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Abstract. We introduce the concept of fuzzy S-weakly r-M -continuous
functions on fuzzy r-minimal spaces, and investigate some characterizations
of such functions and the relations between the continuity and fuzzy r-
minimal compactness on fuzzy r-minimal spaces.
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1. Introduction

The concept of fuzzy set was introduced by Zadeh [14]. Chang [2] defined
fuzzy topological spaces using fuzzy sets. In [3, 11], Chattopadhyay, Hazra and
Samanta introduced a smooth topological space which is a generalization of fuzzy
topological space. In [12], Yoo et al. introduced the concept of fuzzy r-minimal
space which is an extension of the smooth topological space. The concepts of
fuzzy r-open sets, fuzzy r-semiopen sets, fuzzy r-preopen sets, fuzzy r-β-open
sets and fuzzy r-regular open sets were introduced in [1, 4, 5, 6], which are various
kinds of fuzzy r-minimal structures. The concept of fuzzy r-M -continuity was
also introduced and investigated in [12]. In [9], we introduced and studied the
concept of fuzzy weak r-M -continuity. In this paper, we introduce the concept of
fuzzy S-weakly r-M -continuous function, which is a generalization of fuzzy r-M -
continuous function. We investigate some characterizations of such continuity,
and show that the relationships between fuzzy S-weakly r-M -continuity and
fuzzy r-M -continuity. In particular, we obtain Theorem 3.11: Let f : X → Y
be a fuzzy S-weakly r-M -continuous function between r-FMS’s (X,MX) and
(Y,MY ). If A is a fuzzy r-minimal semicompact set in X and if MY has the
property (U), then f(A) is almost fuzzy r-minimal compact.
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2. Preliminaries

Let I be the unit interval [0, 1] of the real line. A member A of IX is called
a fuzzy set of X. By 0̃ and 1̃ we denote constant maps on X with value 0 and
1, respectively. For any A ∈ IX , Ac denotes the complement 1̃ − A. All other
notations are standard notations of fuzzy set theory.

A fuzzy point xα in X is a fuzzy set xα defined as follows

xα(y) =

{
α if y = x,

0 if y 6= x.

A fuzzy point xα is said to belong to a fuzzy set A in X, denoted by xα ∈ A,
if α ≤ A(x) for x ∈ X.

A fuzzy set A in X is the union of all fuzzy points which belong to A.

Let f : X → Y be a function and A ∈ IX and B ∈ IY . Then f(A) is a fuzzy
set in Y , defined by

f(A)(y) =





sup
z∈f−1(y)

A(z), if f−1(y) 6= ∅,

0, otherwise,

for y ∈ Y and f−1(B) is a fuzzy set inX, defined by f−1(B)(x) = B(f(x)), x ∈
X.

A smooth topology [11] on X is a map T : IX → I which satisfies the following
properties:

(1) T (0̃) = T (1̃) = 1.
(2) T (A1 ∧A2) ≥ T (A1) ∧ T (A2).
(3) T (∨Ai) ≥ ∧T (Ai).

The pair (X, T ) is called a smooth topological space.

Definition 2.1 ([12]). Let X be a nonempty set and r ∈ (0, 1] = I0. A fuzzy
family M : IX → I on X is said to have a fuzzy r-minimal structure if the
family

Mr = {A ∈ IX | M(A) ≥ r}
contains 0̃ and 1̃.

Then the (X,M) is called a fuzzy r-minimal space (simply r-FMS) if M has
a fuzzy r-minimal structure. Every member of Mr is called a fuzzy r-minimal
open set. A fuzzy set A is called a fuzzy r-minimal closed set if the complement
of A is fuzzy r-minimal open.

Let (X,M) be an r-FMS and r ∈ I0. The fuzzy r-minimal closure and the
fuzzy r-minimal interior of A [12], denoted by mC(A, r) and mI(A, r), respec-
tively, are defined as

mC(A, r) = ∩{B ∈ IX : Bc ∈ Mr and A ⊆ B},
mI(A, r) = ∪{B ∈ IX : B ∈ Mr and B ⊆ A}.
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Theorem 2.1 ([12]). Let (X,M) be an r-FMS and A,B in IX .
(1) mI(A, r) ⊆ A and if A is a fuzzy r-minimal open set, then mI(A, r) = A.
(2) A ⊆ mC(A, r) and if A is a fuzzy r-minimal closed set, then mC(A, r) =

A.
(3) If A ⊆ B, then mI(A, r) ⊆ mI(B, r) and mC(A, r) ⊆ mC(B, r).
(4) mI(A, r)∩mI(B, r) ⊇ mI(A∩B, r) and mC(A, r)∪mC(B, r) ⊆ mC(A∪

B, r).
(5) mI(mI(A, r), r) = mI(A, r) and mC(mC(A, r), r) = mC(A, r).
(6) 1̃−mC(A, r) = mI(1̃−A, r) and 1̃−mI(A, r) = mC(1̃−A, r).

Let (X,MX) and (Y,MY ) be two r-FMS’s. Then a function f : X → Y is
said to be

(1) fuzzy r-M-continuous [12] if for every fuzzy r-minimal open set A in Y ,
f−1(A) is fuzzy r-minimal open in X,

(2) fuzzy weakly r-M -continuous [9] if for fuzzy point xα in X and each
fuzzy r-minimal open set V containing f(xα), there is a fuzzy r-minimal open
set U containing xα such that f(U) ⊆ mC(V, r).

Theorem 2.2 ([9]). Let f : X → Y be a function between r-FMS’s (X,MX)
and (Y,MY ). Then the following statements are equivalent:

(1) f is fuzzy weakly r-M -continuous.
(2) f−1(V ) ⊆ mI(f−1(mC(V, r)), r) for each fuzzy r-minimal open set V in

Y .
(3) mC(f−1(mI(B, r)), r) ⊆ f−1(B) for each fuzzy r-minimal closed set B

in Y .
(4) mC(f−1(V ), r) ⊆ f−1(mC(V, r)) for each fuzzy r-minimal open set V in

Y .

3. Main Results

Let (X,M) be an r-FMS and A ∈ IX . Then a fuzzy set A is said to be fuzzy
r-minimal semiopen [9] if A ⊆ mC(mI(A, r), r). We showed that any union of
fuzzy r-minimal semiopen sets is fuzzy r-minimal semiopen [9].

For A ∈ IX , msC(A, r) and msI(A, r), respectively, are defined as the fol-
lowing:

msC(A, r) = ∩{F ∈ IX : A ⊆ F, F is fuzzy r-minimal semiclosed}
msI(A, r) = ∪{U ∈ IX : U ⊆ A,U is fuzzy r-minimal semiopen }.

Definition 3.1. Let f : X → Y be a function between r-FMS’s (X,MX) and
(Y,MY ). Then f is said to be fuzzy S-weakly r-M -continuous if for each fuzzy
r-minimal open set A of Y , f−1(A) ⊆ msI(f−1(mC(A, r)), r).

Remark 3.1. Every fuzzy weakly r-M -continuous function is fuzzy S-weakly r-
M -continuous but the converse is not always true as shown in the next example.
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fuzzy r-M -continuous ⇒ fuzzy weakly r-M -continuous ⇒ fuzzy S-weakly r-
M -continuous

Example 3.1. Let X = I, and let A and B be two fuzzy sets in X defined as

A(x) = −1

3
x+

2

3
for x ∈ I,

B(x) =
1

2
x for x ∈ I.

Define a fuzzy family M : IX → I by

M(σ) =





1
2 if σ = 0̃, 1̃,
1
2 if σ = A,
0 otherwise ;

and a fuzzy family N : IX → I by

N (σ) =





2
3 if σ = 0̃, 1̃,
2
3 if σ = B,
0 otherwise.

Consider the identity function f : (X,M) → (X,N ). Note that:

mI(f−1(mC(B,
1

2
)),

1

2
) = mI(f−1(1̃−B),

1

2
) = A;

msI(f−1(mC(B,
1

2
)),

1

2
) = msI(f−1(1̃−B),

1

2
) = 1̃−B.

Clearly f is a fuzzy S-weakly 1
2 -M -continuous function but it is not a fuzzy

weakly 1
2 -M -continuous function by Theorem 2.2.

Theorem 3.2. Let f : X → Y be a function between r-FMS’s (X,MX) and
(Y,MY ). Then f is fuzzy S-weakly r-M -continuous if and only if for every fuzzy
point xα and each fuzzy r-minimal open set V containing f(xα), there exists a
fuzzy r-minimal semiopen set U containing xα such that f(U) ⊆ mC(V, r).

Proof. If f is a fuzzy S-weakly r-M -continuous function, then for each fuzzy
point xα in X and each fuzzy r-minimal open set V containing f(xα), we have
xα ∈ f−1(V ) ⊆ msI(f−1(mC(V, r)), r). Put U = msI(f−1(mC(V, r)), r). Then
U is a fuzzy r-minimal semiopen set such that xα ∈ U ⊆ f−1(mC(V, r)). Thus
f(U) ⊆ mC(V, r).

For the converse, let V be a fuzzy r-minimal open set in Y . By hypothesis,
for each xα ∈ f−1(V ), there exists a fuzzy r-minimal semiopen set U containing
xα such that f(U) ⊆ mC(V, r). So ∪{U : xα ∈ f−1(V )} ⊆ f−1(mC(V, r)) for
a fuzzy r-minimal semiopen set U containing xα. Since ∪{U : xα ∈ f−1(V )} is
fuzzy r-minimal semiopen, we have f−1(V ) ⊆ msI(f−1(mC(V, r)), r). Hence f
is fuzzy S-weakly r-M -continuous. ¤
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Theorem 3.3. Let f : X → Y be a function between r-FMS’s (X,MX) and
(Y,MY ). Then the following are equivalent:

(1) f is fuzzy S-weakly r-M -continuous.
(2) msC(f−1(mI(F, r)), r) ⊆ f−1(F ) for each fuzzy r-minimal closed set F

in Y .

Proof. (1) ⇒ (2) Let F be a fuzzy r-minimal closed subset of Y . Then since
1̃− F is a fuzzy r-minimal open set in Y ,

f−1(1̃− F ) ⊆ msI(f−1(mC(1̃− F, r)), r)

= msI(f−1(1̃−mI(F, r)), r)

= msI(1̃− f−1(mI(F, r)), r)

= 1̃−msC(f−1(mI(F, r)), r).

Hence msC(f−1(mI(F, r)), r) ⊆ f−1(F ).

Similarly, it is proved that (2) ⇒ (1). ¤

Let X be a nonempty set and M : IX → I a fuzzy family on X. The fuzzy
family M is said to have the property (U) [12] if for Ai ∈ M (i ∈ J),

M(∪Ai) ≥ ∧M(Ai).

Theorem 3.4 ([12]). Let (X,M) be an r-FMS with the property (U) and A ∈
IX . Then

(1) A is fuzzy r-minimal open if and only if mI(A, r) = A.
(2) A is fuzzy r-minimal closed if and only if mC(A, r) = A.

Theorem 3.5. Let f : X → Y be a function between r-FMS’s (X,MX) and
(Y,MY ). If MY has the property (U), then the following are equivalent:

(1) f is fuzzy S-weakly r-M -continuous.
(2) msC(f−1(mI(mC(B, r), r)), r) ⊆ f−1(mC(B, r)) for every fuzzy set B in

Y .
(3) f−1(mI(B, r)) ⊆ msI(f−1(mC(mI(B, r), r)), r) for every fuzzy set B in

Y .
(4) msC(f−1(V ), r) ⊆ f−1(mC(V, r)) for every fuzzy r-minimal open set V

in Y .

Proof. (1) ⇒ (2) For B ∈ IY , from the property (U) and Theorem 3.4, we have
that mC(B, r) is a fuzzy r-minimal closed set in Y . By Theorem 3.3, we easily
obtain msC(f−1(mI(mC(B, r), r)) ⊆ f−1(mC(B, r)).

(2) ⇒ (3) For B ∈ IY ,

f−1(mI(B, r)) = 1̃− (f−1(mC(1̃−B, r)))

⊆ 1̃−msC(f−1(mI(mC(1̃−B, r), r)), r)



1064 W. K. Min, M. H. Kim

= msI(f−1(mC(mI(B, r), r)), r).

Hence,f−1(mI(B, r)) ⊆ msI(f−1(mC(mI(B, r), r)), r).

(3) ⇒ (4) Let V be any fuzzy r-minimal open set of Y . Then from V ⊆
mI(mC(V, r), r), it follows

1̃− f−1(mC(V, r)) = f−1(mI(1̃− V, r))

⊆ msI(f−1(mC(mI(1̃− V, r), r)), r)

= msI(1̃− (f−1(mI(mC(V, r), r))), r)

= 1̃−msC(f−1(mI(mC(V, r), r)), r)

⊆ 1̃−msC(f−1(V ), r).

Hence we have msC(f−1(V ), r) ⊆ f−1(mC(V, r)).

(4)⇒ (1) Let V be a fuzzy r-minimal open set in Y . By Theorem 3.4, 1̃ −
mC(V, r) is fuzzy r-minimal open. So from V ⊆ mI(mC(V, r), r) and (4), it
follows

f−1(V ) ⊆ f−1(mI(mC(V, r), r))

= 1̃− f−1(mC(1̃−mC(V, r), r))

⊆ 1̃−msC(f−1(1̃−mC(V, r)), r)

= msI(f−1(mC(V, r)), r).

Hence f is fuzzy S-weakly r-M -continuous.
¤

Definition 3.2 ([10]). Let (X,M) be an r-FMS and A ∈ IX . Then a fuzzy set
A is said to be

(1) fuzzy r-minimal preopen if A ⊆ mI(mC(A, r), r);
(2) fuzzy r-minimal regular open (resp., fuzzy r-minimal regular closed if A =

mI(mC(A, r), r) (resp., A = mC(mI(A, r), r)).

Theorem 3.6. Let f : X → Y be a function between r-FMS’s (X,MX) and
(Y,MY ). If MY has the property (U), then the following are equivalent:

(1) f is fuzzy S-weakly r-M -continuous.
(2) msC(f−1(mI(mC(G, r), r)), r) ⊆ f−1(mC(G, r)) for each fuzzy r-minimal

open set G in Y .
(3) msC(f−1(mI(mC(V, r), r)), r) ⊆ f−1(mC(V, r)) for each fuzzy r-minimal

preopen set V in Y .
(4) msC(f−1(mI(K, r)), r) ⊆ f−1(K) for each fuzzy r-minimal regular closed

set K in Y .
(5) msC(f−1(mI(mC(G, r), r)), r) ⊆ f−1(mC(G, r)) for each fuzzy r-minimal

semiopen set G in Y .

Proof. (1) ⇒ (2) Let G be a fuzzy r-minimal open set of Y ; then by Theorem
3.5 (2), msC(f−1(mI(mC(G, r), r)), r) ⊆ f−1(mC(G, r)).
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(2)⇒ (3) Let V ⊆ Y be fuzzy r-minimal preopen. Then V ⊆ mI(mC(V, r), r).
Set A = mI(mC(V, r), r). Then by Theorem 3.6, A is a fuzzy r-minimal open set,
and so msC(f−1(mI(mC(A, r), r)), r, r) ⊆ f−1(mC(A, r)). From mC(A, r) =
mC(V, r), it follows

msC(f−1(mI(mC(V, r), r)), r) ⊆ f−1(mC(V, r)).

(3)⇒ (4) Let K be a fuzzy r-minimal regular closed set of Y . Since mI(K, r)
is a fuzzy r-minimal preopen set,

msC(f−1(mI(mC(mI(K, r), r), r)), r) ⊆ f−1(mC(mI(K, r), r)).

From mI(K, r) = mI(mC(mI(K, r), r), r) and K = mC(mI(K, r), r), it follows
msC(f−1(mI(K, r)), r) ⊆ f−1(K).

(4) ⇒ (5) For any fuzzy r-minimal semiopen set G, we know that G ⊆
mC(mI(mC(G, r), r), r) ⊆ mC(G, r), and so mC(G, r) is fuzzy r-minimal reg-
ular closed. Hence msC(f−1(mI(mC(G, r), r)), r) ⊆ f−1(mC(G, r)).

(5) ⇒ (1) Let V be a fuzzy r-minimal open set. Then since V is also a fuzzy
r-minimal semiopen set, from V ⊆ mI(mC(V, r), r) and (5), we have

msC(f−1(V ), r) ⊆ msC(f−1(mI(mC(V, r), r)), r)

⊆ f−1(mC(V, r)).

Hence, by Theorem 3.5 (4), f is fuzzy S-weakly r-M -continuous. ¤

We recall that the following notions introduced in [8, 13]: Let (X,M) be an
r-FMS and A = {Ai ∈ IX : i ∈ J}. A is called a fuzzy r-minimal cover if
∪{Ai : i ∈ J} = 1̃. It is a fuzzy r-minimal open(semiopen) cover if each Ai is a
fuzzy r-minimal open(semiopen) set. A subcover of a fuzzy r-minimal cover A
is a subfamily of it which also is a fuzzy r-minimal cover. A fuzzy set A in X is
said to be fuzzy r-minimal semicompact (resp., almost fuzzy r-minimal compact)
if every fuzzy r-minimal semiopen (resp., open) cover A = {Ai ∈ Mr : i ∈ J}
of A, there exists J0 = {j1, j2, · · · , jn} ⊆ J such that A ⊆ ∪k∈J0Ak (resp.,
A ⊆ ∪k∈J0mC(Ak, r)).

Lemma 3.7 ([Theorem 3.8 of [7]]). Let (X,M) be an r-FMS and A ∈ IX . Then
(1) A is fuzzy r-minimal semiopen iff msI(A, r) = A.
(2) F is fuzzy r-minimal semiclosed iff msC(F, r) = F .
(3) msI(msI(A, r), r) = msI(A, r) and msC(msC(A, r), r) = msC(A, r).

Theorem 3.8. Let f : X → Y be a fuzzy weakly r-M -continuous function
between r-FMS’s (X,MX) and (Y,MY ). If A is a fuzzy r-minimal semicompact
set in X and if MY has the property (U), then f(A) is almost fuzzy r-minimal
compact.

Proof. Let {Bi ∈ IY : i ∈ J} be a fuzzy r-minimal open cover of f(A) in
Y . Then since f is fuzzy S-weakly r-M -continuous, from Theorem 3.7 (3) and
Bi = mI(Bi), we have f−1(Bi) ⊆ msI(f−1(mC(Bi, r)), r) for each i ∈ J .
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So {msI(f−1(mC(Bi))) : i ∈ J} is a fuzzy r-minimal semiopen cover of A
in X. Since A is fuzzy r-minimal semicompact, there exists a finite subset
J0 = {j1, j2, · · · , jn} ⊆ J such that

A ⊆ ∪k∈J0msI(f−1(mC(Bk, r)), r) ⊆ f−1(mC(Bk, r)).

This implies that f(A) ⊆ ∪k∈J0
mC(Bk, r). Hence f(A) is almost fuzzy r-

minimal compact. ¤
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