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THE STRUCTURE OF SEMIPERFECT RINGS

JUuNCHEOL HAN

ABSTRACT. Let R be a ring with identity 1z and let U(R) denote the
group of all units of R. A ring R is called locally finite if every finite sub-
set in it generates a finite semigroup multiplicatively. In this paper, some
results are obtained as follows: (1) for any semilocal (hence semiperfect)
ring R, U(R) is a finite (resp. locally finite) group if and only if R is
a finite (resp. locally finite) ring; U(R) is a locally finite group if and
only if U(M,(R)) is a locally finite group where M, (R) is the full matrix
ring of n X n matrices over R for any positive integer n; in addition, if
2=1gr + 1g is a unit in R, then U(R) is an abelian group if and only if
R is a commutative ring; (2) for any semiperfect ring R, if E(R), the set
of all idempotents in R, is commuting, then R/J = @i, D; where each
D; is a division ring for some positive integer m and |E(R)| = 2™; in
addition, if 2 = 1p + 1 is a unit in R, then every idempotent is central.

1. Introduction and basic definitions

Let R be a ring with identity 1p, J be the Jacobson radical of R, U(R)
be the group of all units of R and X (R) be the set of all nonzero nonunits of
R. Recall that any group G is called locally finite if every finitely generated
subgroup of G is finite. In ring case, a ring R is called locally finite if every
finite subset in it generates a finite semigroup multiplicatively (refer [5]). In
[5], Lee and Kim have shown that (1) The direct limit of locally finite rings is
locally finite [5, Proposition 2.1]; (2) R is a locally finite ring if and only if each
finite subset of R generates a finite subring (not necessarily with identity) [5,
Theorem 2.2); (3) if R/I and I are both locally finite for some proper ideal I
in R then so is R [5, Theorem 2.2]; (4) a ring R is locally finite if and only if
the n x n full matrix ring over R is locally finite for any positive integer n [5,
Corollary 2.3]. Of course, any finite ring is locally finite but the converse is not
true by the following example:

Example 1. Let S be a finite ring and let R,, = M. (S) be the full matrix
ring of 2" x 2™ matrices over S for any positive integer n. Consider an inclusion
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from R, to R,+1 defined by A — (f} g). Then the direct limit of R, is equal
to [J,>, R, and so is locally finite by [5, Proposition 2.1] but is not finite.

A ring R is called semilocal if R/J(R) is left artinian where J(R) (or simply
J) is the Jacobson radical of R, and hence by the Wedderburn-Artin Structure
Theorem for semisimple artinian ring, R/J = &7, M;(D;) where M;(D;) is
the full matrix ring of all n; X n; matrices over a division ring D; for each
1=1,2,...,m and for some positive integer m. A ring R is called semiperfect
if R is semilocal, and every idempotent in R/J can be lifted to R. In [1], Cohen
and Koh have shown that for any compact ring R with identity 15, U(R) is
a finite group if and only if R is a finite ring; in addition, if 2 = 15 + 1g is
a unit in R, then U(R) is an abelian group if and only if R is a commutative
ring. In 7], Nicholson has shown that if R is a semiperfect ring such that U(R)
is finite and abelian, then R is finite. In section 2, we will show that for any
semilocal (hence semiperfect) ring R with identity 1g, U(R) is a finite group
if and only if R is a finite ring; U(R) is a locally finite group if and only if R
is a locally finite ring; in addition, if 2 = 1g + 1g is a unit in R, then U(R)
is an abelian group if and only if R is a commutative ring; U(R) is a locally
finite group if and only if U(M,(R)) is a locally finite group where M, (R) is
the full matrix ring of n x n matrices over R for any positive integer n; if U(R)
is a finitely generated abelian group, then R/J is finite. In group theory, the
Burnside problem for matrix groups has been considering and Burnside has
shown that a torsion group of matrices over a field is locally finite. We will
answer partially Burnside problem for matrix group as follows; if ¥ is a locally
finite field, U(M,(F)) is a locally finite group for any positive integer n. It is
also shown that if R is a semiperfect ring R such that gz = zg for all g € U(R)
and all z € X, then R/J = @ F;, where F; is a field for each 1 = 1,2,...,m
and for some positive integer m.

In section 3, it is shown that if E(R), the set of all idempotents in a semiper-
fect R, is commuting, then R/J = &7, D;, where D; is a division ring for each
1 =1,2,...,m and for some positive integer m and |E(R)| = |[E(R/J)| = 2™;
in addition, if 2 = 15 + 1R is a unit in R, then every idempotent is central.

2. Semilocal ring in which U(R) is finite (resp. locally finite) or
abelian (resp. finitely generated abelian)

We begin with the following lemma.

Lemma 2.1. Let R be a ring with identity 1g. Then g € U(R) if and only if
g+JeU(R/T).

Proof. (=) Clear.

(<) Suppose that g = g+.J € U(R/J). Then there exists h = h+J € R/J such
that gh = hg = 1g, where 1 is the identity of U(R/J). Hence 1g — gh € J.
By the definition of J, 1z + J C U(R) and then gh and hg € U(R). Hence
g € U(R). O
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In general, for a ring R it is not true that

(*) U(R) is a finite (resp. locally finite) group if and only if R is a finite
(resp. locally finite) ring by noting that the group of units in Z, the
ring of all integers, is finite (resp. locally finite) but Z is not finite
(resp. locally finite).

On the other hand, the statement (x) is true for a semilocal ring as follows:

Theorem 2.2. Let R be a semilocal ring. Then U(R) is a finite group if and
only if R is a finite ring.

Proof. (=) Suppose that U(R) is a finite group. Since R is a semilocal ring, by
the Wedderburn-Artin Structure Theorem for semisimple artinian ring, R/J =
© M;(D;), where M;(D;) is the full matrix ring of all n; x n; matrices over
a division ring D; for each i = 1,2,...,m and for some positive integer m.
Since U(R) is a finite group, clearly U(R/J) is a finite group by Lemma 2.1.
Then D; is finite for each ¢ = 1,2, ..., n. Indeed, suppose that D; is infinite for
some ¢. For simplicity of notation, we can assume that R/J = &, M;(D,).
Consider U(R/J); = @}, H;, where H; = {e;}, (e; is the identity of M;(D;))
fOI’j 75 i and H; = {(a,-j) S Mz(Dz) a1 € D; \ {Oi},ass = li(ni >8>
2),ast = 0;(n; > s,t > 2,8 # t)}, where 0;(resp. 1;) is zero (resp. identity)
of D;. Then U(R/J); is a subgroup of U(R/J) and |U(R/J);| = |D; \ {0:}]
is infinite, which contradicts to the fact U(R/J) is a finite group. Hence D; is
finite for each ¢ = 1,2,...,n, and so R/J is finite. Since 1g + J C U(R) and
U(R) is a finite group, J is finite. Hence |R| = |J|-|R/J| is finite.

(<) Clear. O

Lemma 2.3. Let R be a ring. If U(R) is a locally finite group, then U(R/J)
15 @ locally finite group.

Proof. Clear. g

In [5], the following theorem has been proved:

Theorem 2.4. Let R be o ring. Then R is a locally finite ring if and only if
R/J and J are locally finite rings.

Proof. Refer [5, Theorem 2.2]. O

In [5], the following corollary has also been proved:

Corollary 2.5. Let R = M, (S) be the full matriz ring of all n X n matrices
over a ring S for any positive integer n. Then S is a locally finite ring if and
only if R is a locally finite ring.

Proof. Refer [5, Corollary 2.3]. O

We can have the following question:
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Question 1. For any ring R with identity and for any positive integer n, is
U(R) alocally finite group if and only if U (M, (R)), the group of all nonsingular
matrices of M,,(R), is a locally finite group?

The answer to the above question is negative by the following example.

Example 2. Let Z be the ring of all integers. Then U(Z) = {1, -1} is a locally
finite group. But U(M>(Z)) is not a locally finite group. Indeed, consider a
cyclic subgroup H = ((}¢)) generated by (§ ¢) for some a(# 0) € Z. Then

= {(}2)* = (} k) : Vk € Z} is infinite. Hence U(M2(Z)) is not a locally
finite group.

On the other hand, the above question may be affirmative for any division
ring by the following argument:

Proposition 2.6. Let R = M, (D) be the full matriz ring of all n x n matri-
ces over a division ring D for any positive integer n. Then the following are
equivalent:

(1) U(D) = D\ {0} is a locally finite group;
(2) D is a locally finite ring;
(3) R is a locally finite ring;
(4) U(R) is a locally finite group.

Proof. (1) ¢ (2). Clear.

(2) & (3). It follows from Corollary 2.5.

(3) = (4). Clear.

(4) = (3). Suppose that U(R) is a locally finite group. In order to show that
R is a locally finite ring, it is enough to show that D is a locally finite ring by
Corollary 2.5. Assume that D is not a locally finite ring. Then D\ {0} is not a
locally finite group. Thus there exists a finite subset {a1,as,...,as} of D\ {0}
such that the subgroup {(ay, as, ..., as) generated by {a1, as,...,as} of D\{0} is
not a finite subgroup of D\ {0}. Consider a subgroup (Ay, Aa,...,As) of U(R)
generated by {Ai,As,...,As}, where 4y = (p(k)ij) € R with p(k)11 = ax,
p(k)ii =1foralli >2and p(k);; =0foralli,j >1(i#£j)foralk=1,...,s
Since U(R) is a locally finite group, (A1, Ay, ..., As) is a finite subgroup of
U(R) and (A1, As, ..., A,) is isomorphic to {a1,as,...,a,) as groups, which is
a contradiction. Therefore R is a locally finite ring. ]

Corollary 2.7. Let R be a semilocal ring. If U(R) is a locally finite group,
then R/J is a locally finite ring.

Proof. Suppose that U(R) is a locally finite group. Since R is a semilocal
ring, by the Wedderburn-Artin Structure Theorem for semisimple artinian ring,
R/J = @ M;(D;), where M;(D;) is the full matrix ring of all n; x n; matrices
over a division ring D; for each i = 1,2,...,m and for some positive integer m.
Since a direct sum of locally finite rings is locally finite, it is enough to show
that M;(D;) is a locally finite ring for each 7. Since U(R) is a locally finite
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group, U(R/J) is a locally finite group by Lemma 2.3, and then U (M;(D;)) is
a locally finite group for each i. Hence M;(D;) is a locally finite ring for each
i by Proposition 2.6, and so R/J is a locally finite ring. O

Remark 1. Note that any locally finite group is torsion but the converse is
not true. In group theory, the Burnside problem for matrix groups has been
considered. In [4, Theorem 2.3.5], Burnside has shown that a torsion group
of matrices over a field is locally finite. By Proposition 2.6, we have answered
partially the Burnside problem for matrix group as follows; for any locally finite

field F, U(Mn(F)), the group of n x n invertible matrices over a field F, is
locally finite. i

Lemma 2.8. Let R be a semilocal ring. If U(R) is an abelian group, then
R/J = O, F;, where F; is a field for each i = 1,2,...,m and for some
positive integer m.

Proof. Since R is a semilocal ring, by the Wedderburn-Artin Structure Theorem
for semisimple artinian ring, R/J = @7, M;(D;), where M;(D;) is the full
matrix ring of all n; Xn; matrices over a division ring D; for eachi = 1,2,...,m
and for some positive integer m. Since U(R) is an abelian group, U(R/J) is
also an abelian group. Since R/J = &, M;(D;) and U(R/J) is an abelian
group, U(M;(D;)) is an abelian group for each i = 1,2,...,m, and so D; must
be a field for each i = 1,2,...,m. Hence we have the result. O

Theorem 2.9. Let R be a semilocal ring such that 2 = 1p + 1R 4s a unit in
R. Then U(R) is an abelian group if and only if R is a commutative ring.

Proof. (=) Suppose that U(R) is an abelian group. Then by Lemma 2.8,
R/J = @ F;, where F; is a field for each i = 1,2,...,m and for some positive
integer m. Since 2 = 1g 4+ 1g is a unit in R, R is a commutative ring by [3,
Lemma 4].

(<) It is clear. a

Note that in Theorem 2.9, the condition that 2 = 15 + 1g is a unit in R is
essential by the following example:

Example 3. Let R = {(2%) : a,b,c € Zy}, where Z, is the ring of inte-
gers modulo 2. Then R is a noncommutative semilocal ring with identity but
UMR)={(}9),(§1)} is an abelian group.

Proposition 2.10. Let R be a semilocal ring with identity 1g. If U(R) is a
finitely generated abelian group, then R/.J is finite.

Proof. Since U(R) is an abelian group, then by Lemma 2.8, R/J & om F},
where F; is a field for each ¢ = 1,2,...,m and for some positive integer m.
Since U(R) is finitely generated, the group of units of each field F; is finitely
generated (if and only if F; is finite in the proof of Theorem 2 in [3]). Hence
R/J is finite. O
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Corollary 2.11. Let R be a semilocal ring with identity 1g. If U(R) is a
finitely generated abelian group, then J is finite if and only if R is finite.

Proof. If follows from the Proposition 2.10. O

Remark 2. In [7, Proposition 3], Nicholson has shown that for a semiperfect
ring R with a finitely generated abelian group U(R), if J is a nil ideal in R (in
this case, R is a semiperfect ring if and only if R is a semilocal ring), then R is
finite.

Proposition 2.12. Let R be a semilocal ring with identity 1g. If gz = xg for
all g € U(R) and oll x € X, then R/J = &, F;, where F; is a field for each
t=1,2,...,m and for some positive integer m.

Proof. By The Weddedrburn-Artin Structure Theorem for semisimple artinian
ring, R/J = @72, M;(D;), where M;(D,) is the full matrix ring of all n; x n;
matrices over a division ring D; for each i = 1,2,...,m and for some positive
integer m. Let U (resp. X) be the group of all units (resp. the set of all
nonzero, nonunits) in R/J. Since gz = zg for all g € U(R) and all z € X,

(%) gz =25 forall ge U and all € X.

We can easily check that if n; > 2 for some 4, then M;(D;) does not satisfy
(). Hence R/J = &M, D,. Next, we will show that D; is a field for all i.
Assume that D; is not a field for some i. Then there exists a,b € D; such that
ab # ba. Choose @ = (a1,...,G,...,am) and b= (by,...,bi,...,bm) With a; =
a,a; = 0; for all j # 4 and b; = b,b; = 1;, where 0; (resp. 1;) is the zero (resp.
the identity) of D;. Thena € X and b € U and @b = (01,...,ab,...,0,) #
(04,...,ba,...,0,) = ba, which contradicts to (¥x). Hence we have the result.

O

3. Commuting idempotents in a semiperfect ring

Recall that an element e € R is called an idempotent if e = e and an
element g € R is called an involution if g?> = 1. Let E(R) (resp. V(R)) be the
set of all idempotents (resp. involutions) in RB. Note that if 2=1g+ 1g is a
unit in R, then the mapping e — 1g — 2e is a bijection from E(R) to V(R).

We begin this section with the following lemma:

Lemma 3.1. Let R be a semiperfect ring with identity 15 such that2 = 1g+1pg
is a unit in B. Then every involution in R/J can be lifted to R.

Proof. Let © = v+J be an arbitrary involution of R/J, i.e., v2+J = 1g+J. Let
e= 1—32_—” Then € = e+J is an idempotent of R/J. Since R is semiperfect, then
é can be lifted to R, i.e., there is an idempotent f € R such that f+J =e+J.
Let vg = 15 — 2f. Then vy is an involution of Rand v+ J = (1g —2e) + J =

v+ J. Hence ¥ = v + J in R/J can be lifted to R. O
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Lemma 3.2. Let R be a ring with identity 1z and let V(R) be the set of all
involutions of R. If V(R) is finite, then (V(R)), the group generated by V(R),
is finite.

Proof. Let m = [V(R)|. If m = 1 or 2, then clearly (V(R)) is finite. Suppose
that m > 3. For all g € (V(R)), consider I(g), the length of g, which is the
smallest positive integer k such that g = vyvy -+ - vy for some vy, vs,..., v €
V(R). We will show that (V(R)) = V(R)™ !. Assume that there exists g
€ (V(R)) such that I(g) > m. Let n = I(g), ie., g = viva---v, for some
v1,v2,...,0n € V(R)\ {1g}. Since n > m = |[V(R)| and vy,vs,...,v, €
VI(R) \ {1r}, there exist i,j € Z* such that v; = viy; (n > i+j >4 > 1).
Let b = vjvit1 -+ viy; € (V(R)). Then h € (V(R)) and I(h) = j + 1 since
l(g) = n. On the other hand, since h = (v;v3410;) (V;Vi120;) - - - (VsVigj1Vir;) =

(Vivig1vi) (Vivig2vi) - - (Vv j—1v;)  and VLIV, VIV, ., Vilin 10
€ V(R), j —1 > 1(h), a contradiction. Hence for all ¢ € (V(R), m—-12>I(g),
and so (V(R)) = V(R)™ 1. Consequently, (V(R)) is finite. O

Theorem 3.3. Let R be a semiperfect ring with identity 1 and let E(R) be
the set of all idempotents of R. If E(R) is commuting, i.e., eies = ezey for
all er,ex € E(R), then R/J = @™ D;, where D; is a division ring for all
t=1,2,...,m and for some positive integer m and |E(R)| = |E(R/J)| = 2™.

Proof. Since E(R) is commuting, E(R/J), the set of all idempotents of R/.J,
is also commuting. Indeed, for all e; + J,es 4+ .J € E(R/J), there exist fi, f €
E(R) such that fi + J =e; + J, fo + J = ey + J since R is semiperfect. Thus
(er+I)e2+J) = (A+I)fot )= o+ T = i+ =+ (fi+J]) =
(e2+ J)(e1 +J). By the Wedderburn-Artin Structure Theorem for semisimple
artinian ring, R/J = © M;(D;), where M;(D;) is the full matrix ring of all

n; X n; matrices over a division ring D; for each i = 1,2,...,m and for some
positive integer m. We will show that n; = 1 for each ¢ = 1,2,...,m. Assume
that n; > 2 for some 4. For all a,b(a # b) € D;, consider two idempotents
1 a 0 ... 0 1 0 ... 0
00 0 ... 0 0 0 0 ... 0
A=1]. . and B=1]. . : € M;(Dy).
00 ... 0 0 0O 0 ... 0 O

Then A, B € E(M;(D;)) and AB = B # A = BA, a contradiction to the fact
E(R/J) is commuting. Hence R/J = @& D;, where D; is a division ring for
each ¢ = 1,2,...,m and for some positive integer m and so |E(R/J)| = 2™.
Since every idempotents of R/.J can be lifted to R, |[E(R)| > 2™. Next, we
will show that |E(R)| = |[E(R/J)|. Suppose that there exist two idempotents
eand f of R (e # f) such that e+ J = f+.J. Thene— f € J. Since ef = fe,
(e~ f)*=(e—f)? and so (e — f)> € E(R)NJ = (0). Hence (e — f)? = 0,
which implies that e = f, a contradiction. Therefore, |E(R)| = |E(R/J)| = 2™
for some positive integer m. U
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Remark 3. From Theorem 3.3, we note that if R is a semiperfect ring with
identity 1g such that E(R) is commuting, then R/J is a finite product of
division rings, and hence R is a basic ring by [6, Proposition 25.10].

Corollary 3.4. Let R be a semiperfect ring with identity 1p such that 2 =
1g + 15 is a unit in R, and V(R) be the set of all involutions of R. If V(R) is
commuting, i.e., 1102 = vavy for all vi,vy € V(R), then R/J = @, D;, where
D, is a division ring for alli = 1,2,...,m and for some positive integer m and
V(R)| = [V(R/J)| = 2™.

Proof. Since 2 is a unit in R and V(R) is commuting, there exists a bijection
from E(R) to V(R) and E(R) is commuting. Hence the result follows from
Lemma 3.1 and Theorem 3.3. O

Corollary 3.5. Let R be a semiperfect ring with identity 1g such that 2 =
1r + 1g is a unit in R and V(R) is commuting. If U(R) is a simple group,
then R is a finite commutative ring.

Proof. Since 2 = 1g + 1g is a unit in R and V(R) is commuting, V(R) is
a finite abelian group by Corollary 3.4. Since U(R) is a simple group and
V(R)(# ({1gr}) is a normal subgroup of G, V(R) = U(R). Hence R is a finite
commutative ring by Theorem 2.2 and Theorem 2.9. O

Corollary 3.6. Let R be a semiperfect ring with identity 15 such that 2 =
1r+1p is a unit in R and V(R) is commuting. If U(R) is a simple group and
J s a nil ideal of R, then J = (0), and so R = ®", F;, where F; is a finite
field for all i =1,2,...,m and for some positive integer m by Corollary 3.5.

Proof. Assume that there exists j(# 0) € J. Since J is nil ideal, j» = 0

and j"~! # 0 for some positive integer n. Since U(R) is a simple group and
1gr + J(# {1r}) is a normal subgroup of U(R), U(R) = 1g + J = V(R). Thus

(1r + j)* = 1g, and so0 2j = —j2. Since 2 = 15 + 1 is a unit in R, we have
j"~! =0, a contradiction. Hence J = (0), and so R = &, F;, where F; is a
finite field for all ¢ = 1,2,...,m and for some positive integer m. O

femark 4. From Corollary 3.6, we note that for a left artinian ring R with
identity 1g such that 2 = 1z + 1 is a unit in R and V(R) is commuting if
U(R) is a simple group, then R is a finite semisimple artinian ring.

Corollary 3.7. Let R be a semiperfect ring with identity 1g such that 2 =
1g + 1g is a unit in R. If E(R) is commuting, then every idempotent of R is
central.

Proof. Since E(R) is commuting, E(R) = E(R)?, where E(R)? = {ab|Va,b €
E(R)}. By [2, Lemma 2.1 and Proposition 2.2], ea = ae for all elements e €
E(R) and a € J. Since E(R) is commuting, by Theorem 2.3, R/J = @™, D;,
where D; is a division ring for all i = 1,2,...,m and for some positive integer
m, and so every idempotent of R/J is central and then every idempotent of R
is central by [2, Lemma 2.3]. g
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