• Title/Summary/Keyword: Q polynomials

Search Result 206, Processing Time 0.021 seconds

A NOTE ON THE ZEROS OF THE q-BERNOULLI POLYNOMIALS

  • Ryoo, Cheon-Seoung
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.805-811
    • /
    • 2010
  • It is the aim of this paper to observe an interesting phenomenon of 'scattering' of the zeros of the q-Bernoulli polynomials $B_{n,q}(x)$ for -1 < q < 0 in complex plane. Observe that the structure of the zeros of the Genocchi polynomials $G_n(x)$ resembles the structure of the zeros of the q-Bernoulli polynomials $B_{n,q}(x)$ as q $\rightarrow$ -1.

REFLECTION SYMMETRIES OF THE q-GENOCCHI POLYNOMIALS

  • Ryoo, Cheon-Seoung
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1277-1284
    • /
    • 2010
  • One purpose of this paper is to consider the reflection symmetries of the q-Genocchi polynomials $G^*_{n,q}(x)$. We also observe the structure of the roots of q-Genocchi polynomials, $G^*_{n,q}(x)$, using numerical investigation. By numerical experiments, we demonstrate a remarkably regular structure of the real roots of $G^*_{n,q}(x)$.

SOME RELATIONSHIPS BETWEEN (p, q)-EULER POLYNOMIAL OF THE SECOND KIND AND (p, q)-OTHERS POLYNOMIALS

  • KANG, JUNG YOOG;AGARWAL, R.P.
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.219-234
    • /
    • 2019
  • We use the definition of Euler polynomials of the second kind with (p, q)-numbers to identify some identities and properties of these polynomials. We also investigate some relationships between (p, q)-Euler polynomials of the second kind, (p, q)-Bernoulli polynomials, and (p, q)-tangent polynomials by using the properties of (p, q)-exponential function.

SYMMETRIC PROPERTIES OF CARLITZ'S TYPE (p, q)-GENOCCHI POLYNOMIALS

  • KIM, A HYUN
    • Journal of applied mathematics & informatics
    • /
    • v.37 no.3_4
    • /
    • pp.317-328
    • /
    • 2019
  • This paper defines Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, and explains fourteen properties which can be complemented by Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, including distribution relation, symmetric property, and property of complement. Also, it explores alternating powers sums by proving symmetric property related to Carlitz's type (p, q)-Genocchi polynomials.

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

q-EXTENSION OF A GENERALIZATION OF GOTTLIEB POLYNOMIALS IN THREE VARIABLES

  • Choi, June-Sang
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.327-340
    • /
    • 2012
  • Gottlieb polynomials were introduced and investigated in 1938, and then have been cited in several articles. Very recently Khan and Akhlaq introduced and investigated Gottlieb polynomials in two and three variables to give their generating functions. Subsequently, Khan and Asif investigated the generating functions for the $q$-analogue of Gottlieb polynomials. Very recently, Choi defined a $q$-extension of the generalized two variable Gottlieb polynomials ${\varphi}^2_n({\cdot})$ and presented their several generating functions. Also, by modifying Khan and Akhlaq's method, Choi presented a generalization of the Gottlieb polynomials in m variables to give two generating functions of the generalized Gottlieb polynomials ${\varphi}^m_n({\cdot})$. Here, in the sequel of the above results for their possible general $q$-extensions in several variables, again, we aim at trying to define a $q$-extension of the generalized three variable Gottlieb polynomials ${\varphi}^3_n({\cdot})$ and present their several generating functions.

IDENTITIES OF SYMMETRY FOR THE HIGHER ORDER q-BERNOULLI POLYNOMIALS

  • Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.1045-1073
    • /
    • 2014
  • The study of the identities of symmetry for the Bernoulli polynomials arises from the study of Gauss's multiplication formula for the gamma function. There are many works in this direction. In the sense of p-adic analysis, the q-Bernoulli polynomials are natural extensions of the Bernoulli and Apostol-Bernoulli polynomials (see the introduction of this paper). By using the N-fold iterated Volkenborn integral, we derive serval identities of symmetry related to the q-extension power sums and the higher order q-Bernoulli polynomials. Many previous results are special cases of the results presented in this paper, including Tuenter's classical results on the symmetry relation between the power sum polynomials and the Bernoulli numbers in [A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001), no. 3, 258-261] and D. S. Kim's eight basic identities of symmetry in three variables related to the q-analogue power sums and the q-Bernoulli polynomials in [Identities of symmetry for q-Bernoulli polynomials, Comput. Math. Appl. 60 (2010), no. 8, 2350-2359].

SOME PROPERTIES OF DEGENERATE CARLITZ-TYPE TWISTED q-EULER NUMBERS AND POLYNOMIALS

  • RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.1-11
    • /
    • 2021
  • In this paper, we define degenerate Carlitz-type twisted q-Euler numbers and polynomials by generalizing the degenerate Euler numbers and polynomials, Carlitz's type degenerate q-Euler numbers and polynomials. We also give some interesting properties, explicit formulas, symmetric properties, a connection with degenerate Carlitz-type twisted q-Euler numbers and polynomials.