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ON STRONGLY QUASI PRIMARY IDEALS

Suat Koc, Unsal Tekir, and Gulsen Ulucak

Abstract. In this paper, we introduce strongly quasi primary ideals

which is an intermediate class of primary ideals and quasi primary ideals.

Let R be a commutative ring with nonzero identity and Q a proper ideal
of R. Then Q is called strongly quasi primary if ab ∈ Q for a, b ∈ R

implies either a2 ∈ Q or bn ∈ Q (an ∈ Q or b2 ∈ Q) for some n ∈ N.
We give many properties of strongly quasi primary ideals and investigate

the relations between strongly quasi primary ideals and other classical

ideals such as primary, 2-prime and quasi primary ideals. Among other
results, we give a characterization of divided rings in terms of strongly

quasi primary ideals. Also, we construct a subgraph of ideal based zero

divisor graph ΓI(R) and denote it by Γ∗
I (R), where I is an ideal of R.

We investigate the relations between Γ∗
I (R) and ΓI(R). Further, we use

strongly quasi primary ideals and Γ∗
I (R) to characterize von Neumann

regular rings.

1. Introduction

In this article, all rings are assumed to be commutative with nonzero identity
and all modules are unital. Let R always denote such a ring and L(R) denote
the lattice of all ideals of R. Assume that Q is an ideal of R. Then the radical
of Q, written by

√
Q, is defined to be√

Q := {r ∈ R : rn ∈ Q, ∃n ∈ N}.
Also (Q : a) = {r ∈ R : ra ∈ Q}. Recall that a proper ideal P of R is said to
be prime if ab ∈ P implies either a ∈ P or b ∈ P for any a, b ∈ R [6]. Note
that a proper ideal P of R is prime if and only if (P : a) = P for every a /∈ P .
A proper ideal Q of R is called primary if whenever a, b ∈ R and ab ∈ Q, then
either a ∈ Q or b ∈

√
Q (a ∈

√
Q or b ∈ Q) [6]. In this case,

√
Q = P is a

prime ideal and Q is said to be P -primary. Also recall from [12] that a quasi
primary ideal is a proper ideal Q of R whose radical is prime, i.e.,

√
Q is a

prime ideal. Note that the class of quasi primary ideals properly contains the
class of primary ideals.

Received May 31, 2018; Revised January 29, 2019; Accepted February 7, 2019.

2010 Mathematics Subject Classification. 13F30, 13A15, 05C25.
Key words and phrases. valuation domain, divided ring, strongly quasi primary ideal,

zero divisor graph, ideal based zero divisor graph.

c©2019 Korean Mathematical Society

729



730 S. KOC, U. TEKIR, AND G. ULUCAK

The notion of prime ideals and its generalizations have a distinguished place
in commutative algebra and algebraic geometry. They are useful tools to deter-
mine the properties of commutative rings. Let R be an integral domain and F
its quotient field. Then R is called a valuation domain if for any x ∈ F , either
x ∈ R or x−1 ∈ R [16]. Note that an integral domain R is valuation domain if
and only if L(R) is totally ordered by inclusion if and only if for any a, b ∈ R,
either a|b or b|a, where a|b stands for a divides b [16]. Beddani and Messirdi, in
[10], introduced the concept of 2-prime ideals and they used it to characterize
valuation domains. Recall that a proper ideal P of R is said to be a 2-prime
ideal if ab ∈ P for a, b ∈ R, then either a2 ∈ P or b2 ∈ P . In [10, Theorem
2.1], it was shown that an integral domain R is valuation domain if and only if
every ideal of R is 2-prime.

Our aim in this paper (especially in Section 2) is to introduce an intermediate
class of ideals between primary ideals and quasi primary ideals. Let Q be a
proper ideal of R. Then Q is said to be a strongly quasi primary ideal if ab ∈ Q
for a, b ∈ R implies either a2 ∈ Q or bn ∈ Q for some n ∈ N (an ∈ Q or b2 ∈ Q).
In Section 2, we give many properties of strongly quasi primary ideals. Among
many results in this paper, in Proposition 2.2, we give a characterization of
strongly quasi primary ideals. In Proposition 2.5, we investigate the strongly
quasi primary ideals in fractional ring S−1R of R at a multiplicatively closed set
S. From Lemma 2.1 to Theorem 2.1, we determine all strongly quasi primary
ideals of direct product of rings. From Theorem 2.3 to Corollary 2.4, we study
the strongly quasi primary ideals of polynomial rings, formal power series rings
and idealizations of modules. Recall that a ring R is a divided ring if any prime
ideal is comparable with each principal ideal [7]. Note that every valuation
domain is a divided ring, and also a ring R is divided if and only if for any
a, b ∈ R then either a|b or b|an for some n ∈ N [7, Proposition 2]. With Theorem
2.2, we give our main result in Section 2 characterizing divided integral domains
in terms of strongly quasi primary ideals.

In Section 3, we study the application of strongly quasi primary ideals to
graph theory. In this section, we construct a subgraph of ideal based zero
divisor graph and denote this graph by Γ∗I(R), where I is an ideal of R. In
Proposition 3.1, in terms of Γ∗I(R), we determine when a non prime ideal is
a strongly quasi primary ideal. Recall that a ring R is a reduced ring if it
has no nonzero nilpotent elements, i.e.,

√
0 = 0. Also a commutative ring R

is called von Neumann regular if for any a ∈ R there exists x ∈ R such that
a = a2x [19]. In this case the principal ideal generated by a ∈ R, (a) = (e)
for some idempotent e ∈ R. So far there has been a lot of studies on this
issue and this kind of rings has some applications in other areas such as graph
theory [15], [4]. Note that a ring R is von Neumann regular if and only if for

any ideal I of R,
√
I = I if and only if R is reduced and every prime ideal is

maximal. In Theorem 3.1, we determine when R/I is reduced ring in terms of
the connectivity of the graph Γ∗I(R). Finally, in Corollary 3.3, we characterize
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the von Neumann regular rings by using strongly quasi primary ideals and
Γ∗I(R).

2. Characterization of strongly quasi primary ideals

Definition 2.1. Let Q be a proper ideal of R. Q is called a strongly quasi
primary ideal if whenever a, b ∈ R and ab ∈ Q, then either a2 ∈ Q or bn ∈
Q (an ∈ Q or b2 ∈ Q) for some n ∈ N.

Proposition 2.1. Let Q be a proper ideal of R. Then the following statements
are satisfied:

(i) If Q is a primary ideal, then Q is a strongly quasi primary ideal.
(ii) If Q is a 2-prime ideal, then Q is a strongly quasi primary ideal.
(iii) If Q is a strongly quasi primary ideal, then Q is a quasi primary ideal.

(iv) Assume that
√
Q

2 ⊆ Q. Then Q is a 2-prime ideal if and only if Q is a
strongly quasi primary ideal if and only if Q is a quasi primary ideal.

Proof. (i), (ii): It is obvious.
(iii) Suppose that Q is a strongly quasi primary ideal. Now, we will show

that
√
Q is a prime ideal. Take ab ∈

√
Q for some a, b ∈ R. Then we have

(ab)n = anbn ∈ Q for some n ∈ N. Since Q is a strongly quasi primary ideal,
we get either (an)2 = a2n ∈ Q or (an)m = anm ∈ Q for some m ∈ N. Then we
have either a ∈

√
Q or b ∈

√
Q, that is, Q is a quasi primary ideal.

(iv) Let Q be a quasi primary ideal and ab ∈ Q ⊆
√
Q for some a, b ∈ R.

Since
√
Q is a prime ideal, we have either a ∈

√
Q or b ∈

√
Q. As

√
Q

2 ⊆ Q,

we conclude that a2 ∈
√
Q

2 ⊆ Q or b2 ∈ Q. Thus Q is a 2-prime ideal. The
rest follows from (ii) and (iii). �

The following examples show the differences between strongly quasi primary
ideals and other classical ideals such as 2-prime ideals, primary ideals and quasi
primary ideals.

Example 2.1. Consider the subring S = {a0 + a1X + · · · + anX
n : a1 is a

multiple of 3} of Z[X].
(i) Let Q = (9X2, X3, X4, X5, X6). Then note that

√
Q = (3X,X2, X3).

Since 9X2 ∈ Q but X2 /∈ Q and 9n /∈ Q for all n ∈ N, Q is not a pri-

mary ideal of S. Also note that Q is a quasi primary ideal and
√
Q

2
=

(9X2, 3X3, X4, X5, X6) ⊆ Q. Then by Proposition 2.1(iv), Q is a strongly
quasi primary ideal.

(ii) Let Q = (27X, 27X2, X3, X4, X5, X6). Then note that
√
Q = (3X,X2,

X3) and so S/
√
Q is isomorphic to Z. Thus Q is a quasi primary ideal of S.

Since (3X)9 = 27X ∈ Q but (3X)2 = 9X2 /∈ Q and 9n /∈ Q for all n ∈ N and
so Q is not a strongly quasi primary ideal of S.
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Example 2.2. Let R = F [X,Y ], where F is a field and Q = (X3, XY, Y 3).
Then Q is a primary ideal since

√
Q = (X,Y ) is a maximal ideal. By Propo-

sition 2.1(i), Q is a strongly quasi primary ideal. Since XY ∈ Q but X2 /∈ Q
and Y 2 /∈ Q, Q is not a 2-prime ideal.

Example 2.3. Let R be a principal ideal domain. Thus every nonzero prime
ideal is maximal. Then it is clear that primary ideals, strongly quasi primary
ideals and quasi primary ideals are equal in any principal ideal domain.

From Proposition 2.1, we have the following diagram which clarifies the place
of strongly quasi primary ideals in the lattice of all ideals L(R).

Primary ideal

2-prime ideal

Strongly quasi primary ideal Quasi primary ideal

1

Figure 1. Relations between strongly quasi primary ideals
and other classical ideals.

Example 2.4. Let R be a von Neumann regular ring. Then Q2 = Q =
√
Q

for any ideal Q of R. Thus by Proposition 2.1, prime ideals, 2-prime ideals,
primary ideals, strongly quasi primary ideals and quasi primary ideals coincide.

Let I be a proper ideal of R. Then the ideal generated by n th powers of
elements of I is denoted by In = ({an : a ∈ I}) [2]. It is easy to note that
In ⊆ In ⊆ I and also the equality holds if n = 1. Further if n! is a unit of R,
then In = In [2, Theorem 5].

Proposition 2.2. Let Q be a proper ideal of R. Then the following statements
are equivalent:

(i) Q is a strongly quasi primary ideal.
(ii) For every a ∈ R, either (a) ⊆ (Q : a) or (Q : a) ⊆

√
Q.

(iii) For any ideals J and K of R with JK ⊆ Q, either J2 ⊆ Q or K ⊆
√
Q.

(iv) For every a ∈ R, either an ∈ Q for some n ∈ N or (Q : a)2 ⊆ Q.

Proof. (i)⇒(ii) Suppose that Q is a strongly quasi primary ideal. Take an
element a ∈ R. If a2 ∈ Q, then (a) ⊆ (Q : a). Now assume that a2 /∈ Q. Let
b ∈ (Q : a) for some b ∈ R. Then ab ∈ Q. Since Q is a strongly quasi primary
ideal and a2 /∈ Q, we get b ∈

√
Q and this yields (Q : a) ⊆

√
Q.

(ii)⇒(iii) Let JK ⊆ Q for some ideals J and K of R. Assume that K *
√
Q.

Then there exists k ∈ K −
√
Q. By assumption, for all x ∈ J, xk ∈ Q. Since
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k ∈ (Q : x) −
√
Q, we have (Q : x) *

√
Q. Then by (ii), we get (x) ⊆ (Q : x)

and so x2 ∈ Q. Thus J2 ⊆ Q.
(iii)⇒(iv) Let a ∈ R. If a ∈

√
Q, then we are done. Assume that a /∈

√
Q.

Now put J = (Q : a) and K = (a). Then JK = (Q : a)(a) ⊆ Q. Since
K *

√
Q, by (iii), we have J2 = (Q : a)2 ⊆ Q.

(iv)⇒(i) Let ab ∈ Q with b /∈
√
Q. Then a ∈ (Q : b) and so by (iv),

a2 ∈ (Q : b)2 ⊆ Q. Hence, Q is a strongly quasi primary ideal. �

As a consequence of the previous proposition we give the following explicit
result:

Corollary 2.1. Let R be a ring and 2 be a unit of R. The following statements
are equivalent for any proper ideal Q of R:

(i) Q is a strongly quasi primary ideal.
(ii) For every a ∈ R, either (a) ⊆ (Q : a) or (Q : a) ⊆

√
Q.

(iii) For any ideals J and K of R with JK ⊆ Q, either J2 ⊆ Q or K ⊆
√
Q.

(iv) For every a ∈ R, either an ∈ Q for some n ∈ N or (Q : a)2 ⊆ Q.

In the following proposition, we show that strongly quasi primary ideals have
a similar property as that of primary ideals.

Proposition 2.3. Let Q be a strongly quasi primary ideal of R and a ∈ R
such that (a) = (a2). If a /∈ Q, then (Q : a) is a strongly quasi primary ideal
of R.

Proof. Suppose that Q is a strongly quasi primary ideal of R. Since a /∈ (Q : a),

by Proposition 2.2,
√

(Q : a) =
√
Q. Let xy ∈ (Q : a) with yn /∈ (Q : a)

for all n ∈ N. This implies that (ax)y ∈ Q and yn /∈ Q for all n ∈ N.
Since Q is a strongly quasi primary ideal of R, (ax)2 = x2a2 ∈ Q and so
x2 ∈ (Q : a2) = (Q : a). Thus, (Q : a) is a strongly quasi primary ideal of
R. �

Proposition 2.4. Let f : R → S be a homomorphism of rings. Then the
followings hold:

(i) If f is an epimorphism and Q is a strongly quasi primary ideal of R
containing Ker(f), then f(Q) is a strongly quasi primary ideal of S.

(ii) If Q′ is a strongly quasi primary ideal of S, then f−1(Q′) is a strongly
quasi primary ideal of R.

Proof. (i) Let ab ∈ f(Q), where a, b ∈ S. Then a = f(x), b = f(y) for some
x, y ∈ R and so f(xy) = f(x)f(y) ∈ f(Q). As Ker(f) ⊆ Q, we get xy ∈ Q.
Since Q is a strongly quasi primary ideal, we get either x2 ∈ Q or yn ∈ Q for
some n ∈ N and this yields that a2 ∈ f(Q) or bn ∈ f(Q). Hence, f(Q) is a
strongly quasi primary ideal.

(ii) Let xy ∈ f−1(Q′) for some x, y ∈ R. Then f(xy) = f(x)f(y) ∈ Q′. This
implies that f(x)2 = f(x2) ∈ Q′ or f(y)n = f(yn) ∈ Q′ and so x2 ∈ f−1(Q′)
or yn ∈ f−1(Q′). Hence, f−1(Q′) is a strongly quasi primary ideal of R. �
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Corollary 2.2. Suppose that I is a proper ideal of R. Then the followings are
satisfied:

(i) If Q is a strongly quasi primary ideal of R containing I, then Q/I is a
strongly quasi primary ideal of R/I. Further, if Q/I is a strongly quasi primary
ideal of R/I, then Q is a strongly quasi primary ideal of R.

(ii) If Q is a strongly quasi primary ideal of R and S is a subring of R with
S * Q, then S ∩Q is a strongly quasi primary ideal of S.

Proof. (i) Consider the natural homomorphism π : R→ R/I, defined by π(a) =
a+ I for each a ∈ R. Then (i) is obtained by Proposition 2.4(i).

(ii) Consider the injection i : S → R, defined by i(a) = a for each a ∈ S.
Then the result follows from Proposition 2.4(ii). �

Corollary 2.3. Let Q be a proper ideal of R. Then the following statements
are equivalent:

(i) Q is a strongly quasi primary ideal of R.
(ii) (Q,X) is a strongly quasi primary ideal of R[X].

Proof. (i)⇔(ii) It follows from Corollary 2.2(i) and the isomorphism

(Q,X)/(X) ∼= Q

in R[X]/(X) ∼= R. �

Let I be an ideal of R. We denote the set of all elements r ∈ R such that
rs ∈ I for some s /∈ I by ZdR(I).

Proposition 2.5. Let S be a multiplicatively closed subset of R and Q a proper
ideal of R. Then the following statements are satisfied:

(i) If Q is a strongly quasi primary ideal of R with Q ∩ S = ∅, then S−1Q
is a strongly quasi primary ideal of S−1R.

(ii) If S−1Q is a strongly quasi primary ideal of S−1R with S∩ZdR(Q) = ∅,
then Q is a strongly quasi primary ideal of R.

Proof. (i) Let a
s
b
t ∈ S

−1Q for some a, b ∈ R; s, t ∈ S. Then there exists u ∈ S
such that (ua)b ∈ Q. Since Q is a strongly quasi primary ideal, we get either

(ua)2 ∈ Q or bn ∈ Q for some n ∈ N. This implies that (a
s )2 = a2

s2 = u2a2

u2s2 ∈
S−1Q or ( b

t )n = bn

tn ∈ S
−1Q. Hence, S−1Q is a strongly quasi primary ideal of

S−1R.
(ii) Let ab ∈ Q for some a, b ∈ R. Then a

1
b
1 ∈ S

−1Q so that (a
1 )2 = a2

1 ∈
S−1Q or ( b

1 )n = bn

1 ∈ S
−1Q for some n ∈ N. This implies that ua2 ∈ Q or

tbn ∈ Q for some u, t ∈ S. Since S ∩ ZdR(Q) = ∅, we get either a2 ∈ Q or
bn ∈ Q which is required. �

Proposition 2.6. Let Q1, Q2, . . . , Qn be strongly quasi primary ideals with√
Qi = P for each i = 1, 2, . . . , n. Then Q =

⋂n
i=1Qi is a strongly quasi

primary ideal of R.



ON STRONGLY QUASI PRIMARY IDEALS 735

Proof. Let ab ∈ Q for some a, b ∈ R. Assume that bk /∈ Q for all k ∈ N, that
is, b /∈ P . Since ab ∈ Qi and bk /∈ Qi for all k ∈ N, we have a2 ∈ Qi and so
a2 ∈ Q. Thus Q is a strongly quasi primary ideal of R. �

Lemma 2.1. Let R = R1 ×R2 and Q = Q1 ×Q2, where Qi’s are ideals of Ri

for i = 1, 2. Then the following statements are equivalent:
(i) Q is a strongly quasi primary ideal of R.
(ii) Q1 = R1 and Q2 is a strongly quasi primary ideal of R2 or Q2 = R2

and Q1 is a strongly quasi primary ideal of R1.

Proof. (i)⇒(ii) Suppose that Q is a strongly quasi primary ideal of R. Then
by Proposition 2.1,

√
Q =

√
Q1 ×

√
Q2 is a prime ideal and so Q1 = R1 or

Q2 = R2. Without loss of generality, we may assume that Q1 = R1. Now,
we will show that Q2 is a strongly quasi primary ideal of R2. Let ab ∈ Q2 for
some a, b ∈ R2. This implies that (1, a)(1, b) ∈ Q. Since Q is a strongly quasi
primary ideal of R, (1, a)2 = (1, a2) ∈ Q or (1, b)n = (1, bn) ∈ Q for some
n ∈ N. Then we conclude that a2 ∈ Q2 or bn ∈ Q2. Consequently, Q2 is a
strongly quasi primary ideal of R2.

(ii)⇒(i) Assume that Q1 = R1 and Q2 is a strongly quasi primary ideal of
R2. Let (a, b)(x, y) ∈ Q for some a, x ∈ R1 and b, y ∈ R2. Then we get by ∈ Q2

and so either b2 ∈ Q2 or yn ∈ Q2 for some n ∈ N. This implies that (a, b)2 ∈ Q
or (x, y)n ∈ Q which is needed. In other case, one can similarly show that Q is
a strongly quasi primary ideal of R. �

Theorem 2.1. Let R = R1×R2×· · ·×Rn and Q = Q1×Q2×· · ·×Qn, where
Qi’s are ideals of Ri and n ∈ N. Then the following statements are equivalent:

(i) Q is a strongly quasi primary ideal of R.
(ii) Qt is a strongly quasi primary ideal of Rt for some t ∈ {1, 2, . . . , n} and

Qj = Rj for all j 6= t.

Proof. We use induction on n. If n = 1, the result is valid. If n = 2, (i)⇔(ii)
follows from Lemma 2.1. Assume that the claim is valid for all k ∈ N with
k < n. Now suppose that Q = Q1×Q2×· · ·×Qn and R = R1×R2×· · ·×Rn.
Put Q′ = Q1 × Q2 × · · · × Qn−1 and R′ = R1 × R2 × · · · × Rn−1. Then by
Lemma 2.1, Q = Q′ × Qn is a strongly quasi primary ideal of R = R′ × Rn if
and only if Q′ is a strongly quasi primary ideal of R′ and Qn = Rn or Q′ = R′

and Qn is a strongly quasi primary ideal of Rn. The rest follows by induction
hypothesis. �

Theorem 2.2. Let R be an integral domain. Then the following statements
are equivalent:

(i) R is a divided ring.
(ii) Every proper principal ideal is a strongly quasi primary ideal.
(iii) Every proper ideal is a strongly quasi primary ideal.

Proof. (i)⇒(ii) Let R be a divided ring and (x) be a proper ideal of R. Assume
that ab ∈ (x) for some a, b ∈ R. Since R is divided ring, by [7, Proposition
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2], we have either b|a or a|bn for some n ∈ N. If b|a, then a = kb and so
a2 = k(ab) ∈ (x). Otherwise, we have a|bn and so bn = sa and this yields that
bn+1 = s(ab) ∈ (x). Thus, (x) is a strongly quasi primary ideal.

(ii)⇒(iii) Suppose that Q is a proper ideal and ab ∈ Q for some a, b ∈ R.
Since ab ∈ (ab) and (ab) is a strongly quasi primary ideal, we have a2 ∈ (ab) ⊆
Q or bn ∈ (ab) ⊆ Q for some n ∈ N.

(iii)⇒(i) Suppose that every proper ideal is a strongly quasi primary ideal.
Let a, b ∈ R. Assume that a and b are not unit. Put Q = (ab). Since Q is a
strongly quasi primary ideal and ab ∈ Q, we have a2 ∈ (ab) or bn ∈ (ab) for
some n ∈ N. If a2 ∈ (ab), then a2 = abc for some c ∈ R and so a = bc, i.e., b|a.
If bn ∈ (ab), then bn = abs for some s ∈ R and so bn−1 = as so that a|bn−1.
Then by [7, Proposition 2], R is a divided ring. �

Let R be a ring and I a proper ideal of R. For any f(X) = a0 +a1X+ · · ·+
anX

n ∈ R[X], the content c(f) of f is defined as c(f) = (a0, a1, . . . , an). Also
note that I[X] = {f ∈ R[X] : c(f) ⊆ I} is an ideal of R[X]. Similarly, for any
f(X) =

∑∞
i=0 aiX

i ∈ R[[X]], the content c(f) of f is defined by c(f) = ({ai :
i ∈ N}). Furthermore, I[[X]] = {f =

∑∞
i=0 aiX

i ∈ R[[X]] : c(f) ⊆ I} is an
ideal of R[[X]].

Theorem 2.3. Let R be a ring and 2 be a unit of R. Then the following
statements are equivalent:

(i) Q is a strongly quasi primary ideal of R.
(ii) Q[X] is a strongly quasi primary ideal of R[X].

Proof. (i)⇒(ii) Suppose that Q is a strongly quasi primary ideal of R. Take

fg ∈ Q[X] with g /∈
√
Q[X]. First note that

√
Q[X] =

√
Q[X]. Since

g /∈
√
Q[X], we have c(g) *

√
Q. Also note that c(fg) ⊆ Q. Then by

[13, Theorem 28.1], c(f)c(g)n+1 = c(g)nc(fg) ⊆ Q, where n = deg(f). Since
c(g) *

√
Q, c(g)n+1 *

√
Q. As Q is a strongly quasi primary ideal of R, by

Corollary 2.1, we have c(f)2 ⊆ Q. Since c(f2) ⊆ c(f)2, we get c(f2) ⊆ Q and
so f2 ∈ Q[X]. Hence, Q[X] is a strongly quasi primary ideal of R.

(ii)⇒(i) Suppose that Q[X] is a strongly quasi primary ideal of R[X]. Con-
sider the injection i : R → R[X] defined by i(a) = a for each a ∈ R. Then by
Proposition 2.4(ii), i−1(Q[X]) = Q is a strongly quasi primary ideal of R. �

Theorem 2.4. Let R be a Noetherian ring and 2 be unit of R. A proper ideal
Q of R is a strongly quasi primary if and only if Q[[X]] is a strongly quasi
primary ideal of R[[X]].

Proof. (⇐) Since R is a subring of R[[X]] and Q = Q[[X]] ∩ R, then Q is a
strongly quasi primary ideal of R by Corollary 2.2(ii).

(⇒) Let Q be a strongly quasi primary ideal of R. Let fg ∈ Q[[X]] with

g /∈
√
Q[[X]]. First note that

√
Q[[X]] =

√
Q[[X]] by [1, Lemma 2.2]. Then

we have c(fg) ⊆ Q and c(g) *
√
Q. Since R is Noetherian, there exists a

minimal number µ(c(f)) of generators of c(f). Thus we can choose n ∈ N
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as the maximum of the numbers µ(c(f)m), taken over all maximal ideals m
of R. Then by [11, Theorem 2.6], c(f)c(g)n = c(g)n−1c(fg) ⊆ Q. Since
c(g) *

√
Q, c(g)n * Q. Then c(f)2 ⊆ Q by Corollary 2.1 since Q is strongly

quasi primary. As c(f2) ⊆ c(f)2, we get c(f2) ⊆ Q and so f2 ∈ Q[[X]]. Hence,
Q[[X]] is a strongly quasi primary ideal of R[[X]]. �

Let M be an R-module. The idealization R(+)M = {(r,m) : r ∈ R,m ∈M}
of M is a commutative ring with componentwise addition and multiplication

(a,m)(b,m′) = (ab, am′ + bm)

for each a, b ∈ R; m,m′ ∈ M . Assume that I is an ideal of R and N is a
submodule of M . Then I(+)N is an ideal of R(+)M if and only if IM ⊆ N
[17] and [14]. In this case, I(+)N is called a homogeneous ideal of R(+)M . In
[3], radical of a homogeneous ideal is characterized as follows:√

I(+)N =
√
I(+)M.

Theorem 2.5. Suppose that Q(+)N is a homogeneous ideal of R(+)M .
(i) If Q(+)N is a strongly quasi primary ideal of R(+)M , then Q is a

strongly quasi primary ideal of R.
(ii) If Q is a strongly quasi primary ideal of R with

√
QM ⊆ N , then Q(+)N

is a strongly quasi primary ideal of R(+)M .

Proof. (i) Let ab ∈ Q for some a, b ∈ R. Then note that (a, 0)(b, 0) = (ab, 0) ∈
Q(+)N . Since Q(+)N is a strongly quasi primary ideal, (a, 0)2 = (a2, 0) ∈
Q(+)N or (b, 0)n = (bn, 0) ∈ Q(+)N for some n ∈ N. This implies that a2 ∈ Q
or bn ∈ Q for some n ∈ N. Hence, Q is a strongly quasi primary ideal of R.

(ii) Suppose that Q is a strongly quasi primary ideal of R with
√
QM ⊆ N .

Let (a,m)(b,m′) = (ab, am′ + bm) ∈ Q(+)N for some a, b ∈ R; m,m′ ∈ M .
This implies that ab ∈ Q and so a2 ∈ Q or bn ∈ Q for some n ∈ N. If bn ∈ Q,
then bnm′ ∈ QM ⊆ N and so (b,m′)n+1 = (bn+1, (n + 1)bnm′) ∈ Q(+)N .
Otherwise, we would have a2 ∈ Q and so am ∈

√
QM ⊆ N and this yields

(a,m)2 = (a2, 2am) ∈ Q(+)N and thus Q(+)N is a strongly quasi primary
ideal of R(+)M . �

Corollary 2.4. Let Q be a proper ideal of R and N a submodule of M with
(N : M) =

√
(N : M). Suppose that Q(+)N is a homogeneous ideal of R(+)M .

Then Q(+)N is a strongly quasi primary ideal of R(+)M if and only if Q is a
strongly quasi primary ideal of R.

3. Application to graph theory

The study of zero divisor graph of commutative ring R, Γ(R) goes back
to Beck [9], where it was first studied for coloring of a commutative ring R.
Afterwards, Anderson and Livingston (in [5]) redefined and studied zero divisor
graph by taking the set of vertices as just nonzero zero divisors zd∗(R) of R.
According to their definition, any two distinct vertices x and y are adjacent if
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xy = 0. Then Redmond in [18] generalized this graph with respect to given an
ideal I of R and called this graph: ideal based zero divisor graph. Let R be a
ring and I be a proper ideal of R. The ideal based zero divisor graph ΓI(R)
of R is a simple graph with a vertex set VI(R) = {x ∈ R− I : xy ∈ I for some
y ∈ R − I} such that any two distinct vertices x, y are adjacent if xy ∈ I [18].
Note that if I is zero ideal, then ideal based zero divisor graph is the exactly
zero divisor graph. The author in [18], gave many properties of ideal based zero
divisor graph and investigated the relations between graph properties of ΓI(R)
and algebraic properties of R. Our aim in this section is to construct a subgraph
of ideal based zero divisor graph characterizing strongly quasi primary ideals
and to find answers to many questions on this subgraph such as when two
graphs are equal? Now, take the set of vertices V ∗I (R) = VI(R). We say that,

for any distinct vertices x and y are adjacent if xy ∈ I with x2 /∈ I, y /∈
√
I or

x /∈
√
I, y2 /∈ I. Then we denote this graph by Γ∗I(R). Note that Γ∗I(R) is a

subgraph of ideal based zero divisor graph ΓI(R).

Definition 3.1. A graph G is called edgeless (n-empty) if it has some vertices
(n vertices) but no edges. In particular, 0-empty graph is just called empty
graph.

It was shown (in [18, Proposition 2.2]) that ΓI(R) is empty graph if and
only if I is prime ideal, i.e., R/I is an integral domain. Now we characterize
edgeless graph in terms of strongly quasi primary ideals.

Proposition 3.1. Let R be a ring and I a proper ideal of R. Then
(i) I is a prime ideal if and only if Γ∗I(R) is an empty graph. In this case,

Γ∗I(R) = ΓI(R).
(ii) Let I be a non prime ideal. If |VI(R)| = 1, then Γ∗I(R) is edgeless

(1-empty) and Γ∗I(R) = ΓI(R).
(iii) Let |VI(R)| ≥ 2. Then I is a strongly quasi primary ideal if and only if

Γ∗I(R) is an edgeless graph.
(iv) If I is not a strongly quasi primary ideal, then |VI(R)| ≥ 2 and Γ∗I(R)

can not be an edgeless graph.
(v) If I is a radical ideal, i.e.,

√
I = I, then Γ∗I(R) = ΓI(R). In particular,

if R is a reduced ring then Γ∗0(R) and Γ(R) are the same graph.

Proof. (i), (ii): It is clear.
(iii) Assume that |VI(R)| ≥ 2. Suppose that I is a strongly quasi primary

ideal. Now we will show that Γ∗I(R) is edgeless. Suppose to the contrary.
Then there exist two distinct vertices x, y that are adjacent in Γ∗I(R). This

implies that xy ∈ I with x2 /∈ I, y /∈
√
I or x /∈

√
I, y2 /∈ I. Assume that

x2 /∈ I, y /∈
√
I. Since I is a strongly quasi primary ideal and xy ∈ I. Then we

get either x2 ∈ I or y ∈
√
I, a contradiction. If x /∈

√
I, y2 /∈ I, similarly we can

get a contradiction since I is a strongly quasi primary ideal and xy ∈ I. Now,
assume that Γ∗I(R) is an edgeless graph. Suppose that I is not a strongly quasi
primary ideal. Then there exist x, y ∈ R such that xy ∈ I with x2 /∈ I, yn /∈ I



ON STRONGLY QUASI PRIMARY IDEALS 739

for all n ∈ N. Since x2 /∈ I and xy ∈ I, we have x 6= y and x, y ∈ VI(R).
Thus x, y are adjacent in Γ∗I(R), a contradiction. Hence, I is a strongly quasi
primary ideal of R.

(iv) Follows from (iii).

(v) Suppose that I =
√
I. We may assume that |VI(R)| ≥ 2. If I is a

strongly quasi primary ideal, then I is prime since I =
√
I so that |VI(R)| = 0,

a contradiction. Let x, y be two distinct vertices that are adjacent in Γ∗I(R).
Then it is clear that x, y are adjacent in ΓI(R). Now, assume that x, y are
adjacent in ΓI(R) and not adjacent in Γ∗I(R). Then xy ∈ I and also the

condition x2 /∈ I, y /∈
√
I or x /∈

√
I, y2 /∈ I does not imply. Thus we have

x ∈
√
I or y ∈

√
I. Since

√
I = I, we have either x ∈ I or y ∈ I, a contradiction.

Hence, Γ∗I(R) = ΓI(R). �

Let G be a graph and x, y be two distinct vertices. Then we denote x− y if
x 6= y and x, y are adjacent. Also x1 − x2 − x3 − · · · − xn is called a path from
x1 to xn of length n− 1 if all xi 6= xj for i 6= j. A graph G is connected if for
any distinct vertices x and y, there exists a path from x to y. Otherwise, G is
called disconnected.

Example 3.1. (i) Consider the ring of integers modulo 6, Z6. One can see
that Γ∗0(Z6) is a line graph as in Figure 2.

(ii) Consider the ring of integers modulo 12, Z12. In Figure 3, compare
Γ∗0(Z12) and Γ0(Z12). Note that Γ∗I(R) may be disconnected while ΓI(R) is
always connected [18, Theorem 2.5].

2 3 4

1

Figure 2. Γ∗0(Z6)
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1

Figure 3. Γ∗0(Z12) vs Γ0(Z12)

Let a ∈ VI(R). Then we denote the set of all vertices that are adjacent to
a in Γ∗I(R) by NΓ∗(a). Similarly, NΓ(a) = {b ∈ VI(R) : b − a is an edge of
ΓI(R)}.
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Proposition 3.2. Suppose that a ∈ VI(R) such that NΓ∗(ra) = NΓ(ra) for all

r /∈ (I : a). Then either
√

(I : a) = (I : a) or
√

(I : a) =
√
I.

Proof. The inclusion (I : a) ∪
√
I ⊆

√
(I : a) always holds. It is sufficient to

show that the reverse inclusion also holds when the conditionNΓ∗(ra) = NΓ(ra)

is satisfied for all r /∈ (I : a). Let b ∈
√

(I : a). Then bna ∈ I for some
n ∈ N. Choose the smallest aforementioned integer n ∈ N. If n = 1, then
we are done. Assume that n ≥ 2. Then bn−1a /∈ I. If b = bn−1a, then
b(bn−1a) = b2 = bna ∈ I and so b ∈

√
I. Now assume that b 6= bn−1a. Since

b(bn−1a) ∈ I, b and bn−1a are adjacent in ΓI(R), that is, b ∈ NΓ(bn−1a).
Since bn−1 /∈ (I : a), by assumption, b ∈ NΓ(bn−1a) = NΓ∗(bn−1a) so that b

and bn−1a are adjacent in Γ∗I(R). This implies that b2 /∈ I, (bn−1a) /∈
√
I or

b /∈
√
I, (bn−1a)2 /∈ I. But note that (bn−1a)2 = b2n−2a2 ∈ I since 2n− 2 ≥ n.

Hence, we have
√

(I : a) ⊆ (I : a)∪
√
I. Thus we have either

√
(I : a) = (I : a)

or
√

(I : a) =
√
I. �

An isolated point x of a graph G is a point that there is no edge between
x and y for any point y of G. As one can see in Figure 3, in the graph Γ∗I(R)
there may exist some isolated points. The following proposition detects the
isolated points in the graph Γ∗I(R).

Proposition 3.3. Let x ∈ VI(R).

(i) Assume that x ∈
√
I. If x2 ∈ I, then NΓ∗(x) = ∅.

(ii) Assume that x ∈
√
I with x2 /∈ I. Then NΓ∗(x) = ∅ if and only if

(I : x) ⊆
√
I.

(iii) Assume that x /∈
√
I. If NΓ∗(x) = ∅ if and only if (I : x)2 ⊆ I.

Proof. (i) It is clear.

(ii) Suppose that x2 /∈ I and (I : x) ⊆
√
I. Let y − x be an edge of Γ∗I(R).

Then yx ∈ I with x2 /∈ I, y /∈
√
I. Since y ∈ (I : x) ⊆

√
I, we have a

contradiction so that NΓ∗(x) = ∅. Conversely, assume that NΓ∗(x) = ∅. Let

y ∈ (I : x). Then yx ∈ I. If y ∈
√
I, then we are done. Assume that y /∈

√
I.

Since x2 /∈ I, we have x 6= y and so x− y is an edge of Γ∗I(R), a contradiction.

(iii) Let NΓ∗(x) = ∅ for some x /∈
√
I. Now, we will show that (I : x)2 ⊆ I.

Suppose not. Then there exists y ∈ (I : x) such that y2 /∈ I. Then yx ∈ I.
As y2 /∈ I, note that y 6= x and so x − y is an edge in Γ∗I(R), a contradiction.
Conversely, assume that (I : x)2 ⊆ I. Let x − y be an edge of Γ∗I(R). Then

yx ∈ I and y2 /∈ I, x /∈
√
I or y /∈

√
I, x2 /∈ I. Since y ∈ (I : x), by assumption,

y2 ∈ I, a contradiction. Hence, we have NΓ∗(x) = ∅. �

As a consequence of the previous proposition, we give the following results.

Corollary 3.1. (i) Let x ∈ VI(R) with x2 /∈ I. If (I : x) *
√
I, then NΓ∗(x) 6=

∅.
(ii) Let R be a ring and I a proper ideal of R. Assume that for all x ∈ VI(R),

x2 /∈ I and (I : x) *
√
I, then Γ∗I(R) has no isolated point.
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As one can see in Figure 3,Γ∗I(R) and ΓI(R) are not the same graph since
Γ∗I(R) may not be connected while ΓI(R) is always connected. The following
theorem give an answer when Γ∗I(R) and ΓI(R) are coincide or when Γ∗I(R) is
connected.

Theorem 3.1. Let I be a proper ideal of R and |VI(R)| ≥ 2. Then the following
statements are equivalent:

(i) Γ∗I(R) is a connected graph.

(ii) I =
√
I, i.e., R/I is a reduced ring.

(iii) Γ∗I(R) = ΓI(R).

Proof. (i)⇒(ii) Assume that Γ∗I(R) is a connected graph. Now, we will show

that I =
√
I. Assume that I 6=

√
I. Then there exists x ∈

√
I−I. This implies

that xn ∈ I for some n ∈ N. Let n be the smallest positive integer such that
xn ∈ I. Note that xn−1 /∈ I and xn−1 ∈ VI(R) since xxn−1 = xn ∈ I and x /∈ I.
As Γ∗I(R) is a connected graph, there exists y ∈ VI(R) such that xn−1 and y

are adjacent in Γ∗I(R).This implies that xn−1y ∈ I with (xn−1)2 /∈ I, y /∈
√
I

or xn−1 /∈
√
I, y2 /∈ I. Since 2(n − 1) ≥ n, we have (xn−1)2 = x2(n−1) ∈ I, a

contradiction. Thus
√
I = I which completes the proof.

(ii)⇒(iii) Follows from Proposition 3.1(v).
(iii)⇒(i) Follows from [18, Theorem 2.4]. �

Let G be a graph and x, y be two distinct vertices. Then d(x, y) is the
shortest length of a path from x to y. If there is no such a path, d(x, y) =∞.
Also, diameter of G, diam(G) = sup{d(x, y) : x 6= y}.

Corollary 3.2. Let R be a ring and I a proper ideal of R such that |VI(R)| ≥ 2.

(i) If I 6=
√
I, then diam(Γ∗I(R)) =∞.

(ii) If I =
√
I, then diam(Γ∗I(R)) ≤ 3.

Proof. (i), (ii): Follows from previous Theorem and [18, Theorem 2.4]. �

As a consequence of Theorem 3.1, we determine when a ring R is von Neu-
mann regular in terms of strongly quasi primary ideals and Γ∗I(R).

Corollary 3.3. Let R be a ring. Then the following statements are equivalent:
(i) R is a von Neumann regular ring.
(ii) Every strongly quasi primary ideal is prime and for any non strongly

quasi primary ideal I of R, Γ∗I(R) = ΓI(R).

Recall that a graph G is a bipartite if the vertex set is a union of two disjoint
subvertex set, i.e., V (G) = V1∪V2 and V1∩V2 = ∅ and also each edge of G joins
a vertices of V1 to a vertices V2. A complete bipartite graph G is a bipartite
graph such that all vertices x1 ∈ V1 and x2 ∈ V2 are adjacent.

Theorem 3.2. Let I be a proper ideal of R. Then the following statements
are equivalent:

(i) Γ∗I(R) is a complete bipartite graph.
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(ii) I = P1 ∩ P2 for some distinct prime ideals P1 and P2 of R that are
minimal over I.

Proof. (i)⇒(ii) Assume that Γ∗I(R) is a complete bipartite graph. Then |VI(R)|
≥ 2 and also Γ∗I(R) is connected. By Theorem 3.1, I =

√
I and Γ∗I(R) = ΓI(R).

Now, we will show that I is a 2-absorbing ideal of R. Let abc ∈ I for some
a, b, c ∈ R with ab /∈ I and ac /∈ I. If ab = ac, then abc = ac2 ∈ I and so
ac ∈

√
I = I, a contradiction. So assume that ab 6= ac. Also it is clear that

ab− ac is an edge of ΓI(R). As Γ∗I(R) = ΓI(R) is a complete bipartite graph,
we can write VI(R) = V1∪V2 such that V1∩V2 = ∅. Without loss of generality,
we may assume that ab ∈ V1 and ac ∈ V2. Now, we will show that a ∈ R
is not a vertex. Suppose to the contrary. Then a ∈ VI(R) = V1 ∪ V2. Then
either a ∈ V1 or a ∈ V2. Assume that a ∈ V1. If a = ab, then ac = abc ∈ I,
a contradiction. Thus a 6= ab. Since Γ∗I(R) is complete bipartite, a − ac is an

edge of ΓI(R) so that a(ac) = a2c ∈ I and this yields that ac ∈
√
I = I, a

contradiction. If a ∈ V2, one can similarly get a contradiction. Then we have
a /∈ VI(R). Now, we will show that (I : a) ⊆ I. Assume that x ∈ (I : a) − I.
Then xa ∈ I. As x and a are not in I, we have a ∈ VI(R), a contradiction.
Thus (I : a) ⊆ I and so bc ∈ (I : a) ⊆ I. Hence, I is a 2-absorbing ideal

of R. Then by [8, Theorem 2.4], I =
√
I = P for some prime ideal P of R

or I =
√
I = P1 ∩ P2 for some distinct prime ideals P1 and P2 of R that are

minimal over I. If I =
√
I = P , then Γ∗I(R) = ΓI(R) is empty, a contradiction

so that I = P1 ∩ P2 for some distinct prime ideals P1 and P2 of R that are
minimal over I.

(ii)⇒(i) First, note that VI(R) = V1 ∪ V2, where V1 = {x ∈ R − I : x ∈
P1−P2} and V2 = {x ∈ R− I : x ∈ P2−P1}. Also, it is clear that V1∩V2 = ∅.
Now, we will show that Γ∗I(R) is complete bipartite. Let x ∈ V1 and y ∈ V2.
Then xy ∈ I = P1 ∩ P2 since xy ∈ P1 and xy ∈ P2. It is clear that x2 /∈ I,
y /∈
√
I and also x /∈

√
I, y2 /∈ I. �
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