q-IDEALLY DIFFERENTIAL AND i-IDEALLY DIFFERENTIAL COMMUTATIVE ARTINIAN RINGS

O. D. ARTEMOVYCH

ABSTRACT. We characterize the commutative Artinian rings R every proper quotient ring (respectively every proper ideal) in which is invariant with respect to all derivations.

0. A mapping $d: R \to R$ is called a derivation of an associative ring R if

$$d(a + b) = d(a) + d(b)$$
 and $d(ab) = d(a)b + ad(b)$

for all elements a, b of R. If every (left) ideal of R is invariant with respect to all derivations of R, then R is called (left) ideally differential. The ideally differential rings were studied in [1] and [9]. The class of ideally differential rings contains the class of differentially trivial rings, i.e., rings having no nontrivial derivations. The differentially trivial rings R with the additive group R^+ of finite (Prüfer) rank were characterized in [2]. An associative ring R in which all proper quotient rings (respectively all proper (left) ideals) are (left) ideally differential is said to be a (left) q-ideally differential (respectively a (left) i-ideally differential) ring.

In this paper we characterize the q-ideally differential (and respectively the i-ideally differential) commutative Artinian rings.

Throughout the paper p is a prime, $\mathcal{J}(R)$ will always denote the Jacobson radical of a ring R, char(R) the characteristic of R and C[x] the commutative ring of polynomials in x over a field C.

We will also use some other terminology from [3] and [6].

1. First we characterize the q-ideally differential commutative Artinian rings.

Received September 7, 1999.

²⁰⁰⁰ Mathematics Subject Classification: 13A72, 13A12.

Key words and phrases: ideally differential ring, Artinian ring, differentially trivial ring, local ring, v-ring.

As defined in I. S. Cohen [5], a v-ring V is a commutative unramified complete regular local rank one domain of characteristic zero with a residue field of characteristic p.

EXAMPLE 1.1. If $R \cong C[x]/(x)^p$, where C is a field (or a v-ring) of characteristic m > 0.

If $m=2^n$ $(n \ge 1)$ and p=2, then R is not differentially trivial. Put $s=2^{n-1}$. It is clear that there is nontrivial element z such that $z^2=0$ and R=C+Cz is a group direct sum. Thus for every element $r \in R$ there are unique elements $a,b\in C$ such that r=a+bz. Let e be the identity element of C. Then a map $d:R\to R$ given by the rule

$$d(r) = d(a+bz) = b(z+se), \ r \in R$$

determines a nontrivial derivation of R. Since $d(z) \notin zR$, R is not an ideally differential ring and, furthermore, R is i-ideally differential.

If m=p is a prime, then R also is not differentially trivial. In fact, $R=C+jC+\cdots+j^{p-1}C$ for some element j of the nilpotency index p and a map $\delta:R\to R$ given by the rule $\delta(c_0+jc_1+\cdots+j^{p-1}c_{p-1})=c_1+2jc_2+\cdots+(p-1)j^{p-2}c_{p-1}$, where $c_0,c_1,\ldots,c_{p-1}\in C$, determines a nontrivial derivation δ of R such that $\delta(j)\notin jR$.

LEMMA 1.2. Let R be a commutative local Artinian ring such that $char(R)=char(R/\mathcal{J}(R))$. If R is a q-ideally differential ring, then one of the following statements is satisfied:

- (i) R is a field:
- (ii) $R \cong C[x]/(x)^m$, where C is a field of a prime characteristic p, $2 \leq m \leq p$;
- (iii) $R \cong C[x]/(x)^m$ $(m \ge 2)$, where C is a field of characteristic zero.

Proof. By Theorem 9 of [5] (see also [10, Chapter VIII, Theorem 27]) R contains a subfield C such that $R = \mathcal{J}(R) + C$ is a group direct sum. If R is a differentially trivial ring, then by Lemma 2.5 of [2] R is a field. Therefore we assume that R is not a field and so it has a nontrivial derivation (see Lemma 2.2 of [2]).

Suppose that $\mathcal{J}(R)$ is not a minimal ideal of R. By B we denote $R/\mathcal{J}(R)^2$ and by D the quotient ring $(C + \mathcal{J}(R)^2)/\mathcal{J}(R)^2$. Then $B = \mathcal{J}(B) + D$ and

$$\mathcal{J}(B) = b_1 D + \dots + b_n D$$

for some nontrivial elements b_1, \ldots, b_n $(n \ge 1)$. Thus for every element b of B there are unique elements $x_1, \ldots, x_n, u \in D$ such that

$$(1) b = \sum_{i=1}^{n} b_i x_i + u.$$

Then a map $\delta: B \to B$ given by the rule $\delta(b) = b_1 x_1, b \in B$, with b_1 and x_1 as in (1), determines a nontrivial derivation of B.

Assume that $n \geq 2$. Since $\delta(b_1 + b_2) = b_1$, we conclude that $b_1 \in (b_1 + b_2)B$, a contradiction. Therefore n = 1. By Theorem 1 of [8], the Jacobson radical $\mathcal{J}(R)$ is a principal ideal and consequently $\mathcal{J}(R) = zR$ for some its nontrivial element z. Hence

$$R = z^{m-1}C + \dots + zC + C,$$

where m is the nilpotency index of $\mathcal{J}(R)$. This gives that

$$R \cong C[x]/(x)^m \quad (m \ge 2).$$

If $\operatorname{char}(C)$ is a prime p, then, in view of Example 1.1, this means that $2 \leq m \leq p$. Therefore we assume that $\operatorname{char}(C)=0$. Let d be a nontrivial derivation of R. Then

$$d(z) = a_0 z^l + \dots + a_{l-1} z + a_l$$

for some elements $a_0, \ldots, a_l \in C$ and some integer $l \leq m-1$, and

$$0 = d(z^m) = mz^{m-1}d(z) = ma_l z^{m-1}$$

yields that $a_l = 0$. Hence $d(z) \in zR$. Let I be any proper nontrivial ideal of R. Then I = f(z)R, where

$$f(z) = b_0 z^k + \dots + b_{k-i} z^i$$

with $b_0 \neq 0$, $b_{k-i} \neq 0$, $1 \leq i \leq k \leq m-1$. Since it is easy to see that $z^i \in I$, we have $I = z^i R$, and therefore R is an ideally differential ring. The lemma is proved.

LEMMA 1.3. Let R be a commutative local Artinian ring of prime power characteristic p^n $(n \geq 2)$. If R is a q-ideally differential ring, then $R \cong C$ or $R \cong C[x]/(x)^m$, where $C \cong V/p^nV$, V is a v-ring and $2 \leq m \leq p$.

Proof. As a consequence of Theorem 11 from [5, p. 79], R contains a subring C such that $R = C + \mathcal{J}(R)$ and $C \cong V/p^nV$ for some v-ring V. Since $\mathcal{J}(C) = pC$, in view of Proposition 9.2 of [3] it easily to seen that C is an ideally differential ring. By our hypothesis the quotient ring R/pR is a q-ideally differential ring of characteristic p and thus, by Lemma 1.2, R/pR is a field or $R/pR = D + D\alpha + \cdots + D\alpha^{m-1}$ for some its element α of the nilpotency index m and some subfield D of characteristic p, where $2 \leq m < p$. This gives that $\mathcal{J}(R) = pR$ or $\mathcal{J}(R) = pR + aC + \cdots + a^{m-1}C$, where a is an inverse image of α . Hence $R = C + \mathcal{J}(R) = C + pC + p^2R = \cdots = C + pC + p^2C + \cdots + p^{n-1}C = C$ or $R = C + \mathcal{J}(R) = C[a] \cong C[x]/(x)^m$ with $2 \leq m \leq p$. The lemma is proved.

THEOREM 1.4. Let R be a commutative Artinian ring. Then R is a q-ideally differential ring if and only if it is of one of the following types:

- (i) R is a field;
- (ii) $R \cong V/p^n V$ $(n \ge 2)$, where V is a v-ring;
- (iii) $R \cong C[x]/(x)^m$ $(m \ge 2)$, where C is a field of characteristic zero;
- (iv) $R \cong C[x]/(x)^m$, where $2 \leq m \leq p$, C is a field of a prime characteristic p or $C \cong V/p^nV$ $(n \geq 2)$, where V is a v-ring;
- (v) $R = R_1 \times \cdots \times R_s$ $(s \ge 2)$ is a ring direct product of R_1, \ldots, R_s , and each R_i is either a ring of type (i), or (ii), or (iii), or (iv) with $2 \le m < p$.

Proof. (\Leftarrow). It is clear that the rings R of types (i), (ii), (iii) and (iv) are q-ideally differential. The results of [7] and [4] yield that every quotient ring of R of type (v) is distributive and consequently R is a q-ideally differential ring.

 (\Rightarrow) . By Theorem 8.7 of [6] it follows that

$$R = R_1 \times \cdots \times R_s \ (s \ge 1)$$

is a ring direct product of q-ideally differential local Artinian rings R_1 , ..., R_s . If $s \geq 2$, then Example 1.1, Lemmas 1.2 and 1.3 yield that each R_i is either of type (i), or (ii), or (iii). If s = 1, then by using Lemmas 1.2 and 1.3 we complete the proof.

2. In this part we obtain the characterization of i-ideally differential commutative Artinian rings.

LEMMA 2.1. Let R be a commutative local Artinian ring such that $\operatorname{char}(R) = \operatorname{char}(R/\mathcal{J}(R))$. If R is an i-ideally differential ring, then one of the following statements is satisfied:

- (i) R is a field;
- (ii) $R \cong C[x]/(x)^n$, where C is a field and n=2 or 3.

Proof. As in the proof of Lemma 1.2, $R = \mathcal{J}(R) + C$ for some subfield C. Suppose that $\mathcal{J}(R)$ is nontrivial. Let n be the nilpotency index of $\mathcal{J}(R)$. Then

$$\mathcal{J}(R)^{n-1} = j_1 C + \dots + j_m C$$

for some nontrivial elements $j_1, \ldots, j_m \in \mathcal{J}(R)$. If $m \geq 2$, then an identical argument to that in the proof of Lemma 1.2 gives a contradiction. Hence m = 1.

Let A be any ideal of R such that $A^2 = \{0\}$. If i is any nontrivial element of A, then iC is an ideal of A. Since A is ideally differential, A = iC. It is clear that $A = \mathcal{J}(R)^{n-1}$. Let $k = \left[\frac{n}{2}\right] + 1$, where $\left[\frac{n}{2}\right]$ is the maximal integer not exceeding $\frac{n}{2}$. Then $(\mathcal{J}(R)^k)^2 = \{0\}$ and so $\mathcal{J}(R)^k \leq \mathcal{J}(R)^{n-1}$. This yields that $\mathcal{J}(R)^{k+1} = \{0\}$. Therefore $\left[\frac{n}{2}\right] + 2 \geq n$ and n = 2 or 3. Hence $R \cong C[x]/(x)^n$, where n = 2 or 3. The lemma is proved.

LEMMA 2.2. Let R be a commutative local Artinian ring such that $char(R) \neq char(R/\mathcal{J}(R))$. If R is an i-ideally differential ring, then $R \cong C/p^mC$ $(m \geq 2)$, where C is a v-ring.

Proof. By Theorem 11 of [5, p.79], there is a subring V such that $R = V + \mathcal{J}(R)$, where $V \cong C/p^mC$ for some integer $m \geq 2$ and C is a v-ring. Then m is the nilpotency index of $\mathcal{J}(R)$.

1) Suppose that $V \neq R$. Since the annihilator $\operatorname{Ann}(\mathcal{J}(R))$ of $\mathcal{J}(R)$ in R is a finitely generated ideal of R, we obtain that $\operatorname{Ann}(\mathcal{J}(R))$ is a finite-dimensional K-algebra, where $K \cong R/\mathcal{J}(R)$. Therefore there exists a K-basis $\{x_1, \ldots, x_s\}$ of $\operatorname{Ann}(\mathcal{J}(R))$. If $s \geq 2$, then a map $\delta : \operatorname{Ann}(\mathcal{J}(R)) \to \operatorname{Ann}(\mathcal{J}(R))$ given by the rule

$$\delta\Big(\sum_{i=1}^s u_i x_i\Big) = u_2 x_1 + u_1 x_2$$

determines a nontrivial derivation of $\mathrm{Ann}(\mathcal{J}(R))$. If $Kx_1\cap Kx_2$ contains a nontrivial element w, then $w=c_1x_1=c_2x_2$ for some $c_2,c_2\in K$, and we obtain a contradiction with minimality of the system $\{x_1,\ldots,x_s\}$. Hence $Kx_1\cap Kx_2=\{0\}$ and so $\delta(x_1R)\nsubseteq x_1R$, a contradiction. This yields s=1 and thus $\mathrm{Ann}(\mathcal{J}(R))=Kx$ for some its nontrivial element x. It is clear that $\mathcal{J}(R)^{m-1}$ and $p^{m-1}\mathcal{J}(R)$ are the K-subalgebras of $\mathrm{Ann}(\mathcal{J}(R))$ and consequently

(2)
$$p^{m-1}\mathcal{J}(R) = \operatorname{Ann}(\mathcal{J}(R)) = \mathcal{J}(R)^{m-1}.$$

Moreover, $Ann(\mathcal{J}(R))$ is a minimal ideal of R.

- 2) Let $\overline{R} = R/\text{Ann}(\mathcal{J}(R))$. Then $\text{Ann}(\mathcal{J}(\overline{R}))$ is a finite-dimensional K-algebra and so there exists a K-basis $\{\overline{y}_1, \ldots, \overline{y}_l\}$ of $\text{Ann}(\mathcal{J}(\overline{R}))$. Let y_j be an inverse image of \overline{y}_j in R $(j = 1, \ldots, l)$.
 - a_2) If $pR \leq y_jR$ for all j $(1 \leq j \leq l)$, then, in view of condition

$$y_i R \cdot \mathcal{J}(R) \leq \operatorname{Ann}(\mathcal{J}(R)),$$

we obtain that $pR \cdot \mathcal{J}(R) \leq \operatorname{Ann}(\mathcal{J}(R))$ and consequently $p^2 \mathcal{J}(R) = \{0\}$. Now, (2) yields that m = 2. Hence $\mathcal{J}(R) = \operatorname{Ann}(\mathcal{J}(R))$ is a principal ideal, a contradiction.

 b_2) Suppose, for example, that $pR \nsubseteq y_1R$ and without loss of generality $py_2 \notin y_1R$. A map $D: \overline{R} \to \overline{R}$ given by the rule

$$D\Big(\sum_{k=1}^{l} u_k \overline{y}_k\Big) = u_2 \overline{y}_1 + u_1 \overline{y}_2$$

determines a nontrivial derivation D of \overline{R} . Then a map $d: R \to R$ such that

$$d(r) = pD(r + \operatorname{Ann}(\mathcal{J}(R)), \quad r \in R$$

is a derivation of R with $d(y_1) \notin y_1 R$, a contradiction. Hence $Ann(\mathcal{J}(\overline{R}))$ is a principal ideal. The same argument, as in the line 1), shows that

$$p^{m-2}\mathcal{J}(\overline{R}) = \operatorname{Ann}(\mathcal{J}(\overline{R})) = \mathcal{J}(\overline{R})^{m-2}.$$

- 3) Let $\overline{\overline{R}} = \overline{R}/\mathrm{Ann}(\mathcal{J}(\overline{R}))$. As above, there exists a K-basis $\{\overline{\overline{z}}_1, \ldots, \overline{\overline{z}}_n\}$ of $\mathrm{Ann}(\mathcal{J}(\overline{R}))$. Let \overline{z}_g be an inverse image of $\overline{\overline{z}}_g$ in \overline{R} $(g = 1, \ldots, n)$.
- a_3) If $p\overline{R} \leq \overline{z}_g \overline{R}$ for all g $(1 \leq g \leq n)$, then, as above, we can prove that $p^2 \mathcal{J}(\overline{R}) = {\overline{0}}$ and so $\mathcal{J}(R)^3 = {0}$. Since $\mathcal{J}(R/\mathcal{J}(R)^2)$ is a

principal ideal, we obtain that $\mathcal{J}(R)$ is also principal by Theorem 1 of [8], a contradiction.

 b_3) Now, assume, for example, that $p\overline{R} \nsubseteq \overline{z}_1\overline{R}$ and without restricting of generality $p\overline{z}_2 \notin \overline{z}_1\overline{R}$. As in b_2), we can prove that $\text{Ann}(\mathcal{J}(\overline{\overline{R}}))$ is a principal ideal and

$$p^{m-3}\mathcal{J}(\overline{\overline{R}}) = \operatorname{Ann}(\mathcal{J}(\overline{\overline{R}})) = \mathcal{J}(\overline{\overline{R}})^{m-3}.$$

Continuing this argument after finitely many steps we obtain that $\mathcal{J}(R)$ / $\mathcal{J}(R)^2$ is a principal ideal, a final contradiction. The lemma is proved.

THEOREM 2.3. Let R be a commutative Artinian ring. Then R is an i-ideally differential ring if and only if it is of one of the following types:

- (i) R is a field;
- (ii) $R \cong V/p^n V$ $(m \ge 2)$, where V is a v-ring;
- (iii) $R \cong C[x]/(x)^n$, where C is a field and n = 2 or 3;
- (iv) $R = R_1 \times \cdots \times R_n$ $(n \ge 2)$ is a ring direct product of R_1, \ldots, R_n , and each R_i is a ring of type (i), or (ii), or (iii), where $n \ne char(C)$.

Proof. (\Rightarrow) it follows from Theorem 8.7 of [6], Lemmas 2.1, 2.2 and Example 1.1.

 (\Leftarrow) is obvious. The theorem is proved.

Open question. Characterize the left Artinian rings in which every proper quotient ring (respectively every proper ideal) is left ideally differential.

References

- [1] O. D. Artemovych, *Ideally differential and perfect rigid rings*, DAN UkrSSR 4 (1985), 3-5 (in Ukrainian).
- [2] _____, Differentially trivial and rigid rings of finite rank, Periodica Math. Hungar. 36 (1998), 1-16.
- [3] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison Wesley Publ. Co., Reading, 1969.
- [4] V. P. Camillo, A note on hereditary rings, Pacif. J. Math. 45 (1973), 35-41.
- [5] I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54-106.
- [6] C. Faith, Algebra II. Ring theory, Springer, Berlin Heidelberg New York, 1973.
- [7] Ch. U. Jensen, Arithmetical rings, Acta Math. Acad. Sci. Hungar. 17 (1966), 115–123.

- [8] K. R. McLean, Local rings with bounded ideals, J. Algebra 74 (1982), 328-332.
- [9] A. Nowicki, Differential rings in which any ideal is differential, Acta Universitatis Carolinae 26 (1985), 43–49.
- [10] O. Zariski and P. Samuel, Commutative algebra Vol. II, D. Van Nostrand C., 1960.

Department of Algebra and Topology, Faculty of Mechanics and Mathematics, Ivan Franko National University, 1 University Street, 79602 Lviv, Ukraine

 $E ext{-}mail: topos@prima.franko.lviv.ua}$