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THE APPLICATIONS OF ADDITIVE MAP PRESERVING
IDEMPOTENCE IN GENERALIZED INVERSE

HONGMEI YAO* ZHAOBIN FAN AND JIAPEI TANG

ABSTRACT. Suppose R is an idempotence-diagonalizable ring. Let n and
m be two arbitrary positive integers with n > 3. We denote by M, (R) the
ring of all n X n matrices over R. Let (J,(R)) be the additive subgroup of
Mn(R) generated additively by all idempotent matrices. Let U = (Jn(R))
or Mn(R). In this paper, by using an additive idempotence-preserving
result obtained by Cao (see {4]), I characterize (i) the additive preservers of
tripotence from U to Mn, (R) when 2 and 3 are units of R; (ii) the additive
preservers of inverses (respectively, Drazin inverses, group inverses, {1}-
inverses, {2}-inverses, {1, 2}-inverses) from M,(R) to M (R) when 2 and
3 are units of R.
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1. Introduction

A ring R is called idempotence-diagonalizable if R is a connected commu-
tative ring with the multiplicative identity 1 (i.e., R contains no idempotents
except 0 and 1) and every idempotent matrix over R is similar to a diagonal
matrix. Let R* denote the subset of R consisting of all units.

We will hereafter assume that n and m are two arbitrary positive integers with
n > 3. We denote by M, (R) the ring of all nxn matrices. A matrix A € M,(R) is
called idempotent (respectively, tripotent) if A2 = A (respectively, A> = A). Let
Jn(R)(Kn(R)) be the subset of M,(R) consisting of all idempotent(tripotent)
matrices, respectively. The notation (J,(R)) denotes the additive subgroup of
M, (R) generated additively by J,(R). In more detail, (J,(R)) is the subset
of M,(R) consisting of all matrices whose traces are integral multiple of the
multiplicative identity 1 of R.
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Let U = (J,(R)) or M,(R). We say that a map f : U — M, (R) is additive
if f(A+ B) = f(A)+ f(B) for any A, B € 0. An additive map f : U — M, (R)
is called a preserver of tripotent if f(A) is tripotent for every tripotent A € ‘0.

For a matrix A € M,(R), consider the following matrix equations with un-
know X € M,(R).

AX = XA, o (1)
XAX = X, (2)
A*X A = A* for some positive integer k. (3)
When k = 1, (3) turns into
AXA = A, | | (4)

We say that X is a {1}-inverse of A if X satisfies (4), X is a {2}-inverse of A
if X satisfies (2), X is a {1,2}-inverse of A if X satisfies (2) and (4), X is a
Drazin inverse of A if X satisfies (1), (2) and (3), and X is a group inverse of
A if X satisfies (1), (2) and (4). An additive map f : M,(R) — Mn(R) is
said to preserve Drazin (respectively, group , {1}-, {2}- and {1,2}-) inverse if
f(B) is a Drazin (respectively, group , {1}-, {2}- and {1,2}-) inverse of f(A)
whenever B is a Drazin (respectively, group , {1}-, {2}- and {1,2}-) inverse
of A € Mp,(R). [ is said to preserve inverse if f(A) is nonsingular whenever
A € M,(R) is nonsingular, and satisfies f(4)~! = f(A™1).

Some researchers are interested in the study of Linear/Additive Preserver
Problems between different sets of matrices (e.g., [1]- [3], ). In Cao [1], he
gave the applications of the linear-idempotent preserving result. In [?], they
charactered the form of additive-idempotent preserving map, Inspired by these
works mentioned above, in this article we characterize:

(a): the additive preservers of tripotence from U to M,,(R) when R is any
idempotence-diagonalizable ring with 2,3 € R*; "
(b) the additive preservers of inverses ( respectwely, Drazin, group , {1}-
, {2}- and {1,2}-) inverses from M,(R) to M,(R) when R is any

1dempotence diagonalizable ring with 2,3 € R*.

- For integers a and b with a < b, let {a, b] be the set of all integers between a
and b. Let [ be the k x k identity matrix if £ > 0 and the 0 x 0 empty matrix
if K = 0. Denote by ® and @& the usual Kronecker product and direct sum of
matrices, respectively. For any positive integers < and j, let E;; be the matrix
(whose dimensions can be determined by the context) with 1 in the (7,j)-th
entry and 0 elsewhere. Let A? be the transpose of A and trX be the trace of
matrix X. For a non-negative integer p and a map 7 : R —M_(R), we denote
by AT the block matrix [7(a;;)] for every matrix A = [a;;] if p > 0 and the 0 x 0
empty matrix if p = 0. |
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2. Main results

In this section we will always assume that R is an arbitrary idempotence-
diagonalizable ring with 2, 3 € R”.

Lemma 1. [5] If A € K,(R), then there erists P € GL,(R)such that P"1AP =
I, ® —1, ®0, wherep+ q = rankA -

Lemma 2. [4] Suppose f : (Jn (R)) — Mun(R) is an additive preserver of idem-
potence with f(I,) = I,,. Then there are two non-negative integers p;, pa with
(p1+p2)n=m, a nonsmgular mxm matric P and two ring homomorphisms 7 :
R —»M,, (R) with (1) = I,,, t = 1,2, such that f(X) = P[X™ @ (XT)2]P~!
for any X € (J,(R)). | |

Lemma 3. [4) A map f : (J.(R)) — Mm(R) is an additive preserver of idempo-
tence if and only if there are two non-negative integers py, p2 with (p;+p2)n < m,
a nonsingular m x m matriz P, and two ring homomorjphzsms 7t : R ——>Mpt(R)
t = 1,2, such that | |

fX)=PX" & (XT)? @0]PL, VX € (Ju(R)). (5)

Lemma 4. [4] A map f: M,(R) —» M (R) is an additive preserver of idempo-
tence if and only if there are two non-negative integers py, p2 with (p1+p2)n < m,
an additive group homomorphism o : R =M, (R) with o(1) = 0, a nonsingular
m X m matriz P and two ring homomorphisms 7 : R —Mp, (R), t = 1,2, such
that -

f(X)=PX" (XY@ 0lP~! + o(trX), VX eMn(R). - (6)

By an argument similar to (3, Theorem 1], the following theorem can be easﬂy
obtained from Lemma 2.

Theorem 1. A map f : (Jo(R)) > Mm(R) is an additive preserver of tripo-
tence if and only if there are four non-negative integers p;,% € (1,4}, with (p; +
P2 + p3 + pa)n < m, a nonsingular m X m matriz P and four ring homomor-

phisms T, : R =My, (R), t € [1,4], such that f(X) = P[Xﬁ@ (XT)2@-Xm@
_(XT) @ 0] P! for any X € (Ja(R)).

From which, by an argument similar to Lemma 4, the additive preservers ot
tripotence from M,(R) to M,,(R) can be characterized as following:

Theorem 2. 4 map f : M,(R) — My, (R) is an additive preserver of tripotence
if and only if there are four non-negative integers p;,1 € [1,4|, with (p1+p2+p3+
pa)n < m, an additive group homomorphism o : R = Mpn(R) with 0(1) =0, a
nonsingular m x m matrizc P and four ring homomorphisms 1. : R -Mg, (R),
t € [1,4], such that f(X) = P[X"'l o(XT)?@-X"p—(XT)™ EBO]P“ +o(trX)
for any X € M,(R). |
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Theorem 3. Let R be an arbitrary idempotence-diagonalizable ring with 2, 3 €
R*, and n,m are positive integers with n > 3. Then [ : M, (R) = Mn(R) is
an additive preserver of inverses if and only if f has the form -

f(X) = P[X" @ (XT)? @ ~X™ & ~(X™)*| P~ for any X € M(R),

where p;,t € [1,4] are non-negative integers with (p1 + p2 + p3 + pa)n = m,-.
P is a nonsingular m x m matriz, and 7, : R =My, (R), t € [1,4], are ring
homomorphisms such that 1,(a) is nonsingular for any t € [1,4] and nonzero
TCR. _ bbbt

Proof. The “if” part is obvious. Now we prove the “only if” part. By an
argument similar to [3, Theorem 2|, one can easily derive that | '

T f(B)T = f1(B) & - f2(B), VB € Tn(R), o)

where f;(B) € J,, (R) satisfies f;(I,) = I,, for i = 1,2. Sinc.e:any-m-a;trix in
(Jn(R)) can be represented as a sum of finitely many matrices in J,(R), we
obtain from (7) and the additivity of f that

T (AT = (4) @ ~fa(4), YA€ Ba(R)),

where f; : (J,(R)) — Mp,(R), ¢ = 1,2, are additive preservers of idempotence
and satisfy f;(I.) = I,, for ¢ = 1,2. By Lemma 2, there are four non-negative
integers p;, t € (1, 4] with (p; + p2 + p3 + p4)n < m, a nonsingular m X m matrix
P and four ring homomorphisms 7; : R =My, (R), t € |1,4], such that

f(4) = PlA™ @ (A7) @ —A™ @ —(AT)| P71, VA € (Bu(R)).  (8)
By an argument similar to that the proof of Lemma 4in [4], one can easily derive
F(X) = P[X"‘ &(XT) e -X" o -(XT)T4}P—1-+ o(trX), VX € Ma(R),

where ¢ is an additive group homomorphism from R to M, (R) with o(1) = 0
Clearly, it remains is to show that o = 0.
For any nonsingular £/ € M3(R), let

Xe=E®+I,_,,
YE:E‘M EBO@(ET)TZEBO®“ET3®O®—(ET)T4@0’ |
Zeg=(E")"eoe(E"))me0e—(E)a0e—((E) )" a0.

Then f(Xg) = Y + o(tE) + C and f(Xg)~! = Zg + o(ttE~1) + C, where
C =08 Lin-2p, ®O® In-2)p, ® 0D ~Lin-2p DO® ~In-2)p,-  (9)

Thus, (Yg + o(trE) + C)(Zg + o(trE™!) + C) = I, which is equivalent to
G(trE)C + CU(tI’E_l) = (0 and c :

Yeo(trEY) + o(trE)Zg + o (trE)o(6rE-1) = 0. )
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For every a € R, if we choose FE is [ a 1 } and [ a 1 ] in (10), respect__ively,

2 0
then o(a)C = Co(a) and 0(a)C = 2“1102(a). Thus, - - .
(a)C = Co(a) = 0. (11)
Let o(a) = (X&), s,t€ {1,8]. Then, by equation (11), we have |
o(a) = (Xa),8,t € [1,8] D (12)

where Xok—12k-1 € Moy, (R) , and Xox ok = 0(k =1, 2, 3 4). -
Case 1. Suppose n > 4. Then, for every nonsmgular E € MQ(R), let
Xg==+Il, o® E , by an argument similar to ( 11}, we have o

o(a)D = Do(a) =0. . (13)

where D = I, 2y, @0 D I(h—2yp, DOD —I(n-2)p, DO D ~I(n_2)p, ® 0. Thls
together with ( 12), implies o(a) = 0. Because of the arbitrariness of a, we can
obtain that o = 0. § - -
] 1 0 0]
Case 2. Suppose n = 3. We consider Xg is and | 0 a b |,
0 ¢ d

QCD.Q
o = O
O o

L o . -
: a b . . . :
respectively, where o 4 | nonsingular, similar to the Case 1, we can derive

that 0 = 0, we complete the proof. ” | O

Theorem 4. Let R be an arbitrary idempotence-diagonalizable ring with 2, 3 €
R*, and let n,m be positive integers with n > 3. Then f : M,(F) — Mun(F)
is an additive preserver of Drazin (- respectively, group, {1}-, {2}-, {1,2}-)
inverses if and only if f has the form

f(X) = P[XT‘ (X2 @-X" o —(XT) @ O]P"I for any X € M,(R),

where p;,t € [1,4] are non-negative z’ntegers with (p1 + p2 + p3 + pa)n < m,
P is a nonsingular m x m matriz, and 7; : R >Mp,(R), t € [1,4], are ring

homomorphisms such that T(a) is nonsmgula'r for any t € [1,4] and nonzero
a € R.

Proof. The “if” part is obvious. Now we prove the “only if” part. By“a,n
argument similar to [3, Theorem 3], one can easily derive that f is an additive
map preserving tripotence. By Theorem 2, one can easily derive

fX)=PX"e(X") "o -X"o—- (X" a0P '+ a(trX),.x?X € Ma(R),
| | (14)

where ¢ is an additive group homomorphism from R to M,,(R) with o(1) = 0.
Clearly, it remains is to show that ¢ = 0. Now, we only prove ¢ = 0 when f
preserves {1}-inverse, other generalized inverses can be proved in the same way.
For any nonsingular E € M(R), it is clear that E~! & I,_5 is one of {1}-
inverses of E € M,(R), and hance f(E~! & I,,_») is one of {1}-inverses of
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f(E:‘:I —-‘2)3 which implies f(EiIn—Z)f(Eml j:Inw—Q)f(E:tIn——Q) = f(EiIn—Q)
By (14), we have

(Yg + o(trE) + C)(Zg + o(trE™!) + C)(Yg + o(trE) + C) = (Yg + o(t:E) £ C),
. (15)

where

| Ye (ETI@O@(ETW@O@-—ETS@O@ (ET)“@O)@O..;,
Ze=((ET)n et (B )e0e—(E)e0e—-((E™) )™ a0)
@0;. |

and - __ |
- C=(08I(n2)p, DOD [(n—2)p, OB ~I(n—2)p, ®OD —L(n—2)p,) D Os.

Furthermore noting that f(E~! & On_2) is one of {1} -inverses of f(E @ On_2),
we derive . |

(YE + o (trE))(Zg + a(trE ))(YE + cr(trE)) = (Yg + a(trE)). (16)
The'c-ombmatlon of (15) and (16) gives that |
(Y + a(trE))C2 + C%(Yg + o(trE)) + C(Zg + o (trE71))C = 0.

o - (17)
Replacmg E by 2F in (17) we have . |
| 4(YE + cr(trE))C2 + 4C?%(Yg +o(trE)) + C(ZE + o(trE™ ))C =0.
| ) | - (18
ljsing (17) and (18), we can obtain that . |
o(trE)C? 4+ C%o(trE) = 0, (19)
and - | | | |
Co(ttE"H)C=0. - (20)

Premultiplying C on the both sides of (19), we have CtrE)C? + Co(trE) = 0.
This, together with (20) and the arbitrariness of E, implies that o(trE)C

Ccr(trE) 0. If we choose E = [ T (1) ], then
| 0(e)C=Cola)=0. (21)
Let o(a) = (Z s,t € [1,9]. Then, by equation (21), we have o(a) = (Z)
erere | Z " € M2, (R), Z =0k=1, 2, 3, 4),and Z c M; . "
2k—1,2k—1 - 2k,2k

Again by an argument similar to the Case 1 and CaSe 2 in the proof of Theorem
3, we obtain that o(a) = 0 ® Xgog. From the arbitrariness of a, we see that (16)
simplifies to 'd(trE) = O'(tI’E)O'\(tI‘E—Il)O'(tI‘E) If we choose E is [ (;' (1) J and
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[ g (1) ] , respectively, then we can derive that —o(a)® = o(a) and -—%or(a)3 =

o(a), which implies ¢(a) = 0, then 0 = 0.
we complete the proof. [

REFERENCES

1. C. G. Cao, Linear maps preserving idempotence on matriz modules over some rings, J.
Natur. Sci. Heilongjiang Univ. 16(1) (1999), 1-4. (in Chinese)

2. C. G. Cao and X. Zhang, Additive operators preserving idempotent matrices over fields and
applications, Linear Algebra Appl. 248 (1996), 327-338.

3. C. G. Cao and X. Zhang, Linear preservers between matriz modules over connected com-
mutative rings, Linear Algebra Appl. 397 (2005), 355-366.

4. C. G. Cao and X. Zhang, Additive preservers of idempotence between rings of square ma-
trices, Int.Math.J.(2007)(to appear) .

5. X. Zhang and C. G. Cao, Homomorphisms between additive matriz groups which preserve
some invariances, Harbin Press, 2001. (in Chinese)

Hongmei Yao received her master degree at Heilongjiang University in July, 2006. Since
2006, she has been worked at the Harbin Engineering University. In 2007, she was a member
of the provincial Natural Science Foundation, which number is 159110120002. Her research
interests focus on the preserving problem in Algebra and related graph theory.

College of Science, Harbin Engineering University , Harbin 150001, P. R. China
e-mail: hongmeiyao@Q@163.com



