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BASIC CODES OVER POLYNOMIAL RINGS
YounGg Ho PARK

ABSTRACT. We study codes over the polynomial ring F,[D] and
introduce the notion of basic codes which play a fundamental role
in the theory.

1. Codes over polynomial rings

A code of length n over a ring R (finite or infinite) is a subset of R". If
the code is a submodule of the ambient space then it is a linear code. We
will always assume that codes are linear. The Hamming weight wt(v)
of a vector v is the number of non-zero coordinates in that vector. The
minimum distance of a code C, denoted by d(C), is the smallest of all
non-zero weights in the code. To the ambient space R™ we attach the
inner product

(1) v, w] = v,
where v = (v;), w = (w;). We define the dual code of C to be
(2) Ct={v|[v,w]=0forall weC}.

A code C satisfying C = C* is called a self-dual code. See [2] for general
theory on codes and [3] on self-dual codes.
Let F, be the field of ¢ elements, and throughout this paper let

P :Fq[D]

denote the infinite ring of polynomials in one indeterminate D over F,.
The elements of the finite ring

P, = F,[D]/(D™)
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are identified with polynomials ag + a1 D + asD? + - -+ + a1 D™ 1 of
degree less than m. This ring is a commutative ring with ¢™ elements.
We sometimes view P, as a subset of P,. for r > m, and of P by assuming
all coefficients of D’ are 0 for i@ > m. The units of P are precisely the
non-zero elements of degree 0, i.e., P* = F, — {0}, while the units of
P.. are polynomials with a nonzero constant term, i.e., Pf = {ag +
arD + ayD* + -+ + @, D™ | ag # 0}. Since P is a principal ideal
domain, any code C of length n over P is a free module of rank £ < n.
In this case, we shall write rankC = k. If C; C C, are codes over P, then
rankC; < rankC,. A code C of length n and rank k is said to be an
[n, k]-code, or [n, k, d]-code if the minimum distance of C is d. A k x n
matrix whose rows form a basis of [n,k]-code C is called a generator
matriz of C. A generator matrix of C* is called a parity check matriz of

C.
LEMMA 1.1. For a code C of length over P, we have
rank C* + rank C = n.

 Proof. Let g1, -+, g be the rows of a generator matrix of C, and let
C = C®r,[p| IFq(D) be the code generated by {gz} over the quotient field

F,(D) of P = F,[D]. Thus rankC = dimg,(p C = k. Since C is a code

over a field, we know that dimg,(p) Ct=n-— k;, where
={velF,(D)"|[v,g] =0 for all i}.

It is easy to check that the “integral” vectors fi,--- | fi, € P™ are linearly
independent over F (D) iff they are linearly mdependent over P. Note

that CLtNP" C CL. Let hy,--- ,h, € F (D)™ be a basis for C*. There

are elements (3; € P such that ﬁiﬁi € P™. Thus the @-hi are in C*
and they are linearly independent over P as well as over F (D). Hence
n —k < rankC*. Conversely, if hy,--- , h, is a basis for C*, then they
are in C* and linearly independent over F,(D). Thus rankC* < n — k.
The lemma is proved. [

From the lemma, we obtain
(3) rank C = rank (C+)*.

Furthermore, if C is a self-dual [n, k|-code over P, then n = 2k.
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2. Basic codes

For codes C over P, which are codes over an infinite ring F,[D], we
do not always have (Ct)* = C. For example, let C = (D™) be the code
of length 1 generated by D™. Then C*+ = {0} and (C1)* = P, which is
much larger than C = (D™). Nevertheless, it is always true that

(4) Cc(CH*.
DEFINITION 2.1. A code C over P is said to be basic if C = (C*)*.

LEMMA 2.2. Let C; C Cy be codes over P of the same rank. If v € Cy,
then av € C; for some nonzero « € P.

Proof. Let rankCy = k and {wy,ws,--- , Wy} be a basis for C;. Since
rank Cy > rank (Cy, v) > rankC; = rank Cy,

we have rank (C;,v) = k. Thus the k + 1 vectors wy, waq,--- , Wy and
v are linearly dependent over P. Hence there is a dependence relation
1wy + -+ + agpwg + av = 0, and thus av € C;. Finally, a # 0 since if
« =0 then a; = 0 for all 3. O

THEOREM 2.3. The following conditions are equivalent for a code C
over P.

i. C is basic.
ii. av € C implies v € C for any nonzero o € P.

Proof. Suppose C is basic. If av € C, then [av,w] = 0 for all w € C*,
which implies [v,w] = 0 for all w € C* since P is an integral domain,
and thus v € (C1)* = C. The converse follows from the previous lemma,
(3) and (4). O

REMARK. Theorem 2.3 is true for any code of finite rank over a prin-
cipal ideal domain.

COROLLARY 2.4. A code C over P is basic iff C is a dual code of some
code over P.

Proof. If C = Ci+ and av € C, then 0 = [av, w] = afv, w] for all w €
C; and hence [v,w] = 0 for all w € C;, which implies that v € C{- = C.
The converse is clear. O
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This corollary provides us a way of constructing basic codes. Indeed,
the basic codes of length n are exactly the codes defined by an s x n
matrix Hy as

C(Hy) = {v € P" | Hyv" =0},

i.e., the solutions sets to a family of linear equations. C(Hj) is then
basic, since it is dual to the code generated by the rows of Hy. Note
that Hy is not necessarily a parity check matrix of C(Hy) even if the row
vectors of Hj are linearly independent. For example, take

1 D1
HO:(D 1 1)'

The rank of the code C; generated by Hj is 2, and thus C(Hy) = Ci™
will have rank 3 —2 = 1. A straightforward computation yields C(Hy) =
(1,1,—(D +1))) and

C(Ho)" ={((D+1)v—3,8.7) | 8,7 € P}.

Therefore we see that Hy is not a parity check matrix of C(H,) since
it does not generate the codeword (—1,1,0) € C(Hy)*, for example. A
parity check matrix of C(Hy) can be given by

—1 10 110
D+101)"\b 1 1)

We shall present another way of describing basic codes in terms of
their generator matrices. For a vector u = (uq,...,u,) € P", we denote

c(u) = ged{uy, - ,u,}.
It is clear that
c(au) = ac(u)
for any o € P, and
c(u) | ¢(uG)

for any r x s matrix G over P, since the components of uG are linear
combinations of the components of u. In addition, we can write

u = c(u)ug, with ¢(ug) = 1.

LEMMA 2.5. Let {g;} be the rows of the generator matrix G of a basic
code C. Then c(g;) =1 for all .
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Proof. Suppose g;, = (f for some 8 € P = F,[D]. Since C is basic,
we have f € C. Write f = Zle a;8;. We then have

Bougr + -+ + (Boiy — 1)gig + -+ + Bayge =0,
which implies that 3a;, —1 = 0. Thus 3 € F} and hence c(g;,) = 1. O

The converse of the above lemma is not true. For example, let C be
the code with generator matrix G = (} ?). So ¢(1,D) = ¢(D,1) = 1.
But G' = (p}17p) is also a generator matrix with ¢(D 4+ 1,D +1) =
D +1 # 1. Thus C is not basic. In fact, since rankC = 2, we have
Ct ={0} and (CH)t =P2#£C.

THEOREM 2.6. Let G be a generator matrix of an [n, k]-code C over
P. Then C is basic iff one of the following conditions is satisfied.
i. c(u) =1= c(uG@) =1 for all u € P*.
ii. c(u) = c(u@) for all u € P

Proof. (basic) <= (i). First note that uG € C for all u, and if
;G = wyG then uy = uy. Assume that C is basic and c¢(u) = 1. Let
uG = av for some o € P. Since C is basic, we have v € C so that
v = WG for some w. Thus uG = av = aw(G, which implies u = aw.
Since c¢(u) = 1, we have a € F, and hence ¢(uG) = 1. Conversely,
suppose av € C. There exists some u such that av = uG. Write
u = c¢(u)uy with ¢(ug) = 1. Since c(ugG) = 1 by (i) and av = c¢(u)uyG,
we have c¢(av) = c¢(u). Hence av = c(u)uyG = c(av)usG = ac(v)uyG.
Consequently, v = ¢(v)uG € C.

(i) <= (ii). Write u = c¢(u)uy with ¢(ug) = 1. Then c¢(uG)
c(u)c(ugG). Thus the proof follows from the fact that c(ugG) = 1
c(u) = ¢(uG).

iff

O

3. Characterizations of basic codes
We now recall the definitions and facts about basic matrices over P,
which play important roles in the theory of convolutional codes.

DEFINITION 3.1. A k X n matrix G over P is said to be basic if G has

a (polynomial) right inverse, that is, if there exists an n x k matrix M
over P such that GM = I.

There are other characterizations of basic matrices as follows [1].
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THEOREM 3.2. A k x n matrix G = G(D) over F,[D] is basic iff one
of the following conditions is satisfied.
i. The invariant factors of G are all 1.
ii. The gcd of the k x k minors of G is 1.
ili. G(«) has rank k for any « in the algebraic closure of F,,.
iv. If uG € F,[D]" for u € F,(D)*, then u € F,[D]".

v. There exists an (n—k) X n matrix L such that det (G

IS a nonzero
L)

element of IF,.

It turns out that basic codes are exactly those generated by basic
matrices.

THEOREM 3.3. Let G be a generator matrix of a convolutional code
C. Then C is basic iff G is basic.

Proof. Assume that the k x n matrix G generates a basic code. Sup-
pose uG € P" for u € F,(x)*. There exists o € P such that v = au € P
Write v = ¢(v)vy for some vy € P¥. Now Theorem 2.6 implies

ac(u@G) = c(auG) = ¢(vG) = ¢(v).
Thus a | ¢(v) and then u = v = ™y, € P¥. Therefore, G is basic by

Theorem 3.2(iv). Conversely, suppoge that G is basic so that there is a
matrix M such that GM = I,. Let av € C. Then av = uG for some u,
and avM = uGM = u. Thus av = uG = (avM )G = a(vMG), which

implies that v = (vM)G € C. O

COROLLARY 3.4. If Cy is basic and Cy is equivalent to Cy, then Cy is
also basic.

Proof. Let G; be generator matrices for C;. The theorem follows from
Theorem 3.2(ii) and the fact that the minors for G; and G, are the same
up to 1. ]

EXAMPLE 3.5. The matrices in this example are taken from [1]. Let

G_1 D 1+D 1
A= \o 1+4D D 0

be a matrix over Fo[D]. The matrix Gy is basic since G has 1 = det I,
as a 2 X 2 minor. By Theorem 3.3, G4 generates a basic code C. Let

O — 1+D 0 1 D
5 D 1+D+D? D?* 1)
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For u = (1 + D,1), uGs = (1 + D + D?*)(1,1,1,1). Thus the code
generated by G5 is not basic by Theorem 2.6. Nevertheless, we note
that the matrices G4 and G5 generate the same code over Fo(D), the
quotient field of Fy[D].

THEOREM 3.6. 1. Self-dual codes are basic.
ii. If C is a basic self-orthogonal [2k, k]-code, then C is self-dual.

Proof. (i) If C* =C, then (Ct)* =C*+ =C.

(ii) Suppose that v € C*t. Since C C C* and rankCt =2k —k =k =
rank C, it follows from Lemma 2.2 that av € C for some a € P. As C is
basic, we have v € C. n
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