• Title/Summary/Keyword: Quantization effect

Search Result 129, Processing Time 0.026 seconds

A Calculation Method for fuzzy Control by $\alpha$-cut Decomposition and Its Hardware Implementation (\alpha$-레벨집합 분해에 의한 퍼지제어 추론계산법과 하드웨어에 관한 연구)

  • 홍순일;이요섭;장용민
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2001.06a
    • /
    • pp.133-136
    • /
    • 2001
  • In this paper, we propose a calculation method for fuzzy control based on quantized $\alpha$ -cut decomposition of fuzzy sets. This method is easy to be implemented in analog hardware. The effect of quantization levels on defuzzified fuzzy inference result is investigated. A few quantization levels are sufficient for fuzzy control. The hardware implementation of this calculation method and the defuzzificaion by gravity center method by PWM are also presented.

  • PDF

Analysis of Quantization Noise in Magnetic Resonance Imaging Systems (자기공명영상 시스템의 양자화잡음 분석)

  • Ahn C.B.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.42-49
    • /
    • 2004
  • Purpose : The quantization noise in magnetic resonance imaging (MRI) systems is analyzed. The signal-to-quantization noise ratio (SQNR) in the reconstructed image is derived from the level of quantization in the signal in spatial frequency domain. Based on the derived formula, the SQNRs in various main magnetic fields with different receiver systems are evaluated. From the evaluation, the quantization noise could be a major noise source determining overall system signal-to-noise ratio (SNR) in high field MRI system. A few methods to reduce the quantization noise are suggested. Materials and methods : In Fourier imaging methods, spin density distribution is encoded by phase and frequency encoding gradients in such a way that it becomes a distribution in the spatial frequency domain. Thus the quantization noise in the spatial frequency domain is expressed in terms of the SQNR in the reconstructed image. The validity of the derived formula is confirmed by experiments and computer simulation. Results : Using the derived formula, the SQNRs in various main magnetic fields with various receiver systems are evaluated. Since the quantization noise is proportional to the signal amplitude, yet it cannot be reduced by simple signal averaging, it could be a serious problem in high field imaging. In many receiver systems employing analog-to-digital converters (ADC) of 16 bits/sample, the quantization noise could be a major noise source limiting overall system SNR, especially in a high field imaging. Conclusion : The field strength of MRI system keeps going higher for functional imaging and spectroscopy. In high field MRI system, signal amplitude becomes larger with more susceptibility effect and wider spectral separation. Since the quantization noise is proportional to the signal amplitude, if the conversion bits of the ADCs in the receiver system are not large enough, the increase of signal amplitude may not be fully utilized for the SNR enhancement due to the increase of the quantization noise. Evaluation of the SQNR for various systems using the formula shows that the quantization noise could be a major noise source limiting overall system SNR, especially in three dimensional imaging in a high field imaging. Oversampling and off-center sampling would be an alternative solution to reduce the quantization noise without replacement of the receiver system.

  • PDF

Delay-dependent Robust Stability of Discrete-time Uncertain Delayed Descriptor Systems using Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 불확실 지연 특이시스템의 지연종속 강인 안정성)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • This paper considers the problem of robust stability for uncertain discrete-time interval time-varying delayed descriptor systems using any combinations of quantization and overflow nonlinearities. First, delay-dependent linear matrix inequality (LMI) condition for discrete-time descriptor systems with time-varying delay and quantization/overflow nonlinearities is presented by proper Lyapunov function. Second, it is shown that the obtained condition can be extended into descriptor systems with uncertainties such as norm-bounded parameter uncertainties and polytopic uncertainties by some useful lemmas. The proposed results can be applied to both descriptor systems and non-descriptor systems. Finally, numerical examples are shown to illustrate the effectiveness and less conservativeness.

Color image quantization using color activity weighted distortion measure of human vision (인간 시각의 칼라 활성 가중 왜곡 척도를 이용한 칼라 영상 양자화)

  • 김경만;이응주;박양우;이채수;하영호
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.101-110
    • /
    • 1996
  • Color image quantization is a process of selecting a set of colors to display an image with some representative colors without noticeable perceived difference. It is very important in many applications to display a true color image in a low cost color monitor or printer. the basic problem is how to display 224 colors with 256 or less colors, called color palette. In this paper, we propose an algorithm to design the 256 or less size color palette by using spatial maskin geffect of HVS and subjective distortion measure weighted by color palette by using spatial masking effect of HVS and subjective distortion measure weighted by color activity in 4*4 local region in any color image. The proposed algorithm consists of octal prequantization and subdivision quantization processing step using the distortion measure and modified Otsu's between class variance maximization method. The experimental results show that the proposed algorithm has higher visual quality and needs less consuming time than conventional algorithms.

  • PDF

Block matching algorithm using quantization (양자화를 이용한 블록 정합 알고리즘에 대한 연구)

  • Lee, Young;Park, Gwi-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.43-51
    • /
    • 1997
  • In this paper, we quantize the image data to simplify the systolic array architecture for block matching algorithm. As the number of bits for pixel data to be processed is reduced by quantization, one can simplify the hardware of systolic array. Especially, if the bit serial input is used, one can even more simplify the structure of processing element. First, we analize the effect of quantization to a block matching. then we show the structure of quantizer and processing element when bit serial input is used. The simulation results applied to standard images have shown that the proposed block matching method has less prediction error than the conventional high speed algorithm.

  • PDF

Duty Ratio Predictive Control Scheme for Digital Control of DC-DC Switching Converters

  • Sun, Pengju;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.156-162
    • /
    • 2011
  • The control loop time delay caused by sampling, the zero-order-holder effect and calculations is inevitable in the digital control of dc-dc switching converters. The time delay will limit the bandwidth of the control loop and therefore degrade the transient performance of digital systems. In this paper, the quantization time delay effects with different time delay values based on a generic second-order system are analyzed. The conclusion that the bandwidth of digital control is reduced by about 20% with a one cycle delay and by 50% with two cycles of delay in comparison with no time delay is obtained. To compensate the time delay and to increase the control loop bandwidth, a duty ratio predictive control scheme based on linear extrapolation is proposed. The compensation effect and a comparison of the load variation transient response characteristics with analogy control, conventional digital control and duty ratio predictive control with different time delay values are performed on a point-of-load Buck converter by simulations and experiments. It is shown that, using the proposed technique, the control loop bandwidth can be increased by 50% for a one cycle delay and 48.2% for two cycles of delay when compared to conventional digital control. Simulations and experimental results prove the validity of the conclusion of the quantization effects of the time delay and the proposed control scheme.

Zero-Watermarking based on Chaotic Side Match Vector Quantization (무질저한 SMVQ 기반의 제로-워터마킹)

  • Kim, Hyung-Do;Park, Chan-Kwon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.37-44
    • /
    • 2009
  • Digital watermarking is a technology for preventing illegal copying, for protecting intellectual property rights and copyrights, and for suggesting grounds of the ownership by inserting watermarks into digital contents. Generally speaking, watermarking techniques cannot escape from data distortion and quality degradation due to the watermark insertion. In order to overcome the shortcoming, zero-watermarking techniques which do not change the original data have been proposed recently. This paper proposes CSMVQ(Chaotic SMVQ), a zero-watermarking system for SMVQ(Side Match Vector Quantization) which shows better compression ratio and quality and less blocking effect than VQ(Vector Quantization). In SMVQ, compression progresses from left top to right bottom in order to use the information of the two neighbor blocks, so it is impossible to insert watermarks chaotically. In the process of encoding, CSMVQ dynamically considers the information of the (1 to 4) neighbor blocks already encoded. Therefore, watermark can be inserted into digital contents in chaotic way. Experimental results show that the image quality compressed by CSMVQ is better than that of SMVQ and the inserted watermark is robust against some common attacks.

Performance Evaluation and Signal Analysis of In-Band Full-Duplex System with ADC Effect (ADC 효과를 고려한 In-Band Full-Duplex 시스템의 신호 분석 및 성능 평가)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2131-2141
    • /
    • 2015
  • In this paper, we analyze ADC effect in IBFD system. Also, we design IBFD system with ADC effect, and evaluate BER performance of the system according to power of self-interference. Firstly, we describe a fundamentals of general IBFD system. And then we calculate and analyze characteristics of desired signal before and after ADC when residual self-interference is added to desired signal after RF cancellation. In this calculation, we have confirm some conditions for selection of # of ADC bit. Finally, we design IBFD system with ADC effect, and evaluate BER performance of the system by using Simulink simulation tool. As simulation results, we have confirmed that when power of residual self-interference is high before ADC, IBFD system must use high-bit ADC for decreasing quantization step. Also, we have confirmed that quantization step should be lower than one-third of amplitude of desired signal for effective communication with good performance.

Gain-scheduling of Acceleration Estimator for Low-velocity Measurement with Encoders

  • Son, Seung-Woo;Lee, Sang-Hun;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1853-1857
    • /
    • 2005
  • In most of motor-driven motion control systems, an encoder is used to measure a position of the motor and the velocity information is obtained by measuring the position increment over a sampling period. The quantization effect due to limited resolution of the encoder induces some measurement errors, and consequently causes deterioration of the motion performance especially in low velocity. In this paper, we propose a gain-scheduled acceleration estimator which works in wider velocity range than the original acceleration estimator. We investigate and analyze characteristics of the velocity measurement mechanism which takes into account the quantization effect of the encoder. Next, we introduce the acceleration estimator and propose a gain-scheduled acceleration estimator. The bandwidth of the gain-scheduled acceleration estimator is automatically adjusted by the velocity command. Finally, its performance is evaluated by simulation and experiment, and the results are compared with those of a conventional method and the original acceleration estimator.

  • PDF

Maximum Error Reduction for Fixed-width Modified Booth Multipliers Based on Error Bound Analysis (오차범위 분석을 통한 고정길이 modified Booth 곱셈기의 최대오차 감소)

  • Cho, Kyung-Ju;Chung, Jin-Gyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.10 s.340
    • /
    • pp.29-34
    • /
    • 2005
  • The maximum quantization error has serious effect on the performance of fixed-width multipliers that receive W-bit inputs and produce W-bit products. In this paper, we analyze the error bound of fixed-width modified Booth multipliers. Then, the estimation method for the number of additional columns for fixed-width multipliers is proposed to limit the maximum quantization error within a desired bound. In addition, it is shown that our methodology can be extended to reduced-width multipliers. By simulations, it is shown that the proposed error analysis method is useful to the practical design of fixed-width modified Booth multipliers.