.
Thus M = S ⊕K. �

Proposition 2.11. Every simple module is (Rad-)supplementing.
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Proof. Let S be a simple module and N any extension of S. Then by Lemma
2.10, S ≪ N or S ⊕ S′ = N for a submodule S′ ⊆ N . In the first case, N is a
(Rad-)supplement of S in N , and in the second case, S′ is a (Rad-)supplement
of S in N . So, in each case S has a (Rad-)supplement in N , that is, S is
(Rad-)supplementing. �

Theorem 2.12. Every module with composition series is (Rad-)supplementing.

Proof. Let 0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mn = M be a composition series of
a module M . The proof is by induction on n ∈ N. If n = 1, then M = M1

is simple, and so M is (Rad-)supplementing by Proposition 2.11. Suppose
that this is true for each k ≤ n − 1. Then Mn−1 is (Rad-)supplementing.
Since Mn/Mn−1 is also (Rad-)supplementing as a simple module, we obtain by
Proposition 2.6 that M = Mn is (Rad-)supplementing. �

Corollary 2.13. A finitely generated semisimple module is (Rad-)supplement-

ing.

In general, a factor module of a Rad-supplementing module need not be
Rad-supplementing. To give such a counterexample we need the following
result.

R is called Von Neumann regular if every element a ∈ R can be written in
the form axa, for some x ∈ R.

Proposition 2.14. Let R be a commutative Von Neumann regular ring. Then

an R-module M is Rad-supplementing if and only if M is injective.

Proof. Suppose that M is a Rad-supplementing module. Let M ⊆ N be any
extension ofM . Then there is a Rad-supplement V ofM in N , that is, V +M =
N and V ∩M ⊆ RadV . Since all R-modules have zero radical by [13, 3.73 and
3.75], we have RadV = 0, and so N = V ⊕M . Conversely, if M is injective
and M ⊆ N is any extension of M , then N = M ⊕ K for some submodule
K ⊆ N . Thus K is a Rad-supplement of M in N . �

It is known that a ring R is lefty hereditary if and only if every quotient of
an injective R-module is injective (see [8, Ch.I, Theorem 5.4]).

Example 2.15. Let R =
∏

i∈I Fi be a ring, where each Fi is a field for an
infinite index set I. Then R is a commutative Von Neumann regular ring.
Indeed, let a = (ai)i∈I ∈ R where ai ∈ Fi for all i ∈ I. Taking b = (bi)i∈I ∈ R
where bi ∈ Fi such that

bi =

{

a−1
i if ai 6= 0,

0 if ai = 0.

Then we obtain that

aba = (ai)I(bi)I(ai)I = (aibiai)i∈I = (ai)i∈I = a.

Now, by Proposition 2.14, R is a Rad-supplementing module over itself since it
is injective (see [13, Corollary 3.11B]). Since R is not noetherian, it cannot be
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semisimple (by [14, Corollary 2.6]). Thus R is not hereditary by [16, Corollary].
Hence, there is a factor module of R which is not injective.

The following technical lemma will be useful to show that Rad-supplementing
modules are closed under factor modules, under a special condition.

Lemma 2.16. Let A ⊆ B ⊆ C be modules with C/A injective. Let N be a

module containing B/A. Then there exists a commutative diagram with exact

rows:
0 // A � � //

id

��

B //

��

B/A //
� _

��

0

0 // A // P // N // 0

Proof. By pushout we have the following commutative diagram, where ϕ exists
since C/A is injective:

0 // B/A
� � //

� _

��

N //

g

��

(1)
ϕ④
④④
④

}}④④
④

N/(B/A) //

id

��

α

(2)
zz✈
✈
✈
✈
✈

0

0 // C/A
β // N ′ // N/(B/A) // 0

In the diagram, since the triangle-(1) is commutative, there exists a homomor-
phism α : N/(B/A) −→ N ′ making the triangle-(2) is commutative by [11,
Lemma I.8.4]. So, the second row splits. Then we can take N ′ = (C/A) ⊕
(N/(B/A)), and so we may assume that β : C/A −→ N ′ is an inclusion.
Therefore, we have the following commutative diagram since B/A = β(B/A) =
g(B/A) ⊆ N ′:

0 // A � � //

id

��

B //

φ

��

B/A //
� _

��

0

0 // A
γ // C ⊕ (N/(B/A))

σ // N ′ // 0

where γ(a) = (a, 0) for every a ∈ A, φ(b) = (b, 0) for every b ∈ B, and σ(c, x) =
(c + A, x) for every c ∈ C and x ∈ N/(B/A). Finally, taking P = σ−1(g(N))
and defining a homomorphism σ̃ : P −→ g(N) by σ̃(x) = σ(x) for every
x ∈ P (in fact, σ̃ is an epimorphism as so is σ), we obtain the following desired
commutative diagram:

0 // A � � //

id

��

B //

��

B/A //

��

0

0 // A // P
σ̃ // g(N) ∼= N // 0 �

Proposition 2.17. Let A ⊆ B ⊆ C with C/A injective. If B is Rad-supple-

menting, then so is B/A.
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Proof. Let B/A ⊆ N be any extension of B/A. By Lemma 2.16, we have the
following commutative diagram with exact rows since C/A is injective:

0 // A � � //

id

��

B
σ //

h

��

B/A //
� _

f

��

0

0 // A // P
g // N // 0

Since h is monic and B is Rad-supplementing, B ∼= Imh has a Rad-supplement
in P , say V . That is, Imh + V = P and Imh ∩ V ⊆ RadV . We claim that
g(V ) is a Rad-supplement of B/A in N .

N = g(P ) = g(h(B)) + g(V ) = (fσ)(B) + g(V ) = (B/A) + g(V ), and

(B/A) ∩ g(V ) = f(σ(B)) ∩ g(V ) = g[h(B) ∩ V ] ⊆ g(RadV ) ⊆ Rad(g(V )).�

Corollary 2.18. If R is a left hereditary ring, then every factor module of

Rad-supplementing module is Rad-supplementing.

Proposition 2.19. If M is a reduced, projective and Rad-supplementing mod-

ule, then RadM ≪ M .

Proof. Suppose X + RadM = M for a submodule X of M . Then since M
is projective, there exists f ∈ End(M) such that Im f ⊆ X and Im(1 − f) ⊆
RadM = JM where J is a Jacobson radical of R. Therefore f is a monomor-
phism by [4, Theorem 3]. Since M is Rad-supplementing and Im f ∼= M , Im f
has a Rad-supplement V in M , that is, Im f + V = M and Im f ∩ V ⊆ RadV .
Now we have an epimorphism g : V → M/ Im f such that Ker g = V ∩ Im f ⊆
RadV . Moreover, since M = Im f + Im(1 − f) = Im f + RadM we have
Rad(M/ Im f) = M/ Im f . Thus RadV = V , and so V = 0 since M is re-
duced. Hence M = Im f ⊆ X implies that X = M as required. �

R is said to be a semilocal ring if R/J is a semisimple ring, that is a left
(and right) semisimple R-module (see [14, §20]).

Theorem 2.20. A ring R is left perfect if and only if R is semilocal, RR is

reduced and the free left R-module F = (RR)(N) is Rad-supplementing.

Proof. If R is left perfect, then R is semilocal by [2, 28.4], and clearly RR is
reduced. Since all left R-modules are supplemented and so Rad-supplemented,
F is Rad-supplementing. Conversely, since P (RR) = 0 we have P (F ) =
(P (RR))(N) = 0, that is, F is reduced. Thus by Proposition 2.19, JF =
RadF ≪ F , that is, J is left T -nilpotent by, for example, [2, 28.3]. Hence R is
left perfect by [2, 28.4] since it is moreover semilocal. �

Supplementing modules over commutative noetherian rings have been stud-
ied in [3]; the author showed that if a module M is supplementing, then it is
cotorsion, that is, Ext1R(F,M) = 0 for every flat module F (see [10] for cotor-
sion modules). So the question was raised When Rad-supplementing modules
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are cotorsion? Since any pure-injective module is cotorsion, the following result
gives an answer of the question for a semisimple module over a commutative
ring. The relation between (Rad-)supplementing modules and cotorsion mod-
ules needs to be further investigated.

The part (iii)⇒(i) of the proof of the following theorem follows from [22,
Theorem 1.6-(ii)⇒(i)], but we give it by explanation for completeness.

Theorem 2.21. Let R be a commutative ring. Then the following are equiva-

lent for a semisimple R-module M .

(i) M is supplementing;
(ii) M is Rad-supplementing;
(iii) M is pure-injective.

Proof. (i)⇒(ii) is clear.
(ii)⇒(iii) Let M ⊆ N be a pure extension of M . By hypothesis M has a

Rad-supplement V in N , that is, M + V = N and M ∩ V ⊆ RadV . Since
M is pure in N , we have RadM = M ∩ RadN (as R is commutative). Thus
M ∩ V ⊆ M ∩RadN = RadM = 0 as M is semisimple. Hence N = M ⊕V as
required.

(iii)⇒(i) Let M ⊆ N be any extension of M . Then the factor mod-
ule X = (M + RadN)/RadN of M is again semisimple and pure-injective.
Since semisimple submodules are pure in every module with zero radical and
Rad(N/RadN) = 0, it follows that X is a direct summand of N/RadN . Now
let

(V/RadN)⊕X = N/RadN

for a submodule V ⊆ N such that RadN ⊆ V . So we have V +M = N with V
minimal, and thus V is a supplement of M in N . This is because, if T+M = N
for a submodule T of N with T ⊆ V , then from

Rad(N/T ) = Rad((M + T )/T ) = Rad(M/M ∩ T ) = 0

as M/M ∩ T is semisimple, we obtain that RadN ⊆ T . Moreover, since

RadN = V ∩ (M +RadN) = V ∩M +RadN,

we have V ∩ M ⊆ RadN and V = T + V ∩ M ⊆ T + RadN = T , thus
T = V . �

3. Ample Rad-supplementing modules

The following useful result gives a relation between Rad-supplementing mod-
ules and ample Rad-supplementing modules.

Proposition 3.1. A module M is ample Rad-supplementing if and only if

every submodule of M is Rad-supplementing.

Proof. (⇐) Let M be a module and N be any extension ofM . Suppose that for
a submodule X ⊆ N , X+M = N . By hypothesis the submodule X ∩M of M
has a Rad-supplement V in X containing X∩M , that is, (X∩M)+V = X and
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(X ∩M)∩ V ⊆ RadV . Then N = M +X = M +(X ∩M) +V = M +V and,
M ∩V = M ∩ (V ∩X) = (X ∩M)∩V ⊆ RadV . Hence V is a Rad-supplement
of M in N such that V ⊆ X .

(⇒) Let U be a submodule of M and N be any module containing U . Thus
we can draw the pushout for the inclusion homomorphisms i1 : U →֒ N and
i2 : U →֒ M :

M
α //❴❴❴ F

U
� �

i1
//?�

i2

OO

N

β

OO✤
✤

✤

In the diagram, α and β are also monomorphisms by the properties of pushout
(see, for example, [17, Exercise 5.10]). Let M ′ = Imα and N ′ = Imβ. Then
F = M ′ + N ′ by the properties of pushout. So by hypothesis, M ′ ∼= M
has a Rad-supplement V in F such that V ⊆ N ′, that is, M ′ + V = F and
M ′ ∩ V ⊆ RadV . Therefore V is a Rad-supplement of M ′ ∩N ′ in N ′, because
N ′ = N ′ ∩ F = N ′ ∩ (M ′ + V ) = (M ′ ∩ N ′) + V and (M ′ ∩ N ′) ∩ V =
M ′ ∩ V ⊆ RadV . Now, we claim that β−1(V ) is a Rad-supplement of U in N .
Since β : N → F is a monomorphism with N ′ = Imβ, we have an isomorphism
˜β : N → N ′ defined as ˜β(x) = β(x) for all x ∈ N . By this isomorphism, since V

is a Rad-supplement ofM ′∩N ′ in N ′, we obtain ˜β−1(V ) is a Rad-supplement of
˜β−1(M ′∩N ′) in ˜β−1(N ′). Since it can be easily shown that ˜β−1(V ) = β−1(V ),
˜β−1(N ′) = N , and ˜β−1(M ′ ∩N ′) = U the result follows. �

Corollary 3.2. Every ample Rad-supplementing module is both Rad-supple-

menting and Rad-supplemented.

Theorem 3.3. A ring R is left perfect if and only if RR is reduced and the

free left R-module F = (RR)(N) is ample Rad-supplementing.

Proof. If R is left perfect, then RR is reduced and all left R-modules are sup-
plemented, and so Rad-supplemented. Thus every submodule of F is Rad-
supplementing. Hence F is ample Rad-supplementing by Proposition 3.1.
Conversely, if F is ample Rad-supplementing, then it is Rad-supplemented
by Corollary 3.2, and so R is left perfect by [6, Theorem 5.3]. �

Finally, we give the characterization of the rings over which every module is
(ample) Rad-supplementing.

Theorem 3.4. For a ring R, the following are equivalent:

(i) Every left R-module is Rad-supplementing;
(ii) Every reduced left R-module is Rad-supplementing;
(iii) Every left R-module is ample Rad-supplementing;
(iv) Every left R-module is Rad-supplemented;
(v) R/P (R) is left perfect.
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Proof. Let M be a module. (i)⇒(ii) is clear.
(ii)⇒(i) Since M/P (M) is reduced, it is Rad-supplementing by hypothesis.

So M is Rad-supplementing by Corollary 2.9.
(i)⇒(iii) Since every submodule of M is Rad-supplementing, M is ample

Rad-supplementing by Proposition 3.1.
(iii)⇒(iv) by Corollary 3.2.
(iv)⇒(i) Let M ⊆ N be any extension of M . By hypothesis, N is Rad-

supplemented, and so M has a Rad-supplement in N .
(iv)⇔(v) by [6, Theorem 6.1]. �
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