Bull. Korean Math. Soc. 39 (2002), No. 1, pp. 1-8

¢-IDEALLY DIFFERENTIAL AND - IDEALLY
DIFFERENTIAL COMMUTATIVE ARTINIAN RINGS

O.D. ArTEMOVYCH

ABSTRACT. We characterize the commutative Artinian rings R ev-
ery proper quotient ring (respectively every proper ideal) in which
is invariant with respect to all derivations.

0. A mapping d: R — R is called a derivation of an associative ring
Rif
d(a + b) = d(a) + d(b) and d(ab) = d(a)b + ad(b)

for all elements a, b of R. If every (left) ideal of R is invariant with respect
to all derivations of R, then R is called (left) ideally differential. The
ideally differential rings were studied in [1] and [9]. The class of ideally
differential rings contains the class of differentially trivial rings, i.e., rings
having no nontrivial derivations. The differentially trivial rings R with
the additive group R* of finite (Priifer) rank were characterized in [2].
An associative ring R in which all proper quotient rings (respectively
all proper (left) ideals) are (left) ideally differential is said to be a (left)
g-ideally differential (respectively a (left) i-ideally differential) ring.

In this paper we characterize the g-ideally differential (and respec-
tively the i-ideally differential) commutative Artinian rings.

Throughout the paper p is a prime, J(R) will always denote the
Jacobson radical of a ring R, char(R) the characteristic of R and C|z]
the commutative ring of polynomials in z over a field C.

We will also use some other terminology from [3] and [6].

1. First we characterize the g-ideally differential commutative Ax-
tinlan rings.
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As defined in I. S. Cohen [5], a v-ring V is a commutative unramified
complete regular local rank one domain of characteristic zero with a
residue field of characteristic p.

ExaMpLE 1.1. If R = C[z]/(z)?, where C is a field (or a v-ring) of
characteristic m > 0.

Ifm=2"(n>1)and p = 2, then R is not differentially trivial. Put
s = 2"}, Tt is clear that there is nontrivial element z such that z2 =0
and B = C + Cz is a group direct sum. Thus for every element r € R
there are unique elements a,b € C such that r = a + bz. Let ¢ be the
identity element of C'. Then a map d: R — R given by the rule

d(r) =d(a+bz) =b(z+se), r€R

determines a nontrivial derivation of R. Since d(z) ¢ zR, R is not an
ideally differential ring and, furthermore, R is i-ideally differential.

If m = p is a prime, then R also is not differentially trivial. In fact,
R=C+jC+---+jP71C for some element j of the nilpotency index p
and a map 6 : R — R given by the rule d(co + jei + - + 72 tepo1) =
c1+2jca+- -+ (p—1)jP2cp_1, where ¢g, ¢1,... ,¢p1 € C, determines
a nontrivial derivation § of R such that §(5) ¢ jR.

LEMMA 1.2. Let B be a commutative local Artinian ring such that
char(R)=char(R/J (R)). If R is a q-ideally differential ring, then one of
the following statements is satisfied:

(i) R is a field;
(i) R = Clz]/(z)™, where C is a field of a prime characteristic p,
2<m<p;
(iii) R=Clz]/(z)™ (m > 2), where C is a field of characteristic zero.

Proof. By Theorem 9 of [5] (see also [10, Chapter VIII, Theorem 27])
R contains a subfield C such that R = J(R) + C is a group direct sum.
If R is a differentially trivial ring, then by Lemma 2.5 of [2] R is a field.
Therefore we assume that R is not a field and so it has a nontrivial
derivation (see Lemma 2.2 of [2]).

Suppose that J(R) is not a minimal ideal of R. By B we denote
R/J(R)® and by D the quotient ring (C' + J(R)?)/J(R)?. Then B =
J(B)+ D and

J(B)=b,D+ - +b,D
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for some nontrivial elements by,... ,b, (n > 1). Thus for every element
b of B there are unique elements x1,... ,2Z,,u € D such that
(1) b= Z b;x; + u.

i=1

Then a map 6 : B — B given by the rule 6(8) = byz;, b € B, with b;
and z; as in (1), determines a nontrivial derivation of B.

Assume that n > 2. Since §(by + b2) = by, we conclude that b; €
(b1 + b2) B, a contradiction. Therefore n = 1. By Theorem 1 of [8], the
Jacobson radical J(R) is a principal ideal and consequently J(R) = zR
for some its nontrivial element z. Hence

R=72""1C+---+:20+C,

where m is the nilpotency index of J(R). This gives that
R Cla]/@)™ (m>2).

If char(C) is a prime p, then, in view of Example 1.1, this means that
2 < 'm < p. Therefore we assume that char(C)=0. Let d be a nontrivial
derivation of B. Then

d(z) = aozl + ot a1z + 0
for some elements ag, ... ,q; € C and some integer | < m — 1, and

0 =d(z™) = mz™ " d(2) = ma;z™"

yields that a; = 0. Hence d(z) € zR. Let I be any proper nontrivial
ideal of R. Then I = f(2)R, where

F(2) = boz" + -+ + b2’
with bg # 0, bp_; # 0,1 <1 <k <m — 1. Since it is easy to see that

2* € I, we have I = z*R, and therefore R is an ideally differential ring.
The lemma is proved. [l
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LEMMA 1.3. Let R be a commutative local Artinian ring of prime
power characteristic p™ (n > 2). If R is a g-ideally differential ring,
then R = C or R = Clz]/(z)™, where C & V/p"V, V is a v-ring and
2<m<p.

Proof. As a consequence of Theorem 11 from [5, p. 79], R contains a
subring C such that R = C 4+ J(R) and C = V/p"V for some v-ring
V. Since J(C) = pC, in view of Proposition 9.2 of [3] it easily to seen
that C is an ideally differential ring. By our hypothesis the quotient
ring R/pR is a g¢-ideally differential ring of characteristic p and thus,
by Lemma 1.2, R/pR is a field or R/pR = D + Da + -+- + Da™™1
for some its element « of the nilpotency index m and some subfield D
of characteristic p, where 2 < m < p. This gives that J(R) = pR or
J(R) =pR+aC+---+a™ 1, where a is an inverse image of «. Hence

R=C+J(R)=C+pC+p’R=...=C+pC+p?CH+...+p"1C=C
or R=C+ J(R) = Cla) = Clz]/(z)™ with 2 < m < p. The lemma is
proved. [l

THEOREM 1.4. Let R be a commutative Artinian ring. Then R is a
g-ideally differential ring if and only if it is of one of the following types:
(i) R is a field;
(ii) R V/p 'V (n > 2), where V' is a v-ring;
(i) R = Clz]/(x)™ (m > 2), where C is a field of characteristic zero;
(iv) R Clz]/(x)™, where 2 < m < p, C is a field of a prime charac-
teristic p or C 2= V/p"V (n > 2), where V is a v-ring;
(v) R=R1 x---x Ry (s > 2) is a ring direct product of Ry,... , Rs,
and each R; is either a ring of type (i}, or (ii), or (iii), or (iv) with
2<m<p.

Proof. («<). It is clear that the rings R of types (i), (ii), (iii) and
(iv) are g-ideally differential. The results of [7] and [4] yield that every
quotient ring of R of type (v) is distributive and consequently R is a
g-ideally differential ring.

(=). By Theorem 8.7 of [6] it follows that

R=R; x---xR; (s>1)

is a ring direct product of g-ideally differential local Artinian rings R,

., Rs. If s = 2, then Example 1.1, Lemmas 1.2 and 1.3 yield that each
R; is either of type (i), or (ii), or (iii). If s = 1, then by using Lemmas
1.2 and 1.3 we complete the proof. 0
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2. In this part we obtain the characterization of i-ideally differential
commutative Artinian rings.

LeEMMA 2.1. Let R be a commutative local Artinian ring such that
char(R)=char(R/J(R)). If R is an i-ideally differential ring, then one
of the following statements is satisfied:

(i) R is a field;

(ii) R = Clz]/(z)™, where C is a field and n = 2 or 3.

Proof. As in the proof of Lemma 1.2, R = J(R)+C for some subfield
C. Suppose that J(R) is nontrivial. Let n be the nilpotency index of
J(R). Then

TR =51C+ -+ jmC

for some nontrivial elements ji, ... ,jm € J(R). If m > 2, then an iden-
tical argument to that in the proof of Lemma 1.2 gives a contradiction.
Hence m = 1.

Let A be any ideal of R such that A% = {0}. If i is any nontrivial
element of A, then ¢C is an ideal of A. Since A is ideally differential,
A =iC. Tt is clear that A = J(R)"™". Let k = [2] + 1, where [Z]
is the maximal integer not exceeding 7. Then (J (R)F)? = {0} and
so J(R)* < J(R)™ . This yields that j(R)k+1 = {0}. Therefore
[2]+2>nand n=2or 3. Hence R = C[z]/(z)™, where n = 2 or 3.
The lemma is proved. O

LEMMA 2.2. Let R be a commutative local Artinian ring such that
char(R) # char(R/J(R)). If R is an i-ideally differential ring, then
R=C/p™C (m = 2), where C is a v-ring.

Proof. By Theorem 11 of [5, p.79], there is a subring V such that
R=V + J(R), where V 2 C/p™C for some integer m > 2 and C is a
v-ring. Then m is the nilpotency index of J(R).

1) Suppose that V' # R. Since the annihilator Ann(J(R)) of J(R)
in R is a finitely generated ideal of R, we obtain that Ann(J7(R)) is
a finite-dimensional K-algebra, where K = R/J(R). Therefore there
exists a K-basis {z1,...,z:} of Ann(J(R)). If s > 2, then a map
§: Ann(J(R)) — Ann(J (R)) given by the rule

5
5( E usz) = UT1 + U1T2
=1
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determines a nontrivial derivation of Aun(J(R)). If Kz1NKzy contains
a nontrivial element w, then w = ¢127 = ¢caxs for some ¢cg,¢2 € K, and
we obtain a contradiction with minimality of the system {z1,...,zs}.
Hence Kz; N Kxzo = {0} and so 6(z1R) € z1R, a contradiction. This
yields s = 1 and thus Ann(J(R)) = Kz for some its nontrivial element
z. Tt is clear that J(R)™ ! and p™'J(R) are the K-subalgebras of
Ann(J(R)) and consequently

2) p" I (R) = Ann(J(R)) = T (R)™ .

Moreover, Ann(.7(R)) is a minimal ideal of R.

2) Let R = R/Ann(J(R)). Then Ann(J(R)) is a finite-dimensional
K-algebra and so there exists a K-basis {7, ... ,7,;} of Ann(J(R)). Let
y; be an inverse image of J; in R G=1,....,D.

az) HpR <y;Rforall j (1 <j <), then, in view of condition

y; - J(R) < Ann(J(R)),

we obtain that pR-7 (R) < Ann(7(R)) and consequently p*7 (R) = {0}.
Now, (2) yields that m = 2. Hence J(R) = Ann(J(R)) is a principal
ideal, a contradiction.

bs) Suppose, for example, that pR g y1 R and without loss of gener-
ality pys ¢ y1 R. A map D : R — R given by the rule

I
D ( Z ’Uk?k) = usTy; + U1Y2
k=1

determines a nontrivial derivation D of R. Then a map d : R — R such
that
d(r) =pD(r+ Ann(J(R)), "€ R

is a derivation of R with d(y;) ¢ v1 R, a contradiction. Hence Ann(J7(R))
is a principal ideal. The same argument, as in the line 1), shows that

p" 27 (R) = Am(J(R)) = J(R)™ 2.

3) Let R= R/Ann(J(R)). As above, there exists a K-basis {Z1, ...,
Zn} of Ann(J(R)). Let Z, be an inverse image of Z, in B (9 = 1,... ,n).
asz) If pR < Z,R for all g (1 < g < n), then, as above, we can
prove that p27(R) = {0} and so J(R)® = {0}. Since J(R/J(R)*) is a
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principal ideal, we obtain that J(R) is also principal by Theorem 1 of
[8], a contradiction. _ B

bs) Now, assume, for example, that pR € z; R and without restricting
of generality pZs ¢ Z1R. As in by), we can prove that Ann(J(R)) is a
principal ideal and

p"3J(R) = Ann(J(R)) = T(R)™>.

Continuing this argument after finitely many steps we obtain that J(R)
/T (R)2 is a principal ideal, a final contradiction. The lemma is proved.[]

THEOREM 2.3. Let R be a commutative Artinian ring. Then R is an
i-ideally differential ring if and only if it is of one of the following types:
(i) R Is a field;
(i) R= V/p"V (m > 2), where V Is a v-ring;
(i) R = Clz)/(x)™, where C is a field and n = 2 or 3;
(iv) R=Ryx -+ x Ry, (n>2) is a ring direct product of Ry,... ,Rn,
and each R; is a ring of type (i), or (ii), or (iii), where n # char(C).

Proof. (=) it follows from Theorem 8.7 of [6], Lemmas 2.1, 2.2 and
Example 1.1.
(<) is obvious. The theorem is proved. O

Open question. Characterize the left Artinian rings in which ev-
ery proper quotient ring (respectively every proper ideal) is left ideally
differential.
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