• Title/Summary/Keyword: Q-rings

Search Result 62, Processing Time 0.019 seconds

On Representable Rings and Modules

  • Mousavi, Seyed Ali;Mirzaei, Fatemeh;Nekooei, Reza
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.407-423
    • /
    • 2022
  • In this paper, we determine the structure of rings that have secondary representation (called representable rings) and give some characterizations of these rings. Also, we characterize Artinian rings in terms of representable rings. Then we introduce completely representable modules, modules every non-zero submodule of which have secondary representation, and give some necessary and sufficient conditions for a module to be completely representable. Finally, we define strongly representable modules and give some conditions under which representable module is strongly representable.

BASIC CODES OVER POLYNOMIAL RINGS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.15 no.1
    • /
    • pp.79-85
    • /
    • 2007
  • We study codes over the polynomial ring $\mathbb{F}_q[D]$ and introduce the notion of basic codes which play a fundamental role in the theory.

  • PDF

THE q-ADIC LIFTINGS OF CODES OVER FINITE FIELDS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.537-544
    • /
    • 2018
  • There is a standard construction of lifting cyclic codes over the prime finite field ${\mathbb{Z}}_p$ to the rings ${\mathbb{Z}}_{p^e}$ and to the ring of p-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields ${\mathbb{F}}_{p^r}$ to codes over Galois rings GR($p^e$, r). We give concrete examples with all of the lifts.

ON STRONGLY QUASI PRIMARY IDEALS

  • Koc, Suat;Tekir, Unsal;Ulucak, Gulsen
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.729-743
    • /
    • 2019
  • In this paper, we introduce strongly quasi primary ideals which is an intermediate class of primary ideals and quasi primary ideals. Let R be a commutative ring with nonzero identity and Q a proper ideal of R. Then Q is called strongly quasi primary if $ab{\in}Q$ for $a,b{\in}R$ implies either $a^2{\in}Q$ or $b^n{\in}Q$ ($a^n{\in}Q$ or $b^2{\in}Q$) for some $n{\in}{\mathbb{N}}$. We give many properties of strongly quasi primary ideals and investigate the relations between strongly quasi primary ideals and other classical ideals such as primary, 2-prime and quasi primary ideals. Among other results, we give a characterization of divided rings in terms of strongly quasi primary ideals. Also, we construct a subgraph of ideal based zero divisor graph ${\Gamma}_I(R)$ and denote it by ${\Gamma}^*_I(R)$, where I is an ideal of R. We investigate the relations between ${\Gamma}^*_I(R)$ and ${\Gamma}_I(R)$. Further, we use strongly quasi primary ideals and ${\Gamma}^*_I(R)$ to characterize von Neumann regular rings.

QUOTIENT STRUCTURE OF A SEMINEAR-RING

  • Lee, Sang-Han;Yon, Yong-Ho
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.289-295
    • /
    • 2000
  • In this note, we define a ${Q^*}-ideal$ in a seminear-ring which is analogous of a Q-ideal in a semiring, and we construct a quotient seminear-ring. Also, We prove the fundamental theorem of homomorphisms for seminear-rings.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

CYCLIC CODES OVER THE RING OF 4-ADIC INTEGERS OF LENGTHS 15, 17 AND 19

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.767-777
    • /
    • 2019
  • We present a new way of obtaining the complete factorization of $X^n-1$ for n = 15, 17, 19 over the 4-adic ring ${\mathcal{O}}_4[X]$ of integers and thus over the Galois rings $GR(2^e,2)$. As a result, we determine all cyclic codes of lengths 15, 17 and 19 over those rings. This extends our previous work on such cyclic codes of odd lengths less than 15.

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.