BASIC CODES OVER POLYNOMIAL RINGS

Young Ho Park

ABSTRACT. We study codes over the polynomial ring $\mathbb{F}_q[D]$ and introduce the notion of basic codes which play a fundamental role in the theory.

1. Codes over polynomial rings

A code of length n over a ring R (finite or infinite) is a subset of R^n . If the code is a submodule of the ambient space then it is a *linear* code. We will always assume that codes are linear. The *Hamming weight* wt(\mathbf{v}) of a vector \mathbf{v} is the number of non-zero coordinates in that vector. The *minimum distance* of a code \mathcal{C} , denoted by $d(\mathcal{C})$, is the smallest of all non-zero weights in the code. To the ambient space R^n we attach the inner product

$$[\mathbf{v}, \mathbf{w}] = \sum v_i w_i,$$

where $\mathbf{v} = (v_i)$, $\mathbf{w} = (w_i)$. We define the dual code of \mathcal{C} to be

(2)
$$\mathcal{C}^{\perp} = \{ \mathbf{v} \mid [\mathbf{v}, \mathbf{w}] = 0 \text{ for all } \mathbf{w} \in \mathcal{C} \}.$$

A code C satisfying $C = C^{\perp}$ is called a *self-dual* code. See [2] for general theory on codes and [3] on self-dual codes.

Let \mathbb{F}_q be the field of q elements, and throughout this paper let

$$\mathsf{P} = \mathbb{F}_q[D]$$

denote the infinite ring of polynomials in one indeterminate D over \mathbb{F}_q . The elements of the finite ring

$$\mathsf{P}_m = \mathbb{F}_q[D]/(D^m)$$

Received June 04, 2007.

2000 Mathematics Subject Classification: 94B10, 94B05.

Key words and phrases: linear codes, codes over polynomial rings.

are identified with polynomials $a_0 + a_1D + a_2D^2 + \cdots + a_{m-1}D^{m-1}$ of degree less than m. This ring is a commutative ring with q^m elements. We sometimes view P_m as a subset of P_r for r > m, and of P by assuming all coefficients of D^i are 0 for i > m. The units of P are precisely the non-zero elements of degree 0, i.e., $\mathsf{P}^* = \mathbb{F}_q - \{0\}$, while the units of P_m are polynomials with a nonzero constant term, i.e., $\mathsf{P}^*_m = \{a_0 + a_1D + a_2D^2 + \cdots + a_{m-1}D^{m-1} \mid a_0 \neq 0\}$. Since P is a principal ideal domain, any code \mathcal{C} of length n over P is a free module of rank $k \leq n$. In this case, we shall write rank $\mathcal{C} = k$. If $\mathcal{C}_1 \subset \mathcal{C}_2$ are codes over P , then rank $\mathcal{C}_1 \leq \operatorname{rank} \mathcal{C}_2$. A code \mathcal{C} of length n and rank k is said to be an [n,k]-code, or [n,k,d]-code if the minimum distance of \mathcal{C} is called a generator matrix whose rows form a basis of [n,k]-code \mathcal{C} is called a generator matrix of \mathcal{C} . A generator matrix of \mathcal{C}^\perp is called a parity check matrix of \mathcal{C} .

LEMMA 1.1. For a code C of length over P, we have

$$\operatorname{rank} \mathcal{C}^{\perp} + \operatorname{rank} \mathcal{C} = n.$$

Proof. Let $\mathbf{g}_1, \dots, \mathbf{g}_k$ be the rows of a generator matrix of \mathcal{C} , and let $\hat{\mathcal{C}} = \mathcal{C} \otimes_{\mathbb{F}_q[D]} \mathbb{F}_q(D)$ be the code generated by $\{\mathbf{g}_i\}$ over the quotient field $\mathbb{F}_q(D)$ of $\mathsf{P} = \mathbb{F}_q[D]$. Thus $\mathrm{rank}\,\hat{\mathcal{C}} = \dim_{\mathbb{F}_q(D)}\hat{\mathcal{C}} = k$. Since $\hat{\mathcal{C}}$ is a code over a field, we know that $\dim_{\mathbb{F}_q(D)}\hat{\mathcal{C}}^{\perp} = n - k$, where

$$\hat{\mathcal{C}}^{\perp} = \{ \mathbf{v} \in \mathbb{F}_q(D)^n \mid [\mathbf{v}, \mathbf{g}_i] = 0 \text{ for all } i \}.$$

It is easy to check that the "integral" vectors $\mathbf{f}_1, \dots, \mathbf{f}_k \in \mathsf{P}^n$ are linearly independent over $\mathbb{F}_q(D)$ iff they are linearly independent over P . Note that $\hat{\mathcal{C}}^\perp \cap \mathsf{P}^n \subset \mathcal{C}^\perp$. Let $\hat{\mathbf{h}}_1, \dots, \hat{\mathbf{h}}_{n-k} \in \mathbb{F}_q(D)^n$ be a basis for $\hat{\mathcal{C}}^\perp$. There are elements $\beta_i \in \mathsf{P}$ such that $\beta_i \hat{\mathbf{h}}_i \in \mathsf{P}^n$. Thus the $\beta_i \hat{\mathbf{h}}_i$ are in \mathcal{C}^\perp and they are linearly independent over P as well as over $\mathbb{F}_q(D)$. Hence $n-k \leq \mathrm{rank}\,\mathcal{C}^\perp$. Conversely, if $\mathbf{h}_1, \dots, \mathbf{h}_s$ is a basis for \mathcal{C}^\perp , then they are in $\hat{\mathcal{C}}^\perp$ and linearly independent over $\mathbb{F}_q(D)$. Thus $\mathrm{rank}\,\mathcal{C}^\perp \leq n-k$. The lemma is proved.

From the lemma, we obtain

(3)
$$\operatorname{rank} \mathcal{C} = \operatorname{rank} (\mathcal{C}^{\perp})^{\perp}.$$

Furthermore, if C is a self-dual [n, k]-code over P, then n = 2k.

2. Basic codes

For codes \mathcal{C} over P , which are codes over an *infinite* ring $\mathbb{F}_q[D]$, we do not always have $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$. For example, let $\mathcal{C} = (D^m)$ be the code of length 1 generated by D^m . Then $\mathcal{C}^{\perp} = \{0\}$ and $(\mathcal{C}^{\perp})^{\perp} = \mathsf{P}$, which is much larger than $\mathcal{C} = (D^m)$. Nevertheless, it is always true that

$$(4) C \subset (\mathcal{C}^{\perp})^{\perp}.$$

DEFINITION 2.1. A code C over P is said to be *basic* if $C = (C^{\perp})^{\perp}$.

LEMMA 2.2. Let $C_1 \subset C_2$ be codes over P of the same rank. If $\mathbf{v} \in C_2$, then $\alpha \mathbf{v} \in C_1$ for some nonzero $\alpha \in P$.

Proof. Let rank $C_1 = k$ and $\{\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k\}$ be a basis for C_1 . Since rank $C_2 \ge \operatorname{rank} \langle C_1, \mathbf{v} \rangle \ge \operatorname{rank} C_1 = \operatorname{rank} C_2$,

we have rank $\langle \mathcal{C}_1, \mathbf{v} \rangle = k$. Thus the k+1 vectors $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$ and \mathbf{v} are linearly dependent over P . Hence there is a dependence relation $\alpha_1 \mathbf{w}_1 + \cdots + \alpha_k \mathbf{w}_k + \alpha \mathbf{v} = 0$, and thus $\alpha \mathbf{v} \in \mathcal{C}_1$. Finally, $\alpha \neq 0$ since if $\alpha = 0$ then $\alpha_i = 0$ for all i.

Theorem 2.3. The following conditions are equivalent for a code $\mathcal C$ over $\mathsf P.$

i. C is basic.

ii. $\alpha \mathbf{v} \in \mathcal{C}$ implies $\mathbf{v} \in \mathcal{C}$ for any nonzero $\alpha \in \mathsf{P}$.

Proof. Suppose \mathcal{C} is basic. If $\alpha \mathbf{v} \in \mathcal{C}$, then $[\alpha \mathbf{v}, \mathbf{w}] = 0$ for all $\mathbf{w} \in \mathcal{C}^{\perp}$, which implies $[\mathbf{v}, \mathbf{w}] = 0$ for all $\mathbf{w} \in \mathcal{C}^{\perp}$ since P is an integral domain, and thus $\mathbf{v} \in (\mathcal{C}^{\perp})^{\perp} = \mathcal{C}$. The converse follows from the previous lemma, (3) and (4).

REMARK. Theorem 2.3 is true for any code of finite rank over a principal ideal domain.

COROLLARY 2.4. A code C over P is basic iff C is a dual code of some code over P.

Proof. If $C = C_1^{\perp}$ and $\alpha \mathbf{v} \in C$, then $\mathbf{0} = [\alpha \mathbf{v}, \mathbf{w}] = \alpha[\mathbf{v}, \mathbf{w}]$ for all $\mathbf{w} \in C_1$ and hence $[\mathbf{v}, \mathbf{w}] = \mathbf{0}$ for all $\mathbf{w} \in C_1$, which implies that $\mathbf{v} \in C_1^{\perp} = C$. The converse is clear.

This corollary provides us a way of constructing basic codes. Indeed, the basic codes of length n are exactly the codes defined by an $s \times n$ matrix H_0 as

$$\mathcal{C}(H_0) = \{ \mathbf{v} \in \mathsf{P}^n \mid H_0 \mathbf{v}^T = 0 \},$$

i.e., the solutions sets to a family of linear equations. $C(H_0)$ is then basic, since it is dual to the code generated by the rows of H_0 . Note that H_0 is not necessarily a parity check matrix of $C(H_0)$ even if the row vectors of H_0 are linearly independent. For example, take

$$H_0 = \begin{pmatrix} 1 & D & 1 \\ D & 1 & 1 \end{pmatrix}.$$

The rank of the code C_1 generated by H_0 is 2, and thus $C(H_0) = {C_1}^{\perp}$ will have rank 3-2=1. A straightforward computation yields $C(H_0) = \langle (1,1,-(D+1)) \rangle$ and

$$\mathcal{C}(H_0)^{\perp} = \{ ((D+1)\gamma - \beta, \beta, \gamma) \mid \beta, \gamma \in \mathsf{P} \}.$$

Therefore we see that H_0 is not a parity check matrix of $\mathcal{C}(H_0)$ since it does not generate the codeword $(-1,1,0) \in \mathcal{C}(H_0)^{\perp}$, for example. A parity check matrix of $\mathcal{C}(H_0)$ can be given by

$$\begin{pmatrix} -1 & 1 & 0 \\ D+1 & 0 & 1 \end{pmatrix}, \text{ or } \begin{pmatrix} -1 & 1 & 0 \\ D & 1 & 1 \end{pmatrix}.$$

We shall present another way of describing basic codes in terms of their generator matrices. For a vector $\mathbf{u} = (u_1, \dots, u_r) \in \mathsf{P}^r$, we denote

$$c(\mathbf{u}) = \gcd\{u_1, \cdots, u_r\}.$$

It is clear that

$$c(\alpha \mathbf{u}) = \alpha c(\mathbf{u})$$

for any $\alpha \in P$, and

$$c(\mathbf{u}) \mid c(\mathbf{u}G)$$

for any $r \times s$ matrix G over P, since the components of $\mathbf{u}G$ are linear combinations of the components of \mathbf{u} . In addition, we can write

$$\mathbf{u} = c(\mathbf{u})\mathbf{u}_0$$
, with $c(\mathbf{u}_0) = 1$.

LEMMA 2.5. Let $\{\mathbf{g}_i\}$ be the rows of the generator matrix G of a basic code C. Then $c(\mathbf{g}_i) = 1$ for all i.

Proof. Suppose $\mathbf{g}_{i_0} = \beta \mathbf{f}$ for some $\beta \in \mathsf{P} = \mathbb{F}_q[D]$. Since \mathcal{C} is basic, we have $\mathbf{f} \in \mathcal{C}$. Write $\mathbf{f} = \sum_{i=1}^k \alpha_i \mathbf{g}_i$. We then have

$$\beta \alpha_1 \mathbf{g}_1 + \dots + (\beta \alpha_{i_0} - 1) \mathbf{g}_{i_0} + \dots + \beta \alpha_k \mathbf{g}_k = 0,$$

which implies that $\beta \alpha_{i_0} - 1 = 0$. Thus $\beta \in \mathbb{F}_q^*$ and hence $c(\mathbf{g}_{i_0}) = 1$. \square

The converse of the above lemma is not true. For example, let \mathcal{C} be the code with generator matrix $G = \begin{pmatrix} 1 & D \\ D & 1 \end{pmatrix}$. So c(1, D) = c(D, 1) = 1. But $G' = \begin{pmatrix} 1 & D \\ D+1 & 1+D \end{pmatrix}$ is also a generator matrix with $c(D+1, D+1) = D+1 \neq 1$. Thus \mathcal{C} is not basic. In fact, since rank $\mathcal{C} = 2$, we have $\mathcal{C}^{\perp} = \{0\}$ and $(\mathcal{C}^{\perp})^{\perp} = \mathsf{P}^2 \neq \mathcal{C}$.

THEOREM 2.6. Let G be a generator matrix of an [n, k]-code \mathcal{C} over P . Then \mathcal{C} is basic iff one of the following conditions is satisfied.

- i. $c(\mathbf{u}) = 1 \Rightarrow c(\mathbf{u}G) = 1$ for all $\mathbf{u} \in \mathsf{P}^k$.
- ii. $c(\mathbf{u}) = c(\mathbf{u}G)$ for all $\mathbf{u} \in \mathsf{P}^k$.

Proof. (basic) \iff (i). First note that $\mathbf{u}G \in \mathcal{C}$ for all \mathbf{u} , and if $\mathbf{u}_1G = \mathbf{u}_2G$ then $\mathbf{u}_1 = \mathbf{u}_2$. Assume that \mathcal{C} is basic and $c(\mathbf{u}) = 1$. Let $\mathbf{u}G = \alpha \mathbf{v}$ for some $\alpha \in \mathsf{P}$. Since \mathcal{C} is basic, we have $\mathbf{v} \in \mathcal{C}$ so that $\mathbf{v} = \mathbf{w}G$ for some \mathbf{w} . Thus $\mathbf{u}G = \alpha \mathbf{v} = \alpha \mathbf{w}G$, which implies $\mathbf{u} = \alpha \mathbf{w}$. Since $c(\mathbf{u}) = 1$, we have $\alpha \in \mathbb{F}_q$ and hence $c(\mathbf{u}G) = 1$. Conversely, suppose $\alpha \mathbf{v} \in \mathcal{C}$. There exists some \mathbf{u} such that $\alpha \mathbf{v} = \mathbf{u}G$. Write $\mathbf{u} = c(\mathbf{u})\mathbf{u}_0$ with $c(\mathbf{u}_0) = 1$. Since $c(\mathbf{u}_0G) = 1$ by (i) and $\alpha \mathbf{v} = c(\mathbf{u})\mathbf{u}_0G$, we have $c(\alpha \mathbf{v}) = c(\mathbf{u})$. Hence $\alpha \mathbf{v} = c(\mathbf{u})\mathbf{u}_0G = c(\alpha \mathbf{v})\mathbf{u}_0G = \alpha c(\mathbf{v})\mathbf{u}_0G$. Consequently, $\mathbf{v} = c(\mathbf{v})\mathbf{u}_0G \in \mathcal{C}$.

(i) \iff (ii). Write $\mathbf{u} = c(\mathbf{u})\mathbf{u}_0$ with $c(\mathbf{u}_0) = 1$. Then $c(\mathbf{u}G) = c(\mathbf{u})c(\mathbf{u}_0G)$. Thus the proof follows from the fact that $c(\mathbf{u}_0G) = 1$ iff $c(\mathbf{u}) = c(\mathbf{u}G)$.

3. Characterizations of basic codes

We now recall the definitions and facts about basic matrices over P, which play important roles in the theory of convolutional codes.

DEFINITION 3.1. A $k \times n$ matrix G over P is said to be *basic* if G has a (polynomial) right inverse, that is, if there exists an $n \times k$ matrix M over P such that $GM = I_k$.

There are other characterizations of basic matrices as follows [1].

THEOREM 3.2. A $k \times n$ matrix G = G(D) over $\mathbb{F}_q[D]$ is basic iff one of the following conditions is satisfied.

- i. The invariant factors of G are all 1.
- ii. The gcd of the $k \times k$ minors of G is 1.
- iii. $G(\alpha)$ has rank k for any α in the algebraic closure of \mathbb{F}_q .
- iv. If $\mathbf{u}G \in \mathbb{F}_q[D]^n$ for $\mathbf{u} \in \mathbb{F}_q(D)^k$, then $\mathbf{u} \in \mathbb{F}_q[D]^k$.
- v. There exists an $(n-k) \times n$ matrix L such that $\det \begin{pmatrix} G \\ L \end{pmatrix}$ is a nonzero element of \mathbb{F}_q .

It turns out that basic codes are exactly those generated by basic matrices.

THEOREM 3.3. Let G be a generator matrix of a convolutional code C. Then C is basic iff G is basic.

Proof. Assume that the $k \times n$ matrix G generates a basic code. Suppose $\mathbf{u}G \in \mathsf{P}^n$ for $\mathbf{u} \in \mathbb{F}_q(x)^k$. There exists $\alpha \in \mathsf{P}$ such that $\mathbf{v} = \alpha \mathbf{u} \in \mathsf{P}^k$. Write $\mathbf{v} = c(\mathbf{v})\mathbf{v}_0$ for some $\mathbf{v}_0 \in \mathsf{P}^k$. Now Theorem 2.6 implies

$$\alpha c(\mathbf{u}G) = c(\alpha \mathbf{u}G) = c(\mathbf{v}G) = c(\mathbf{v}).$$

Thus $\alpha \mid c(\mathbf{v})$ and then $\mathbf{u} = \frac{1}{\alpha}\mathbf{v} = \frac{c(\mathbf{v})}{\alpha}\mathbf{v}_0 \in \mathsf{P}^k$. Therefore, G is basic by Theorem 3.2(iv). Conversely, suppose that G is basic so that there is a matrix M such that $GM = I_k$. Let $\alpha \mathbf{v} \in \mathcal{C}$. Then $\alpha \mathbf{v} = \mathbf{u}G$ for some \mathbf{u} , and $\alpha \mathbf{v}M = \mathbf{u}GM = \mathbf{u}$. Thus $\alpha \mathbf{v} = \mathbf{u}G = (\alpha \mathbf{v}M)G = \alpha(\mathbf{v}MG)$, which implies that $\mathbf{v} = (\mathbf{v}M)G \in \mathcal{C}$.

COROLLARY 3.4. If C_1 is basic and C_2 is equivalent to C_1 , then C_2 is also basic.

Proof. Let G_i be generator matrices for C_i . The theorem follows from Theorem 3.2(ii) and the fact that the minors for G_1 and G_2 are the same up to ± 1 .

EXAMPLE 3.5. The matrices in this example are taken from [1]. Let

$$G_4 = \begin{pmatrix} 1 & D & 1+D & 1\\ 0 & 1+D & D & 0 \end{pmatrix}$$

be a matrix over $\mathbb{F}_2[D]$. The matrix G_4 is basic since G has $1 = \det I_2$ as a 2×2 minor. By Theorem 3.3, G_4 generates a basic code C. Let

$$G_5 = \begin{pmatrix} 1+D & 0 & 1 & D \\ D & 1+D+D^2 & D^2 & 1 \end{pmatrix}.$$

For $\mathbf{u} = (1 + D, 1)$, $\mathbf{u}G_5 = (1 + D + D^2)(1, 1, 1, 1)$. Thus the code generated by G_5 is not basic by Theorem 2.6. Nevertheless, we note that the matrices G_4 and G_5 generate the same code over $\mathbb{F}_2(D)$, the quotient field of $\mathbb{F}_2[D]$.

THEOREM 3.6. i. Self-dual codes are basic.

ii. If C is a basic self-orthogonal [2k, k]-code, then C is self-dual.

Proof. (i) If
$$\mathcal{C}^{\perp} = \mathcal{C}$$
, then $(\mathcal{C}^{\perp})^{\perp} = \mathcal{C}^{\perp} = \mathcal{C}$.

(ii) Suppose that $\mathbf{v} \in \mathcal{C}^{\perp}$. Since $\mathcal{C} \subset \mathcal{C}^{\perp}$ and rank $\mathcal{C}^{\perp} = 2k - k = k = \text{rank } \mathcal{C}$, it follows from Lemma 2.2 that $\alpha \mathbf{v} \in \mathcal{C}$ for some $\alpha \in \mathsf{P}$. As \mathcal{C} is basic, we have $\mathbf{v} \in \mathcal{C}$.

References

- [1] R.J. McEliece, *The algebraic theory of convolutional codes*, Handbook of Coding Theory (V.S. Pless and W.C. Huffman, eds.), Elsevier, Amsterdam, 1998, 1165–1138.
- [2] F.J. MacWilliams and N.J.A. Sloane, *The theory of error-correcting codes*, North-Holland, Amsterdam, 1977.
- [3] E.Rains and N.J.A. Sloane, *Self-dual codes*, Handbook of Coding Theory (V.S. Pless and W.C. Huffman, eds.), Elsevier, Amsterdam, 1998, 177–294.

Department of Mathematics Kangwon National University Chuncheon, Korea 200–701

E-mail: yhpark@kangwon.ac.kr