THE q-ADIC LIFTINGS OF CODES OVER FINITE FIELDS

Young Ho Park

ABSTRACT. There is a standard construction of lifting cyclic codes over the prime finite field \mathbb{Z}_p to the rings \mathbb{Z}_{p^e} and to the ring of p-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields \mathbb{F}_{p^r} to codes over Galois rings $GR(p^e, r)$. We give concrete examples with all of the lifts.

1. Introduction

Let \mathbb{F}_q denote the finite field of $q = p^r$ elements with characteristic p. A submodule of \mathbb{F}_q^n is called a (linear) code of length n. Let

$$GR(p^e, r) = \mathbb{Z}_{p^e}[X]/\langle h(X)\rangle \simeq \mathbb{Z}_{p^e}[\zeta],$$

where h(X) is a monic basic irreducible polynomial in $\mathbb{Z}_{p^e}[X]$ of degree r that divides $X^{p^r-1}-1$. The polynomial h(x) can be chosen so that $\zeta = X + \langle h(X) \rangle$ is a primitive $(p^r - 1)$ st root of unity. $GR(p^e, r)$ is the Galois extension of degree r over \mathbb{Z}_{p^e} , called a *Galois ring*. Galois extensions are unique up to isomorphism. $GR(p^e, r)$ is a finite chain ring with ideals of the form $\langle p^i \rangle$ for $0 \leq i \leq e-1$, and residue field \mathbb{F}_{p^r} .

Received August 6, 2018. Revised September 10, 2018. Accepted September 12, 2018.

²⁰¹⁰ Mathematics Subject Classification: 94B05, 11T71.

Key words and phrases: codes over rings, lifting, p-adic codes, Galois rings.

This work was supported by 2016 Research Grant from Kangwon National University (No. 520160208).

[©] The Kangwon-Kyungki Mathematical Society, 2018.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

For generality on codes over fields, we refer [5,6]. See [2,7] for codes over \mathbb{Z}_m , and [2,3] for codes over p-adic rings.

Let \mathbb{Q}_p denote the *p*-adic field and \mathcal{O}_p its ring of integers. \mathcal{O}_p is also denoted by $\mathbb{Z}_{p^{\infty}}$ at some literatures [1–3]. Cyclic codes over the prime field \mathbb{Z}_p can be lifted to codes over \mathbb{Z}_{p^e} and to the ring \mathcal{O}_p [1]. A natural question to ask is therefore:

• Can we do the lifting for codes over general finite fields \mathbb{F}_{p^r} ?

$$\mathbb{F}_{p^r} \longleftarrow ? \longleftarrow ? \longleftarrow ? \longleftarrow ?$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathbb{Z}_p \longleftarrow \mathbb{Z}_{p^2} \longleftarrow \mathbb{Z}_{p^3} \longleftarrow \cdots \longleftarrow \mathcal{O}_p$$

Are there any rings corresponding to \mathbb{Z}_{p^e} and \mathcal{O}_p ?

2. Unramified extensions of \mathbb{Q}_p

We first review relevant facts on unramified extensions of p-adic fields.

THEOREM 2.1 ([4]). Let K/\mathbb{Q}_p be a finite extension of degree r. Then $|x| = \sqrt[r]{|N_{K/\mathbb{Q}_p}(x)|_p}$ is the unique non-archimedian absolute value on K extending the p-adic absolute value on \mathbb{Q}_p .

The p-adic valuation on K is defined by

$$v_p(a) = -\log_p |a| \ (a \neq 0), \quad v_p(0) = 0$$

We define the valuation ring or ring of integers of K

$$\mathcal{O}_K = \{ a \in K \mid |a| \le 1 \} = \{ a \in K \mid v_p(a) \ge 0 \}$$

and its maximal ideal

$$\mathcal{P}_K = \{ a \in K \mid |a| < 1 \} = \{ a \in K \mid v_p(a) > 0 \}.$$

The residue field of K is the quotient

$$\mathbb{K} = \mathcal{O}_K/\mathcal{P}_K$$
.

We have the following results from [4].

THEOREM 2.2. Let K/\mathbb{Q}_p be a finite extension. Then

- 1. $v_p(K) = \frac{1}{e}\mathbb{Z}$ for some positive divisor e of n.
- 2. $[\mathbb{K}:\mathbb{F}_p]=n/e$.

The number e is called the *ramification index* of K over \mathbb{Q}_p . A finite extension K of \mathbb{Q}_p is said to be *unramified* if e = 1, i.e.,

$$\{|a| \mid a \in K\} = \{|a| \mid a \in \mathbb{Q}_p\} = \{p^v \mid v \in \mathbb{Z}\}\$$

K is ramified if e > 1, totally ramified if e = n. For example, $\mathbb{Q}_5(\sqrt{2})$ is unramified, while $\mathbb{Q}_5(\sqrt{5})$ is ramified.

THEOREM 2.3 ([4]). For each integer $r \geq 1$, there exists a unique unramified extension \mathbb{Q}_{p^r} of degree r over \mathbb{Q}_p . It can be obtained by adjoining to \mathbb{Q}_p a primitive $(p^r - 1)$ st root of unity. In fact, \mathbb{Q}_{p^r} contains all $(p^r - 1)$ st root of unity.

Here is how we construct \mathbb{Q}_{p^r} .

- 1. Let $\bar{\zeta}$ be a generator of $\mathbb{F}_{p^r}^*$. Then $\mathbb{F}_{p^r} = \mathbb{F}_p(\bar{\zeta})$.
- 2. Let $\bar{h}(X)$ be the minimal polynomial for $\bar{\zeta}$ over \mathbb{F}_p . Lift $\bar{h}(X)$ to any $h(X) \in \mathcal{O}_p[X]$ which is then an irreducible polynomial over \mathcal{O}_p and \mathbb{Q}_p of degree r.
- 3. If ζ is a root of h(X), then $\mathbb{Q}_p(\zeta)$ is an extension of degree r.
- 4. If β is any $(p^r 1)$ st root of unity, then $\mathbb{Q}_p(\beta) = \mathbb{Q}_p(\zeta)$. Thus $\mathbb{Q}_p(\zeta) = \mathbb{Q}_{p^r}$.

The ring of integers of \mathbb{Q}_{p^r} will be denoted by \mathcal{O}_{p^r} :

$$\mathcal{O}_{p^r} = \{ a \in \mathbb{Q}_{p^r} \mid |a| \le 1 \}.$$

 \mathcal{O}_{p^r} is the set of all roots in \mathbb{Q}_{p^r} of monic polynomials over \mathcal{O}_p .

THEOREM 2.4 ([4]). $\mathcal{O}_{p^r} = \mathcal{O}_p[\zeta]$, where ζ is a primitive $(p^r - 1)st$ root of unity.

Its unique maximal ideal is

$$\mathcal{P}_{p^r} = (p) = \{ a \in \mathbb{Q}_{p^r} \mid |a| < 1 \}$$

and the residue field of \mathbb{Q}_{p^r} is

$$\mathcal{O}_{p^r}/\mathcal{P}_{p^r}\simeq \mathbb{F}_{p^r}.$$

THEOREM 2.5 ([4]). If $R = \{0, c_1, c_2, \cdots, c_{p^r-1}\}$ is a set of complete representatives of $\mathcal{O}_{p^r}/\mathcal{P}_{p^r}$, then every element of \mathcal{O}_{p^r} can be written uniquely as

$$a_0 + a_1 p + \dots + a_t p^t + \dots$$

where $a_i \in R$.

THEOREM 2.6 (Hensel's Lemma v1). Let $F(X) \in \mathcal{O}_{p^r}[X]$. Suppose that there exists an $\alpha_1 \in \mathcal{O}_{p^r}$ such that

$$F(\alpha_1) \equiv 0 \pmod{p}, \quad F'(\alpha_1) \not\equiv 0 \pmod{p}$$

Then there exists a unique $\alpha \in \mathcal{O}_{p^r}$ such that $\alpha \equiv \alpha_1 \pmod{p}$ and $F(\alpha) = 0$.

EXAMPLE 2.7. Consider $f(X) = X^2 - 2 \in \mathbb{Q}_5[X]$. It has a root $\bar{\alpha}$ in $\mathbb{F}_{25} = \mathcal{O}_{25}/\mathcal{P}_{25}$. Take $\alpha \in \bar{\alpha}$. Then $f(\alpha) \equiv 0 \pmod{5}$ and $f'(\alpha) = 2\alpha \not\equiv 0 \pmod{5}$. Therefore $X^2 - 2$ has a root in \mathbb{Q}_{25} . Similarly, $X^2 - 3$ has a root in \mathbb{Q}_{25} . We note that this implies $\mathbb{Q}_5(\sqrt{2}) = \mathbb{Q}_{25} = \mathbb{Q}_5(\sqrt{3})$.

We can also see from Hensel's Lemma that the set of all $(p^r - 1)$ st root of unity in \mathcal{O}_{p^r} together with 0

$$T_r = \{0, 1, \zeta, \cdots, \zeta^{p^r - 2}\}$$

is a complete set of coset representatives for $\mathcal{O}_{p^r}/(p)$.

3. Cyclic lifts

For each natural number e,

$$\mathcal{O}_{p^r}/(p^e) = \mathcal{O}_p[\zeta]/(p^e) = \mathbb{Z}_{p^e}[\zeta]/(p^e) = GR(p^e, r).$$

We have a projective systems

On each of extensions in two fixed rows, we have the isomorphic cyclic Galois groups:

$$\operatorname{Gal}(GR(p^e, rs)/GR(p^e, r)) \simeq \operatorname{Gal}(\mathcal{O}_{n^{rs}}/\mathcal{O}_{n^r})$$

generated by Fr^r determined by the property $\operatorname{Fr}^r(x) \equiv x^{p^r} \pmod{p}$. More precisely,

$$\operatorname{Fr}^{r}(a_{0} + a_{1}p + \dots + a_{t}p^{t} + \dots) = a_{0}^{p^{r}} + a_{1}^{p^{r}}p + \dots + a_{t}^{p^{r}}p^{t} + \dots$$

where $a_i \in T_r$. In particular, if α is any nth of unity in $\mathcal{O}_{p^{rs}}$, where $n \mid p^{rs} - 1$, then

$$\operatorname{Fr}^r(\alpha) = \alpha^{p^r}$$

THEOREM 3.1 (Hensel's Lemma v2). Let $f(X) \in \mathcal{O}_{p^r}[X]$ and assume that there exist $g_1(X), h_1(X) \in \mathcal{O}_{p^r}[X]$ such that

- 1. $g_1(X)$ is monic
- 2. $g_1(X)$ and $h_1(X)$ are relatively prime modulo p
- 3. $f(X) \equiv g_1(X)h_1(X) \pmod{p}$

Then there exist unique $g(X), h(X) \in \mathcal{O}_{p^r}$ such that

- 1. g(X) is monic (so deg $g = \deg g_1$)
- 2. $g(X) \equiv g_1(X) \pmod{p}$, $h(X) \equiv h_1(X) \pmod{p}$
- $3. \ f(X) = g(X)h(X).$

Proof. (Constructive proof) We construct inductively two sequences g_n and h_n such that

- 1. g_n is monic of the same degree as g_1
- 2. $g_{n+1} \equiv g_n \pmod{p^n}$, $h_{n+1} \equiv h_n \pmod{p^n}$
- 3. $f \equiv g_n h_n \pmod{p^n}$

We follow the following steps:

- 1. Assume g_n, h_n are constructed. Let $f g_n h_n = p^n k_n$.
- 2. There are $a, b \in \mathcal{O}_{p^r}[X]$ such that $1 \equiv ag_n + bh_n \pmod{p}$, hence $k_n \equiv (ak_n)g_n + (bk_n)h_n \pmod{p}$.
- 3. Let $bk_n = g_nq_n + r_n$ with $\deg r_n < \deg g_n = \deg g_1$. Let $s_n = (ak_n) + h_nq_n$. Then $r_nh_n + s_ng_n \equiv k_n \pmod{p}$
- 4. Now set $g_{n+1} = g_n + p^n r_n$, $h_{n+1} = h_n + p^n s_n$. $(\deg g_{n+1} = \deg g_n)$
- 5. Then $f \equiv g_{n+1}h_{n+1} \pmod{p^{n+1}}$.

Since any cyclic code of length n over $\mathbb{F}_{p^r} = \mathcal{O}_{p^r}/(p)$ is generated by a monic factor $g_1(X)$

$$X^n - 1 = g_1(X)h_1(X)$$

of $X^n - 1$, Hensel's Lemma v2 provides a mechanism for generalizing any class of cyclic codes from \mathbb{F}_{p^r} to $\mathcal{O}_{p^r}/(p^e) = GR(p^e, r)$ by

$$X^n - 1 \equiv g_e(X)h_e(X) \pmod{p^e}$$

and to \mathcal{O}_{p^r} by

$$X^n - 1 = g(X)h(X)$$

4. Examples

We consider the case $q=4=2^2$ so that p=2 and r=2. We have that

$$\mathbb{F}_4 = \{0, 1, \omega, 1 + \omega\} = \{0, 1, \omega, \omega^2\}$$

where ω is a root of the polynomial $\bar{h}(X) = X^2 + X + 1 \in \mathbb{F}_2[x]$ of degree 2 and that $\mathbb{F}_4 = \mathbb{F}_2(\omega)$. We lift $\bar{h}(X)$ to \mathcal{O}_2 as $h(X) = X^2 + X + 1$. This is irreducible over \mathcal{O}_2 and over \mathbb{Q}_2 . Let ζ be a root of h(X), so that $\mathbb{Q}_2(\zeta) = \{a + b\zeta \mid a, b \in \mathbb{Q}_2\}$ is the extension of degree 2. Since we may take $\zeta \equiv \omega \pmod{2}$, we will replace ω with ζ . This way, we have that

$$\mathbb{F}_4 = \mathbb{F}_2[\zeta], \quad \mathcal{O}_4 = \mathcal{O}_2(\zeta), \quad \mathbb{Q}_4 = \mathbb{Q}_2[\zeta].$$

In general we will simply write ζ for ζ (mod p^e).

We will consider cyclic codes of length 11. First we compute the cyclotomic cosets mod n = 11 over \mathbb{F}_4 of s:

$$C_s = \{s, sq, sq^2, \cdots, sq^{m_s - 1}\}$$

where $sq^{m_s} \equiv 1 \pmod{n}$. In our case, we have three cosets

$$C_0 = \{0\}, \quad C_1 = \{1, 4, 5, 9, 3\}, \quad C_2 = \{2, 8, 10, 7, 6\}.$$

Thus $X^{11}-1$ splits into linear factors in \mathbb{F}_{4^5} , where $5=|C_1|$. Let $\alpha\in\mathbb{F}_{4^6}$ be a 11^{th} root of unity. Then $X^{11}-1$ factors in \mathbb{F}_4 as

$$X^{11} - 1 = (X - 1)g(X)h(X)$$

where $g(X) = (X - \alpha)(X - \alpha^4)(X - \alpha^5)(X - \alpha^9)(X - \alpha^3)$ and $h(X) = (X - \alpha^2)(X - \alpha^8)(X - \alpha^{10})(X - \alpha^7)(X - \alpha^6)$ in $\mathbb{F}_4[X]$. Actually, we have that

$$g(X) = X^5 + \zeta X^4 + X^3 + X^2 + \zeta^2 X + 1,$$

$$h(X) = X^5 + \zeta^2 X^4 + X^3 + X^2 + \zeta X + 1.$$

We will lift the cyclic code $\langle g(X) \rangle$ to $GR(2^e, 2)$, and hence we would like to find $g_e(X), h_e(X) \in GR(2^e, 2)[X] = \mathbb{Z}_{2^e}[\zeta][X]$ for all $e = 2, 3, \cdots$ such

that $X^{11} - 1 = (X - 1)g_e(X)h_e(X)$. We list first few lifts for e = 2, 3, 4:

$$g_2(X) = X^5 + (-\zeta + 2)X^4 - X^3 + X^2 + (-\zeta + 1)X - 1$$

$$g_3(X) = X^5 + (3\zeta - 2)X^4 - X^3 + X^2 + (3\zeta - 3)X - 1$$

$$g_4(X) = X^5 + (-5\zeta - 2)X^4 - X^3 + X^2 + (-5\zeta - 3)X - 1$$

$$h_2(X) = X^5 + (\zeta - 1)X^4 - X^3 + X^2 + (\zeta + 2)X - 1$$

$$h_3(X) = X^5 + (-3\zeta + 3)X^4 - X^3 + X^2 + (-3\zeta + 2)X - 1$$

$$h_4(X) = X^5 + (5\zeta + 3)X^4 - X^3 + X^2 + (5\zeta + 2)X - 1$$

From these lifts we conjecture that the q-adic lifts have the form

(1)
$$g_{\infty}(X) = X^5 + \lambda X^4 - X^3 + X^2 + (\lambda - 1)X - 1$$

(2)
$$h_{\infty}(X) = X^5 + (1 - \lambda)X^4 - X^3 + X^2 - \lambda X - 1$$

for some $\lambda \in \mathcal{O}_4$. We must have that

(3)
$$q_{\infty}(X)h_{\infty}(X) = 1 + x + x^2 + \dots + x^{10}$$

in $\mathcal{O}_4[X]$. By expanding $g_{\infty}(X)h_{\infty}(X)$ out with Equations (1) and (2), it is easy to see that Equation (3) is equivalent to

$$\lambda^2 - \lambda + 3 = 0.$$

Now we finally obtain the factorization $X^{11} - 1$ in $\mathcal{O}_4[X]$ as

$$X^{11} - 1 = (X - 1)g_{\infty}(X)h_{\infty}(X).$$

Consequently, we can obtain all the cyclic lifts to $GR(2^e,2)$ for all e by solving the Equation (4) modulo 2^e .

By the same method explained above, we found a list of factorizations of $x^n - 1$ for q-adic cyclic codes of small length n:

$$x^{3} - 1 = (x - 1)(x - \zeta)(x - \zeta^{2})$$

$$x^{5} - 1 = (x - 1)(x^{2} + \lambda x + 1)(x^{2} + (1 - \lambda)x + 1),$$
where $\lambda^{2} - \lambda - 1 = 0$

$$x^{7} - 1 = (x - 1)(x^{3} + \lambda x^{2} + (\lambda - 1)x - 1)(x^{3} - (\lambda - 1)x^{2} - \lambda x - 1),$$
where $\lambda^{2} - \lambda + 2 = 0$

$$x^{9} - 1 = (x - 1)(x - \zeta)(x + \zeta^{2})(x^{3} - \zeta)(x^{3} + \zeta^{2})$$

$$x^{13} - 1 = (x - 1)(x^{6} + \lambda x^{5} + 2x^{4} + (\lambda - 1)x^{3} + 2x^{2} + \lambda x + 1).$$

$$(x^{6} + (1 - \lambda)x^{5} + 2x^{4} - \lambda x^{3} + 2x^{2} + (1 - \lambda)x + 1),$$
where $\lambda^{2} - \lambda - 3 = 0$.

These factorizations give the lifts of cyclic codes of odd lengths ≤ 13 to the Galois rings $GR(2^e, 2)$.

References

- [1] A.R.Calderbank and N.J.A. Sloane, *Modular and p-adic cyclic codes*, Des. Codes. Cryptogr. **6** (1995), 21–35.
- [2] S.T. Dougherty, S.Y. Kim and Y.H. Park, *Lifted codes and their weight enumerators*, Discrete Math. **305** (2005), 123–135.
- [3] S.T. Dougherty and Y.H. Park, Codes over the p-adic integers, Des. Codes. Cryptogr. **39** (2006), 65–80.
- [4] F. Q. Gouvêa, p-adic numbers. An introduction, Springer, 2003.
- [5] W.C. Huffman and V. Pless, Fundamentals of error-correcting codes, Cambridge, 2003.
- [6] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, North-Holland, Amsterdam, 1977.
- [7] Y.H. Park, Modular independence and generator matrices for codes over \mathbb{Z}_m , Des. Codes. Cryptogr. **50** (2009), 147–162.

Young Ho Park

Department of Mathematics Kangwon National University Chuncheon 24341, Korea E-mail: yhpark@kangwon.ac.kr