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A NOTE ON MONOFORM MODULES

ALIREZA HAJIKARIMI AND ALI REZA NAGHIPOUR

ABSTRACT. Let R be a commutative ring with identity and M be a uni-
tary R-module. A submodule N of M is called a dense submodule if
Hompg(M/N,Egr(M)) = 0, where Er(M) is the injective hull of M. The
R-module M is said to be monoform if any nonzero submodule of M is
a dense submodule. In this paper, among the other results, it is shown
that any kind of the following module is monoform.

(1) The prime R-module M such that for any nonzero submodule N of

M, Anng(M/N) # Anng(M).
(2) Strongly prime R-module.
(3) Faithful multiplication module over an integral domain.

1. Introduction

Throughout this paper, R is a commutative ring with identity and all mod-
ules are unitary. The injective hull of M and the set of zero divisors of M
are denoted by Er(M) and Zr(M), respectively. The annihilator of M is de-
noted Anng (M) and for any x € M the annihilator of Rz is denoted Anng(x).
If N is a submodule of an R-module M, then (N :gr M) denotes the ideal
Anmng(M/N) of R, that is (N :g M) = {r € R: rM C N}. The R-module
M is called faithful if Anng(M) = 0. A proper submodule N of an R-module
M is called prime submodule if for r € R and * € M, rz € N implies that
x € NorrM C N. Also, M is called prime module if the submodule 0 of M is
prime. It is easy to see that M is prime if and only if Anng(M) = Anng(N)
for any nonzero submodule N of M. This notion of prime submodules was
first introduced in [6] and [8] and systematically studied in [4]. Recall that a
submodule N of R-module M is said to be strongly prime submodule if for any
z,y € M, (Rt + N :g M)y = 0 implies that z € N or y € N. Furthermore,
the R-module M is called strongly prime if 0 is a strongly prime submodule.
It is easy to see that any strongly prime is prime but the converse is not true
in general (see [13] and [15]).
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Let M be an R-module. A submodule N of M is said to be essentialif N has
nonzero intersection with any nonzero submodule of M. We write N <, M
to indicate that N is an essential submodule of M. The notion of a dense
submodule is a refinement of that of an essential submodule. A submodule N
of M is called dense submodule and is written N <; M if for any =,y € M
with x # 0 there exists r € R such that rx # 0 and ry € N. The notion
of dense submodule due to Findlay-Lambek plays an important role in the
context of commutative (or noncommutative) algebra (see [7]). For example,
the main objects in the maximal ring of quotients are dense submodules (see
[10, Chapter 5]).

An R-module M is said to be monoform if any nonzero submodule of M is a
dense submodule. Monoform modules arise in the study of rings and modules
with Krull dimensions (see [8]).

We call an R-module M is essentially monoform if for any nonzero essential
submodule N of M, N <4 M.

The plan of this paper is as follows. In Section 2, we study the connection
between the monoform modules and the prime modules. We prove that if M is
a prime R-module and Anng(M/N) # Anng(M) for any nonzero submodule
N of M, then M is monoform. Moreover, if R is Noetherian and M is finitely
generated, then the converse is true (see Theorem 2.12). We prove in Theo-
rem 2.16 that if M is an R-module and Er(M) is a prime R-module, then M
is essentially monoform. It is shown that any strongly prime module is mono-
form (see Theorem 2.13). In Section 3, we prove that any faithful multiplication
module over an integral domain is monoform (see Corollary 3.4). Finally, we
characterize the finitely generated faithful module which has no proper dense
submodule (see Theorem 3.6).

For other notations and terminologies not mentioned in this paper, one can
refer to [10] and [16].

2. Some characterizations of dense submodules

First, we recall a proposition about dense submodules which is used widely
in the sequel.

Proposition 2.1 (See [10, Proposition 8.6]). Let N be a nonzero submodule
of an R-module M. Then the following are equivalent:

(1) N<q4 M.

(3) For any submodule P such that N < P < M, Homg(P/N,M) = 0.

Definition 2.2. An R-module M is called monoform (following [8]) if any
nonzero submodule of M is a dense submodule.

A nonzero module M is called uniform if any two nonzero submodules of M
intersect nontrivially (equivalently: any nonzero submodule of M is indecom-
posable, or else: any nonzero submodule of M is essential in M). In view of
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[10, Examples 3.51], we have the obvious implications:
simple = monoform = uniform = indecomposable

The following example shows that the set of all simple R-module is strictly
contained in the set of all monoform R-modules.

Example 2.3. Z is monoform but it is not simple.

A cyclic Z-module G is uniform if and only if either G is infinite or |G| = p™
for some prime p and positive integer n. The following example shows that
the set of all monoform R-module is strictly contained in the set of all uniform
R-modules.

Example 2.4. Let G be a cyclic group of order p?>. Then G is a uniform
Z-module but it is not a monoform Z-module (see Corollary 3.2).

Remark 2.5. By [10, Proposition 8.7], if M is an R-module and N < K < M,
then N <; M if and only if N <; K and K <4 M. So, if every nonzero cyclic
submodules of M is a dense submodule, then M is a monoform module.

The support of an R-module M is the set of all prime ideals p of R such that
M, # 0 and it is denoted by Suppg(M). Also, let p be a prime ideal of R. p is
said to be an associated prime ideal of M if p is the annihilator of some = # 0
of M. The set of associated primes of M is denoted by Assr(M). If a is an
ideal of R, then V' (a) is the set of all prime ideals of R which contains a.

Theorem 2.6. Let M be a nonzero finitely generated module over a Noetherian
ring R and let N be submodule of M. Then the following are equivalent:

HomR(M/N, ER(M)) =0.

Assp(Homp(M /N, Er(M))) = 0.
Hompg(M/N,M) = 0.
V(Anng(M/N)) N Assg(M) = 0.

(

(2)

(3) =
54; Suppr(M/N) N Assgr(M) = 0.
5

(6)

(7)

Arng(M/N) € Zr(M).

Proof. (1)<(2) Follows from Proposition 2.1.

(2)<(3) Follows from [16, Corollary 9.35].

(3)<(4) Follows from [3, Proposition 10, Chapter IV] and [10, Remarks and
Example 3.57(2)].

(4)<(5) Follows from [3, Proposition 10, Chapter IV] and [16, Lemma 9.35].

(5)<(6) Follows from [3, Proposition 10, Chapter IV] and [16, Lemma 9.20].

(6)=(7) Suppose Anng(M/N) C Zr(M). By [16, Lemma 9.15], Zr(M) =
UpecAssp(m)b. Also Assg(M) is a finite set, by [11, Theorem 6.5(i)]. So the
Prime Avoidance Theorem ([16, Theorem 3.61] implies that Anng(M/N) C p
for some p € Assp(M). It follows that p € V(Anng(M/N)) N Assg(M), a
contradiction.
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(7)=(6) Suppose that V(Anng(M/N)) N Assg(M) # 0 and let
p € V(Anng(M/N)) N Assr(M).
Therefore Anng(M/N) Cp C Zr(M), a contradiction. O

Corollary 2.7. Let M be a nonzero module over a Noetherian ring R and
Assp(M) = Suppr(M). Then M has no proper dense submodule.

Proof. Let N be a submodule of M. By [16, Exercise 9.19] and Theorem 2.6,
N <4 M if and only if Supp (M /N)NSupp (M) =0 if and only if Supp (M /N)
= () if and only if M/N = 0. So, M has no proper dense submodule. O

An example of these modules is weakly Artinian modules. An R-module M
is called weakly Artinian if Asspr(M) consists of finitely many maximal ideals
(see [9]).

Following [2], an R-module M is said to be coretractable if for any proper
submodule N of M, Hompg(M/N, M) # 0.

Proposition 2.8. Let M be a nonzero finitely generated R-module over a
Noetherian ring R. Then M has no proper dense submodule if and only if M
is coretractable.

Proof. 1t is easy to see that any coretractable module has no proper dense
submodule.

Conversely, let M has no proper dense submodule and N be a proper
submodule of M. Then Homg(M/N,Er(M)) # 0. So, Suppr(M/N) N
Assgr ERr(M) = Suppp(M/N)NAssg(M) # 0. Therefore Homp(M/N, M) # 0
and hence M is coretractable. O

Following [12], an R-module M is called quasi-dedekind if for any nonzero
submodule N of M, Homg(M/N,M) = 0. In view of Theorem 2.6, if R is
a Noetherian ring and M # 0 is a finitely generated R-module, then M is
monoform if and only if M is quasi-dedekind.

Theorem 2.9. Let M be a nonzero R-module. Then the following statements
are hold:

(1) If R is a Noetherian ring, then any finitely generated uniform module
18 primary.
(2) M is monoform if and only if it is uniform prime.

Proof. (1) By [16, Corollary 9.35] and [10, Lemma 3.59] we have | Assp(M)| =1
and so M is primary from [11, Theorem 6.6].

(2) (=) Let N be a nonzero submodule of R-module M and r € Anng(N).
Then the map r : M — M by x — rz is an R-homomorphism and N C Kerr.
So, there exists an R-homomorphism ¢ : M/N — M such that p(z+N) = rz.
From Proposition 2.1, ¢ = 0 and this results that » € Anng(M).

(<) Let N be a nonzero submodule of R-module M. Let z,y € M with
x # 0. First suppose that y = 0. Since M is uniform, there exists » € R such
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that 0 ## rx € N and 0 = ry € N. Now let y # 0. Then there exists s € R
such that 0 # sy € N and sx # 0, since M is prime. So, N <4 M. O

The following lemma is used at several places in this paper.

Lemma 2.10. Let N be a (nonzero) submodule of R-module M such that and
for any 0 #x € M, Aung(M/N) € Anng(x). Then N <4, M.

Proof. Let x,y € M with  # 0. Then Anng(M/N) ¢ Ann(z). So, there
exists r € R such that M C N and rx # 0. It follows that ry € N. Then
N <;g M. O

Let N be a submodule of an R-module M and a an ideal of R. The residual
submodule of N by a is

(N:ya)y={zeM:zaC N}
It is a submodule of M containing N (see [16, Definition 6.20]).

Theorem 2.11. Let M be an R-module. If a is an ideal of R such that (0 :p
a) =0, then aM is a dense submodule of M.

Proof. Let Anng(M/aM) C Anng(x) for some 0 # z € M. Then ax =0, a
contradiction. So, aM is a dense submodule of M by the above lemma. ([l

In the following theorem, we characterize the finitely generated monoform
modules over Noetherian rings.

Theorem 2.12. Let M be a prime R-module and for any nonzero submodule
N of M, Aung(M/N) # Aung(M). Then M is a monoform R-module. The
converse is true if R is a Noetherian ring and M is a finitely generated R-
module.

Proof. Let N be a nonzero submodule of M and 0 # x € M. Then Anng(M/N)
¢ Anng M = Anng(x). Therefore N <; M by Lemma 2.10, and hence M is a
monoform R-module.

Conversely, let R be a Noetherian ring and M a finitely generated monoform
R-module. By Theorem 2.9(2), M is prime. Suppose on the contrary that
there is a submodule N of M such that Anng(M/N) = Anng(M). Then
Anng(M/N) = Anng(x) for all 0 # = € M. It follows that Anng(M/N) €
Suppr(M/N) N Assgr(M) # 0, which is a contradiction to Theorem 2.6. This
completes the proof. O

In the following theorem, we prove that any strongly prime R-module is a
monoform module.

Theorem 2.13. Let M be a strongly prime R-module. Then M is a monoform
module. The converse is true if every finitely generated monoform R-module
over a Noetherian ring R is strongly prime.
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Proof. From Remark 2.5, it is enough to prove that any nonzero cyclic submod-
ule of M is a dense submodule. Let 0 # « € M and Anng(M/Rx) C Anng(y)
for some 0 # y € M. Then, for any r € R if rM C Rz, then ry = 0. It follows
that (Rz :g M)y = 0 and hence x = 0 or y = 0, a contradiction. Now, the
assertion follows by Lemma 2.10.

Conversely, let R be a Noetherian ring and M # 0 be a finitely generated
monoform R-module. By Theorem 2.9, M is prime. Let z,y € M and (Rx :r
M)(Ry :g M)M = 0. Then (Rx :g M)(Ry :r M) C Anng(M). It results that
(Rx :p M) C Anng(M) or (Ry :r M) C Anng(M). From Theorem 2.12, we
conclude that = 0 or y = 0. Now, [14, Lemma 2.2] completes the proof. O

Proposition 2.14. Let M be an R-module. Then the following statements are
hold:

(1) If a is a dense ideal of R and M is a free R-module, then aM is a
dense submodule of M.

(2) If M is a free R-module of finite rank and a is a nonzero ideal of R
such that aM is a dense submodule of M, then a is a dense ideal of R.

Proof. (1) Let 0 # x € M and Anng(M/aM) C Anng(z). Then ax = 0. There
exist r1,...,ryin Rand eq,..., e in a base of M such that z = rie;+- - -+rpeg.
So, rma = --- = rpa = 0. It follows that r1 = --- = r, = 0, which is a
contradiction. Therefore aM is a dense submodule of M by Lemma 2.10.

(2) Let M = &7, R be a free R-module and let a be a nonzero ideal of R
such that aM a dense submodule of M. We have Homg(M/aM, Er(M)) =
Hompg(R/a®g (®F_R), @ Er(R)) = 0. Then Homp(®F_,R/a, ®F_, Er(R))
= 0. It follows that ®¥_; Homg(R/a, ®*_, Eg(R)) = 0. Hence,

Homp(R/a, &% Er(R)) = 0.
Now, from the exact sequence 0 — Er(R) — @©F_ | Er(R) we deduce that

Homp(R/a, Er(R)) = 0. So, Theorem 2.6 completes the proof. O

Corollary 2.15. The ring R is an integral domain if and only if there exists
a free monoform R-module of finite rank.

Proof. (=) By [10, Corollary 8.4(3)], R is a monoform R-module.

(<) It is enough to show that R is monoform R-module. Let 0 # a be an
ideal of R and M a free monoform R-module of finite rank. Then aM is a
dense submodule of M and so a is a dense ideal of R by Proposition 2.14. O

Following [18], an R-module M is called essentially monoform if for any
essential submodule N of M,
HOI’HR<M/N, ER(M)) =0.

In the following theorem, we prove if M is an R-module and Er(M) is a prime
R-module, then M is essentially monoform.
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Theorem 2.16. Let M be an R-module. Then the following statements are
hold:

(1) M 1is essentially monoform if and only if for any nonzero homomor-
phism f: M — Er(M), Ker f £. M.
(2) If Er(M) is a prime R-module, then M is essentially monoform.

Proof. (1) (=) Let f : M — Egr(M) be a nonzero homomorphism and
Kerf <. M. Then g : M/Ker f — Egr(M), by g(m + Ker f) = f(m) is
a nonzero homomorphism. So, Hompg (M /Ker f, Er(M)) # 0, that is a contra-
diction.

(<) Let there exists N <. M such that Homgr(M/N, Er(M)) # 0. Let 0 #
h € Homg(M/N,Er(M)) and 7 : M — M/N be the canonical epimorphism.

Then ¢ : M =5 M/N LN Er(M) is a nonzero homomorphism and since
N C Ker ¢ we conclude that Ker ¢ <. M, a contradiction.

(2) Let Er(M) be a prime R-module and let f : M — FEgr(M) be a
monomorphism. In view of part (1), it is enough to show that Ker f <. M.
Suppose on the contrary that Ker f <, M. Since f is nonzero, there exists
0 # x € M such that f(z) # 0. So, there exists r € R such that 0 # rz € Ker f.
Since Er(M) is a prime R-module, we have r € Anng(f(z)) = Aung(Egr(M)).
Then rz = 0, a contradiction. ([

3. Dense submodules of multiplication modules

Let M be an R-module. Then M is called a multiplication module if for each
submodule N of M, N = aM for some ideal a of R. If M is a multiplication
module, for each submodule N of M, N = (N :g M)M. It is easy to see that
any cyclic R-module is multiplication. Also, if M is a multiplication module
and N a submodule of M, then M/N is a multiplication module (for more
information about multiplication modules see for example [5] and [17]).

[10, Corollary 8.4(3)] shows that the ring R is an integral domain if and only
if R is monoform. So, it is natural to ask about dense submodules of multipli-
cation modules. In fact, we prove that any faithful multiplication module over
an integral domain is monoform (see Corollary 3.4).

Theorem 3.1. Let M be a multiplication R-module. Then the following are
equivalent:

(1) M is monoform.

(2) M is uniform prime.
(3) M is prime.

(4) M s strongly prime.

Proof. (1)=(2) Follows from Theorem 2.9(2).
(2)=(3) Is clear.

(3)=-(4) Follows from [14, Proposition 2.4].
(4)=(1

=(1) Follows from Theorem 2.13. O
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Corollary 3.2. Let G be a cyclic group. Then G as a Z-module is monoform
if and only if either G is infinite or |G| = p for some prime p.

Proof. (<) Let G = (a) be infinite and H be a nonzero subgroup of G. There
exists positive integer m such that H = (ma). If z,y € G and = # 0, then
x = sa,y = ta for some integer ¢ and nonzero integer s. Therefore, msa # 0
and mta € H. So, H <; G. Now, let |G| = p for some prime p. Then G is
simple and so is monoform.

(=) Let G be a finite monoform Z-module. Then G = Z, = Z/nZ (as
Z-modules) for some n. Now, by Theorem 3.1, n is prime. ]

Theorem 3.3. Let M be a faithful multiplication R-module and a be an ideal
of R. Then a is a dense ideal of R if and only if aM is a dense submodule of
M.

Proof. Let a be a dense ideal of R. By [10, Examples 8.3(4)], (0 :g a) = 0.
So, in view of [1, Lemma 2.1(1)], we have (0 :p; a) = (0 :g a)M = 0. Now
Theorem 2.11 results that aM is a dense submodule of M.

Conversely, assume that aM is a dense submodule of M. In view of [10,
Examples 8.3(4)], it is enough to show that Anng(a) = 0. Suppose on the
contrary that 0 # r € Anng(a). Since M is faithful, we have rM # 0. Let
x € M and rz # 0. Since aM is dense, there exists ¢t € R such that ¢(rz) # 0
and tx € aM. We have tx = t1x1 + --- + txoy for some t1,...,%; in a and
Z1,...,2% in M. It follows that ¢(rz) = 0, a contradiction. O

Corollary 3.4. Let M be a faithful multiplication R-module. Then the follow-
ing are equivalent:

(1) R is an integral domain.
(2) R is monoform.
(3) M is monoform.
(4) M is prime.
(5) M is uniform.
(6) M is strongly prime.
Also, in the case R is Noetherian, the above conditions are equivalent to

(7) M is prime and (N :g M) # 0 for any nonzero submodule N of M.

Proof. By [5, Theorem 3.4] any faithful multiplication R-module over an inte-
gral domain is finitely generated. So, the result follows by [10, Corollary 4.8(3)]
and Theorems 2.12, 3.1 and 3.3. O

Let M be an R-module and x € R. For convenience, we simply denote
(0:r Rz) and (0 :pr Rz) by (0:g x) and (0 :ps x), respectively.
Lemma 3.5. Let M be a finitely generated faithful multiplication R-module,
let a be an ideal of R, and let © € R. Then the following statements are hold:
(1) a=(0:g x) if and only if aM = (0 :ps x).
(2) (0:p a) =0 if and only if (0:pr a) = 0.
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(3) (0:g (0:ga)) =aif and only if (0:p7 (0:g a)) = alM.

Proof. In view of [1, Lemma 2.1(1)], we have (0 :py a) = (0 :g a)M, so the
proof follows by [5, Theorem 3.1]. O

The ring R is called Kasch ring if every simple R-module can be embedded
in R. Kasch rings are named in honour of Friedrich Kasch. See [10] for more
information about Kasch ring. Now we are in position to give a characterization
of the finitely generated faithful module which has no proper sense submodule.

Theorem 3.6. Let M be a finitely generated faithful multiplication R-module.
Then the following are equivalent:

(1) R is a Kasch ring.

)
)
4) For any mazimal ideal m of R, mM = (0 :ps (0:g m)).
) M has no proper dense submodule.

)

Proof. We note that the maximal submodules of M is the form mM for some
maximal ideal m and any proper submodule is contained in a maximal sub-
module. Now, we deduce the result by [10, Corollary 8.28] and Lemma 3.5. O
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