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ON Φ-FLAT MODULES AND Φ-PRÜFER RINGS

Wei Zhao

Abstract. Let R be a commutative ring with non-zero identity and let

NN(R) = {I | I is a nonnil ideal of R}. Let M be an R-module and let

φ-tor(M) = {x ∈ M | Ix = 0 for some I ∈ NN(R)}. If φ-tor(M) = M ,
then M is called a φ-torsion module. An R-module M is said to be φ-flat,

if 0 → A ⊗R M → B ⊗R M → C ⊗R M → 0 is an exact R-sequence,
for any exact sequence of R-modules 0 → A → B → C → 0, where C is

φ-torsion.

In this paper, the concepts of NRD-submodules and NP-submodules
are introduced, and the φ-flat modules over a φ-Prüfer ring are investi-

gated.

1. Introduction

Throughout this paper, it is assumed that all rings are commutative and
associative with non-zero identity and all modules are unitary. Let R be a
ring. Then T (R) denotes the total quotient ring of R, Nil(R) denotes the set
of its nilpotent elements, and Z(R) denotes the set of zero-divisors of R. An
ideal I of a ring R is said to be a nonnil ideal if I * Nil(R). Recall from [15]
and [4] that a prime ideal P of R is called divided if P ⊂ (x) for each x ∈ R\P .
Set H = {R |R is a commutative ring and Nil(R) is a divided prime ideal of
R}. If R ∈ H, then R is called a φ-ring. If R ∈ H and Nil(R) = Z(R), then R
is called a strongly φ-ring, and denoted by R ∈ SφR. Recall from [5] that for
a ring R ∈ H with total quotient ring T (R), the map φ : T (R)→ RNil(R) such
that φ(a/b) = a/b for a ∈ R and b /∈ Z(R) is a ring homomorphism from T (R)
into RNil(R), and φ restricted to R is also a ring homomorphism from R into
RNil(R) given by φ(x) = x/1 for each x ∈ R.

Recently, the authors in [1,2,14], and [20] generalized the concept of Prüfer
domains, Bezout domains, Dedekind domains, Krull domains, Mori domains,
and strongly Mori domains to the context of rings that are in the class H.
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Also, the authors in [4–8], and [10] investigated the following classes of rings:
φ-CR, φ-PV R, and φ-ZPUI. Furthermore, in [12], the authors investigated
going-down φ-rings. The authors in [9, 13] and [18], introduced the notion of
nonnil-Noetherian rings (later called φ-Noetherian rings). This notion was also
extended to noncommutative rings in [21]. The authors in [11], stated many of
the main results on φ-rings.

In order to investigate modules and φ-rings, the authors in [24], introduced
φ-torsion modules and φ-torsion free modules, and investigated φ-flat modules
and φ-von Neumann regular rings. The authors in [3] gave the concepts of
nonnil-coherent rings and φ-coherent rings.

We recall that a valuation domain is a commutative integral domain such
that for any two elements r and s, either r divides s or s divides r. This clearly
implies that any finitely generated ideal is principal (and hence flat) and that
for any two ideals I and J , either I ⊆ J or J ⊆ I. In particular, a valuation
domain is a local ring. A ring R is said to be a chained ring if for every a, b ∈ R,
either a|b or b|a in R. Recall from [7] that a ring R ∈ H is called a φ-chained
ring (φ-CR) if x−1 ∈ φ(R) for every x ∈ RNil(R) \ φ(R); equivalently, if for
every a, b ∈ R\Nil(R), either a|b or b|a in R. The author in [23] showed that a
finitely presented module over a valuation domain is a direct sum of cyclically
presented modules. In this paper, the following result is shown.

Theorem. A finitely presented φ-torsion module over a φ-chain ring is a direct
sum of cyclically presented φ-torsion modules.

In this paper, a submodule N of an R-module M is said to be nonnil rela-
tively divisible in M , if rN = N ∩ rM holds for any r ∈ R \Nil(R). We denote
briefly that N is an NRD-submodule of M . A submodule N of an R-module
M is said to be nonnil pure in M , if IN = N ∩ IM holds for any I ∈ NN(R).
We denote briefly that N is an NP-submodule of M .

A Prüfer domain is an integral domain such that every finitely generated
ideal is invertible (and hence projective). It is well known that a local domain
is a Prüfer domain if and only if it is a valuation domain, and therefore, R is
a Prüfer domain if and only if for each maximal ideal m, Rm is a valuation
domain. A ring R is called a Prüfer ring, in the sense of [17], if every finitely
generated regular ideal of R is invertible. Recall from [1] that R is called a
φ-Prüfer ring if every finitely generated nonnil ideal of R is φ-invertible. This
generalized the definition of Prüfer domain in H. Here a nonnil ideal I of R
is φ-invertible if φ(I) is an invertible ideal of φ(R). The author in [23] showed
that over Prüfer rings, relative divisibility and purity are equivalent. In this
paper, the following result is shown, which generalizes the result in [16].

Theorem. Over φ-Prüfer rings, nonnil relative divisibility and nonnil purity
are equivalent.

Anderson and Badawi showed in [1] that the following statements are equiv-
alent for a ring R.
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(1) R is a φ-Prüfer ring.
(2) φ(R) is a Prüfer ring.
(3) φ(R)/Nil(φ(R)) is a Prüfer domain.
(4) RP is a φ-CR for each prime ideal P of R.
(5) RP /Nil(RP ) is a valuation domain for each prime ideal P of R.
(6) RM/Nil(RM ) is a valuation domain for each maximal ideal M of R.
(7) RM is a φ-CR for each maximal ideal M of R.
In this paper, the φ-flat modules and φ-Prüfer rings are investigated, and

the following result is shown.

Theorem. Let R ∈ H and Nil(R) = Z(R). The following statements are
equivalent.

(1) R is a φ-Prüfer ring.
(2) All φ-torsion free R-modules are φ-flat.
(3) Each submodule of a φ-flat R-module is φ-flat.
(4) Each nonnil ideal of R is a φ-flat R-module.
(5) Each finitely generated nonnil ideal of R is a φ-flat R-module.
(6) If M is a φ-torsion R-module and N is a φ-torsion free R-module, then

TorR1 (M,N) = 0.

(7) If M is a φ-torsion R-module and I is a nonnil ideal of R, then

TorR1 (M, I) = 0.

(8) If M is a φ-torsion R-module and I is a finitely generated nonnil ideal
of R, then

TorR1 (M, I) = 0.

2. On φ-torsion modules and φ-flat modules

Let R be a φ-ring. Set Ker(φ) = {x ∈ R |xy = 0 for some y ∈ Z(R) and
y /∈ Nil(R)}, then φ(R) = R/Ker(φ). Observe that if R ∈ H, then φ(R) ∈
H, Ker(φ) ⊆ Nil(R), Nil(T (R)) = Nil(R), Nil(RNil(R)) = φ(Nil(R)) =
Nil(φ(R)) = Z(φ(R)), T (φ(R)) = RNil(R) is quasilocal with the maximal ideal
Nil(φ(R)), and RNil(R)/Nil(φ(R)) = T (φ(R))/Nil(φ(R)) is the quotient field
of φ(R)/Nil(φ(R)) ∼= R/Nil(R).

Proposition 2.1. Let R ∈ H and φ : R → RNil(R) such that φ(a) = a/1 for
a ∈ R. Then φ is a monomorphism if and only if Ker(φ) = 0, if and only if
Nil(R) = Z(R).

Proof. Since Nil(R) is a prime ideal of R, we have that Ker(φ) = 0 if and only
if Nil(R) = Z(R). �

Set NN(R) = {I | I is a nonnil ideal of ring R}. Let M be an R-module.
We define

φ− tor(M) = {x ∈M | Ix = 0 for some I ∈ NN(R)}.
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If φ-tor(M) = M , then M is called a φ-torsion module, and if φ-tor(M) = 0,
then M is called a φ-torsion free module. Clearly, submodules and quotient
modules of φ-torsion modules are still φ-torsion; submodules of φ-torsion free
modules are still φ-torsion free.

Proposition 2.2. Let R be a commutative ring with prime nil radical. Then
R is a φ-torsion free R-module if and only if Nil(R) = Z(R).

Proof. Observe that I ∈ NN(R) if and only if there is an element r ∈ I\Nil(R).
Thus R is a φ-torsion free R-module if and only if Ker(φ) = 0, if and only if
Nil(R) = Z(R). �

Example 2.3. If S is the multiplicative set of all non-zero-divisors in the ring
R, then S−1R/R is a φ-torsion R-module. If the nil radical of R is prime, then
RNil(R)/R is φ-torsion R-module.

If Nil(R) is a prime ideal, then φ-tor(M) is a submodule of M which is
called the total φ-torsion submodule of M . Set T = φ-tor(M). Then T is
always φ-torsion and M/T is always φ-torsion free. If R is a commutative ring
with prime nil radical, then

(1) A module T is φ-torsion if and only if HomR(T, F ) = 0 for any φ-torsion
free module F .

(2) A module F is φ-torsion free if and only if HomR(T, F ) = 0 for any
φ-torsion module T .

Proposition 2.4. Let R be a commutative ring with prime nil radical and
0→ A→ B → C → 0 be an exact sequence of R-modules. Then B is φ-torsion
if and only if A and C are both φ-torsion. Moreover,

⊕
i∈ΓMi is a φ-torsion

module if and only if each Mi is a φ-torsion module.

Proof. We only need to consider the long exact sequence

0→ HomR(C,F )→ HomR(B,F )→ HomR(A,F )→ Ext1
R(C,F )→ · · · . �

Recall from [24] that an R-module M said to be φ-flat, if 0 → A ⊗R M →
B ⊗RM → C ⊗RM → 0 is an exact R-sequence, for any exact sequence of R-
modules 0→ A→ B → C → 0, where C is φ-torsion. The following conditions
are shown to be equivalent for an R-module M .

(a) M is φ-flat.

(b) TorR1 (P,M) = 0 for any φ-torsion R-module P .

(c) TorR1 (R/I,M) = 0 for any nonnil ideal I of R.
(d) 0→ I ⊗RM → R ⊗RM is an exact R-sequence for any nonnil ideal I

of R.
(e) I ⊗RM ∼= IM for any nonnil ideal I of R.
(f) 0 → N ⊗RM → F ⊗RM → C ⊗RM → 0 is an exact R-sequence, for

any exact sequence of R-modules 0 → N → F → C → 0, where N , F , C are
finitely generated, C is φ-torsion, and F is free.
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(g) 0 → N ⊗RM → F ⊗RM → C ⊗RM → 0 is an exact R-sequence, for
any exact sequence of R-modules 0→ N → F → C → 0, where C is φ-torsion,
and F is free.

(h) TorR1 (R/I,M) = 0 for any finitely generated nonnil ideal I of R.
(i) 0→ I⊗RM → R⊗RM is an exact R-sequence for any finitely generated

nonnil ideal I of R.
(j) I ⊗RM ∼= IM for any finitely generated nonnil ideal I of R.
(k) Ext1

R(I,M+) = 0 for any nonnil ideal I of R, where M+ denotes the
character R-module HomZ(M,Q/Z).

(l) Let 0 → K → F
g→ M → 0 be an exact sequence of R-modules, where

F is free. Then K ∩ FI = IK for any nonnil ideal I of R.

(m) Let 0→ K → F
g→M → 0 be an exact sequence of R-modules, where

F is free. Then K ∩ FI = IK for any finite generated nonnil ideal I of R.

Proposition 2.5. (a) Let R be a commutative ring with prime nil radical and
0→ A→ B → C → 0 be an exact sequence of R-modules. If A and C is φ-flat,
then B is φ-flat.

(b) Let R be a strongly φ-ring. Then each φ-flat R-module is φ-torsion free.

Proof. (a) We only need to consider the long exact sequence

· · · → TorR1 (C,F )→ A⊗R F → B ⊗R F → C ⊗R F → 0.

(b) If R is a strongly φ-ring, then R is a φ-torsion free R-module. RNil(R)/R
being a φ-torsion R-module implies that

0→M = R⊗RM → RNil(R) ⊗RM = MNil(R)

is exact sequence for an R-module M . If J ∈ NN(R) and x ∈ M such that
Jx = 0, then there is an element s ∈ R, s /∈ Nil(R) such that x = x

1 = sx
s = 0.

Hence M is φ-torsion free. �

3. On NRD-submodules and NP-submodules

Recalled from [23] that a submodule N of an R-module M is said to be
relatively divisible in M , if rN = N ∩ rM holds for any r ∈ R. Analogously,
we have

Definition 3.1. A submodule N of an R-module M is said to be nonnil rela-
tively divisible in M , if rN = N ∩rM holds for any r ∈ R\Nil(R). We denote
briefly that N is an NRD-submodule of M .

As the inclusion rN ⊆ N ∩ rM holds for all submodules N of M , nonnil
relatively divisibility holding amounts to the reverse inclusion, i.e., if for any
r ∈ R \ Nil(R), the equation rx = a ∈ N has a solution for x in M , then
it is solvable in N as well. It is clear that a relatively divisible submodule N
of R-module M is also nonnil relatively divisible in M , but the converse may
be not true. For example, Ker(φ) is nonnil relatively divisible in R but not
relatively divisible in R. The following properties are clear.
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(a) Nonnil relatively divisibility is also transitive: if L is an NRD-submodule
of N and N is an NRD-submodule of M , then L is an NRD-submodule of M .

(b) If L ⊆ N ⊆ M and N is an NRD-submodule of M , then N/L is an
NRD-submodule of M/L.

(c) If L ⊆ N ⊆ M and L is an NRD-submodule of M , then N/L being an
NRD-submodule of M/L implies N is an NRD-submodule of M .

Theorem 3.2. Let 0 → N → M
β→ C → 0 be a short exact sequence of

R-modules.
(a) If C is φ-torsion free, then N is an NRD-submodule of M .
(b) If M is φ-torsion free and N is an NRD-submodule of M , then C is

φ-torsion free.

Proof. (a) For any r ∈ R\Nil(R) and rx = a ∈ N, x ∈M , we have rβ(x) = 0 in
C. Set I = Rr ∈ NN(R), C being a φ-torsion free R-module implies β(x) = 0,
and hence x ∈ N . So N is an NRD-submodule of M .

(b) If I ∈ NN(R) and Ix = 0 in C, there is an element y ∈ M such
that x = β(y). We have Iy ⊆ N , and there exists r ∈ R \ Nil(R) such that
ry = a ∈ N . N being an NRD-submodule of M implies that there is an element
z ∈ N such that rz = a. Hence r(y − z) = 0, so y = z ∈ N , and x = β(y) = 0.
Therefore C is φ-torsion free. �

Theorem 3.3. Let 0 → N → M
β→ C → 0 be a short exact sequence of R-

modules. If the natural homomorphism HomR(R/Rr,M) → HomR(R/Rr,C)
is surjective for any r ∈ R \ Nil(R), then N is an NRD-submodule of M .
Moreover, if M is φ-torsion free, the converse holds.

Proof. For any r ∈ R \Nil(R) and rx = a ∈ N, x ∈M , consider the following
commutative diagram with exact rows:

0 // (r)
i //

f
��

R
π //

g
��

R/(r) //

h
��

0

0 // N // M
β // C // 0,

where π is the natural homomorphism, f(r) = a, g(1) = x, and h is the
homomorphism induced by the left square. If the natural homomorphism
HomR(R/Rr,M) → HomR(R/Rr,C) is surjective for any r ∈ R \ Nil(R),
then there exists a homomorphism ρ : R/(r) → M such that h = βρ. By
lemma 8.4 in [16], there is a homomorphism σ : R→ N such that f = σi. Set
σ(1) = c ∈ N , we have rc = a. Hence N is an NRD-submodule of M .

Now assume thatM is φ-torsion free. If r ∈ R\Nil(R) and h ∈ HomR(R/Rr,
C), the projective property of R implies that there is a homomorphism g : R→
M such that βg = hπ. Hence the right square induces a homomorphism f . Set
f(r) = a, g(1) = x, so rx = a ∈ N, x ∈M . �
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Theorem 3.4. Let 0 → N → M → C → 0 be a short exact sequence of
R-modules. Then N is an NRD-submodule of M if and only if the natural
homomorphism R/rR⊗RN → R/rR⊗RM is injective for any r ∈ R\Nil(R).

Proof. Because of the natural isomorphism R/Rr ⊗R M ∼= M/rM , we only

consider the homomorphism N/rN
f→ M/rM with f : x + rN → x + rM . If

x + rM = 0, i.e., x = ry for some y ∈ M , N being an NRD-submodule of M
implies x = ry′ for some y′ ∈ N , and hence x+ rN = 0, so f is injective.

For the converse, x = ry, y ∈M,x ∈ N implies x+rM = 0 in M/rM . If the
homomorphism f is injective, then x + rN = 0 in N/rN . Therefore, x = ry′

for some y′ ∈ N , and hence N is an NRD-submodule of M . �

Theorem 3.5. An R-module N is an NRD-submodule of R-module M if and
only if Nm is an NRD-submodule of Mm as Rm-module for any m ∈ Max(R).

Proof. We have that N is an NRD-submodule of M if and only if the natural
homomorphism R/rR⊗RN → R/rR⊗RM is injective, if and only if R/rR⊗R
N ⊗Rm → R/rR⊗RM ⊗Rm is injective for any maximal ideal m of R, if and
only if Nm is an NRD-submodule of Mm for any m. �

Definition 3.6. A submodule N of an R-module M is said to be nonnil pure
in M , if IN = N ∩ IM holds for any I ∈ NN(R). We denote briefly that N is
an NP-submodule of M .

As the inclusion IN ⊆ N ∩ IM holds for all modules N of M , nonnil
relatively divisibility holding amounts to the reverse inclusion, i.e., if for any
I ∈ NN(R), the equation

∑n
i=1 rixi = a ∈ N has a solution for xi in M , then

it is solvable in N as well. It is clear that N being an NP-submodule of M
implies N being an NRD-submodule of M .

Theorem 3.7. Let 0 → N → M
β→ C → 0 be a short exact sequence of

R-modules.
(a) If C is φ-flat, then N is an NP-submodule of M .
(b) If M is φ-flat and N is an NP-submodule of M , then C is φ-flat.

Proof. (a) Consider the following homomorphism

β0 : IM → IC, β0(

n∑
i=1

aixi) =

n∑
i=1

aig(xi),

where ai ∈ I, xi ∈ M . It is clear that ker(β0) = N ∩ IM , and there is a short
exact sequence

0→ N ∩ IM → IM → IC → 0.

Consider the following commutative diagram with exact rows:

N //

��

I ⊗N //

f
��

I ⊗M //

g
��

I ⊗ C //

h��

0

0 // N ∩ IM // IM
β0 // IC // 0,
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where f, g, h are the natural homomorphisms. The R-module C being φ-flat
implies by Theorem 3.2 in [24] that h is an isomorphism for any nonnil ideal I
of R. The Snake lemma implies that f is an epimorphism. So N ∩ IM = IN ,
and hence N is an NP-submodule of M .

(b) If N is an NP-submodule of M , then N ∩ IM = IN for any nonnil ideal
I of R. There is a short exact sequence

0→ IN → IM → IC → 0.

Consider the following commutative diagram with exact rows:

I ⊗N //

f
��

I ⊗M //

g
��

I ⊗ C //

h��

0

0 // IN // IM // IC // 0.

The R-module M being φ-flat implies that g is an isomorphism for any nonnil
ideal I of R. Therefore, h is an isomorphism, and hence C is φ-flat. �

Theorem 3.8. Let 0 → N → M → C → 0 be a short exact sequence of
R-modules. Then N is an NP-submodule of M if and only if the natural homo-
morphism T ⊗R N → T ⊗RM is injective for any finitely presented φ-torsion
R-module T .

Proof. We suppose N is an NP-submodule of M , so C is a φ-flat R-module,
hence TorR1 (T,C) = 0 implies that the natural homomorphism T ⊗R N →
T ⊗RM is injective for any finitely presented φ-torsion R-module T .

For the converse, if T is a finitely presented φ-torsion R-module, then
there is a short exact sequence of R-modules 0 → K → F → T → 0,
where F,K are finitely generated and F is free. If the natural homomorphism
T ⊗R N → T ⊗RM is injective for any finitely presented φ-torsion R-module
T , i.e., TorR1 (T,C) = 0, then C is φ-flat by theorem 3.2 in [24], hence N is a
NP-submodule of M . �

Theorem 3.9. An R-module N is an NP-submodule of an R-module M if and
only if Nm is an NP-submodule of Mm as an Rm-module for any m ∈ Max(R).

Proof. We have that N is an NP-submodule of M if and only if the natural
homomorphism R/I⊗RN → R/I⊗RM is injective, if and only if R/I⊗RN ⊗
Rm → R/I ⊗RM ⊗Rm is injective for any maximal ideal m of ring R. Noted
that for every nonnil ideal J of Rm, there is a nonnil ideal I of R such that
J = Im. This implies that Nm is an NP-submodule of Mm for any m. �

4. On φ-Prüfer rings

A valuation domain is a commutative integral domain such that for any
two elements r and s, either r divides s or s divides r. A ring R is said to
be a chained ring if for every a, b ∈ R, either a|b or b|a in R. Recall from
[7] that a ring R ∈ H is called a φ-chained ring (φ-CR) if x−1 ∈ φ(R) for
every x ∈ RNil(R) φ(R). The author in [23] showed that a finitely presented
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module over a valuation domain is a direct sum of cyclically presented modules.
Similarly, we have the following result.

Theorem 4.1. A finitely presented φ-torsion module over a φ-chain ring is a
direct sum of cyclically presented φ-torsion modules.

Proof. The proof is completed by the following several steps.
(1) If R is a φ-chain ring, then R/Nil(R) is a valuation domain. Hence

the nilradical Nil(R) is the only minimal prime ideal and the Jacobson radical
J = J(R) is the only maximal ideal of R. If M is a finitely presented φ-torsion
R-module, then M/JM is a finitely generated R/J-module. Set

M/JM =

n∑
i=1

R/J · yi,

where yi = xi+JM , and xi ∈M are representative elements of yi for 1 6 i 6 n.
By Nakayama lemma, we have M =

∑n
i=1R · xi.

(2) We show that a finitely generated module M over R ∈ H is φ-torsion
if and only if the annihilator Ann(M) ⊃ Nil(R). If Ann(M) ⊃ Nil(R), then
there is an element r /∈ Nil(R) such that rM = 0, and hence M is φ-torsion.
For the converse, if M =

∑n
i=1R · xi is φ-torsion, then there are elements

ri /∈ Nil(R) such that rixi = 0, and hence r =
∏n
i=1 ri /∈ Nil(R) (note Nil(R)

is a prime ideal of R) such that rM = 0, so Ann(M) ⊃ Nil(R).
(3) We show that there exists a coset yi, say y1, such that for any representa-

tive element a of y1 (yi = a+JM), Ann(M) = Ann(a). Otherwise, for any yi,
there exists ai ∈M such that Ann(ai) ⊃ Ann(M) ⊃ Nil(R) for all 1 6 i 6 n.
R being a φ-chain ring implies a contradiction to Ann(M) = ∩ni=1Ann(ai).

(4) We show that M1 = Ra is an NRD-submodule of M . Suppose that
r /∈ Nil(R), rx = sa ∈ Ra, sa 6= 0, then s /∈ Nil(R) by Ann(M) ⊃ Nil(R). If
s = rt for some t ∈ R, then x = ta ∈ Ra is a solution, and hence M1 is an
NRD-submodule of M . If r = sp for some p ∈ J(R), then s(a − px) = 0, so
s ∈ Ann(a− px) = Ann(M) = Ann(a), this is a contradiction to sa 6= 0.

(5) We continue with an induction on the number of generators. Apply-
ing the induction hypothesis to M/M1, we note that the preimages of NRD-
submodules of M/M1 are NRD-submodules in M . Therefore, there exists a
finite chain

0 = M0 < M1 < · · · < Mn = M

of submodules such that each Mi is an NRD-submodule of M , and the factor
Mi+1/Mi is a cyclic φ-torsion R-module for each 0 6 i 6 n− 1.

(6) Let T be a finitely presented cyclic φ-torsion R-module. We show that
T ∼= R/(a) for some a /∈ Nil(R). Because, there is a short exact sequence

0→ K → R→ T → 0,

where K = Ann(a) is a finitely generated nonnil ideal of R. R being a φ-
chain ring implies that K is a principal ideal, say K = Ra, a /∈ Nil(R), hence
T ∼= R/(a).
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(7) Consider the short exact sequence

0→Mn−1 →M →M/Mn−1 → 0.

The projective property of M/Mn−1 relative to this exact sequence implies
that M/Mn−1 is a summand of M , i.e., M ∼= Mn−1

⊕
M/Mn−1. Here Mn−1 is

likewise finitely generated and has a smaller number of generators, so induction
infers that

M ∼=
n⊕
i=1

R/Rai, ai /∈ Nil(R).
�

A Prüer domain is an integral domain such that every finitely generated ideal
is invertible. A domain R is a Prüer domain if and only if for each maximal
ideal m, Rm is a valuation domain. A ring R is called a Prüfer ring, in the
sense of [17], if every finitely generated regular ideal of R is invertible. Recall
from [1] that R is called a φ-Prüfer ring if every finitely generated nonnil ideal
of R is φ-invertible. This generalized the definition of Prüfer domain in H. The
author in [23] showed that over Prüfer rings, relative divisibility and purity are
equivalent. Similarly, by Theorem 4.1 we have the following result.

Theorem 4.2. Over φ-Prüfer rings, nonnil relative divisibility and nonnil
purity are equivalent.

Proof. By passing to the local case, we may as well assume that R is a φ-chain
ring. We show that an NRD-submodule A is also an NP-submodule of B in
the exact sequence 0→ A→ B → C → 0. For any finitely presented φ-torsion
R-module T , we have that

T ∼=
n⊕
i=1

R/Rai

for some ai /∈ Nil(R). Therefore,

TorR1 (T,C) ∼= TorR1 (

n⊕
i=1

R/Rai, C) ∼=
n⊕
i=1

TorR1 (R/Rai, C) = 0.

So C is φ-flat, and hence A is an NP-submodule of B. �

We know from [22] that the following statements are equivalent for a domain.
(1) R is a Prüfer domain;
(2) RM is a valuation domain for each maximal ideal M of R;
(3) All torsion free R-modules are flat;
(4) Each submodule of a flat R-module is flat;
(5) Each ideal of R is flat;
(6) Each finitely generated ideal of R is flat.
Anderson and Badawi showed in [1] that the following statements are equiv-

alent for a φ-ring.
(1) R is a φ-Prüfer ring;
(2) φ(R) is a Prüfer ring;
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(3) φ(R)/Nil(φ(R)) is a Prüfer domain;
(4) RP is a φ-CR for each prime ideal P of R;
(5) RP /Nil(RP ) is a valuation domain for each prime ideal P of R;
(6) RM/Nil(RM ) is a valuation domain for each maximal ideal M of R;
(7) RM is a φ-CR for each maximal ideal M of R.

Theorem 4.3. Let R ∈ H and Nil(R) = Z(R). Then the following statements
are equivalent.

(1) R is a φ-Prüfer ring.
(2) All φ-torsion free R-modules are φ-flat.
(3) Each submodule of a φ-flat R-module is φ-flat.
(4) Each nonnil ideal of R is a φ-flat R-module.
(5) Each finitely generated nonnil ideal of R is a φ-flat R-module.
(6) If M is a φ-torsion R-module and N is a φ-torsion free R-module, then

TorR1 (M,N) = 0.
(7) If M is a φ-torsion R-module and I is a nonnil ideal of R, then

TorR1 (M, I) = 0.
(8) If M is a φ-torsion R-module and I is a finitely generated nonnil ideal

of R, then TorR1 (M, I) = 0.

Proof. (1)⇒ (2) Let R ∈ H with Nil(R) = Z(R). Then R is φ-torsion free as
an R-module, and all φ-flat R-modules are φ-torsion free. Consider the exact
sequence 0 → K → F → M → 0, where F is a φ-torsion free R-module, we
infer that M is φ-flat if and only if K is an NP-submodule of F , if and only if
K is an NRD-submodule of F , if and only if M is φ-torsion free.

(2) ⇒ (3) Let K be a submodule of a φ-flat R-module F . Then F is a
φ-torsion free R-module. So K is also φ-torsion free, and hence K is φ-flat.

(3)⇒ (4)⇒ (5) Notice that R is a φ-torsion free R-module.
(5) ⇒ (1) For each finitely generated nonzero ideal J of R/Nil(R), there

exists a finitely generated nonnil ideal I of R such that J = I+Nil(R). Owing
to I being φ-flat, we have J is a flat R/Nil(R)-module. Therefore R/Nil(R)
is a Prüfer domain, and hence R is a φ-Prüfer ring.

(2)⇒ (6)⇒ (7)⇒ (8) It is clear.
(8)⇒ (2) Observe Lemma 2.5. �

Notice that if R is not a strongly φ-ring, then the above results may not be
true, because R is not a φ-torsion free R-module.

Also, we have the following result.

Theorem 4.4. Let R ∈ H. If each finitely generated nonnil ideal of R is flat,
then R is a φ-Prüfer ring.

Proof. It is true that I being flat implies that J = I+Nil(R) is a flat R/Nil(R)-
module. �

Recall from [19] that a ring R is said to be von Neumann regular if every
R-module is flat and R is said to be π-regular if for each r ∈ R there is a
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positive integer n and an element x ∈ R such that r2nx = rn. The authors in
[24] defined a φ-ring R to be a φ-von Neumann regular ring if every R-module
is φ-flat. They showed that a φ-ring R is φ-von Neumann regular if and only
if R is π-regular if and only if R/Nil(R) is von Neumann regular. By above
theorem, all φ-von Neumann regular rings are regarded as rings of dimension
zero, and all φ-Prüfer rings are regarded as rings of dimension one.
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