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UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND

RELATED POLYNOMIALS

Burak Kurt

Abstract. Korobov type polynomials are introduced and extensively in-

vestigated many mathematicians ([1, 8–10, 12–14]). In this work, we de-
fine unified Apostol Korobov type polynomials and give some recurrences

relations for these polynomials. Further, we consider the q-poly Korobov
polynomials and the q-poly-Korobov type Changhee polynomials. We

give some explicit relations and identities above mentioned functions.

1. Introduction

As usual, throughout this paper, N denotes the set natural numbers, N0

denotes the set of nonnegative integers, Z denotes the set of integer numbers,
R denotes the set of real numbers.

The generalized Apostol-Bernoulli polynomials B(α)n (x;λ) of order α and the

generalized Apostol-Euler polynomials E(α)n (x;λ) of order α are defined by the
following generating functions (see, for detail [16–18])

(1)

∞∑
n=0

B(α)n (x;λ)
tn

n!
=

(
t

λet − 1

)α
ext,

(|t| < 2π when λ = 1, |t| < |log λ| when λ 6= 1)

and

(2)

∞∑
n=0

E(α)n (x;λ)
tn

n!
=

(
2

λet + 1

)α
ext,

(|t| < π when λ = 1, |t| < |log (−λ)| when λ 6= 1) .
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316 B. KURT

For λ = 1, we get the Bernoulli polynomials B(α)n (x) of order α and the Euler

polynomials E(α)n (x) of order α.
The Stirling numbers of the second kind S2 (n, k) are defined ([7], [11]) and

weight Stirling numbers of the second kind S2 (n,m, x) [4] are defined the fol-
lowing generating functions, respectively

(3)

∞∑
n=0

S2 (n, k)
tn

n!
=

(et − 1)
k

k!

and

(4)

∞∑
n=0

S2 (n,m, x)
tn

n!
=
ext (et − 1)

m

m!
.

The polylogarithm function Lik(z) ([2], [4], [6, 7, 11]) is defined by

(5) Lik(z) =

∞∑
n=1

zn

nk
, k ∈ Z, k ≥ 1.

This function is convergent for |z| < 1, when k = 1

(6) Li1(z) = − log(1− z).

The multi-logarithm ([7], [11]) is defined by

(7) Lik1,...,kn(z) =
∑

0<m1<···<mn

zmn

mk1
1 · · ·m

kn
n

, ki ≥ 1, |z| < 1.

From (6), the following equation can be obtain

(8) Li1, . . . , 1︸ ︷︷ ︸
n-times

(z) =
1

n!
(− log(1− z))n .

Kim et al. [8] defined the poly-Bernoulli polynomials

(9)

∞∑
n=0

B(k)
n (x)

tn

n!
=
Lik (1− e−t)

et − 1
ext,

when k = 1, B(1)
n (x) = Bn(x).

Hamahata in [5] defined by the poly-Euler polynomials

(10)

∞∑
n=0

E(k)
n (x)

tn

n!
=

2Lik (1− e−t)
t (et + 1)

ext,

when k = 1, E(1)
n (x) = En(x).

Kim et al. ([9], [10]) defined the Changhee polynomials and the first kind
Korobov polynomials the following generating functions, respectively,

(11)

∞∑
n=0

Chn(x)
tn

n!
=

2

t+ 2
(1 + t)

x
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and

(12)

∞∑
n=0

Kn(x | λ)
tn

n!
=

λt

(t+ 1)
λ − 1

(1 + t)
x

when x = 0, Chn(0) = Chn are called the Changhee numbers and Kn(0 | λ) =
Kn(λ) are called the Korobov numbers with λ ∈ R.

The Korobov-type Changhee polynomials [9] are defined the following gen-
erating function with λ ∈ R

(13)

∞∑
n=0

Chn(x | λ)
tn

n!
=

2

(t+ 1)
λ

+ 1
(1 + t)

x
.

Note that

lim
λ→1

Chn(x | λ) = Chn(x) and lim
λ→0

Chn(x | λ) = (x)n,

where

(x)n = x(x− 1) · · · (x− (n− 1)),

λ ∈ R, Carlitz [3] introduced the degenerate Bernoulli polynomials by means
of the following generating functions

(14)

∞∑
n=0

Bn(x | λ)
tn

n!
=

t

(λt+ 1)
1/λ − 1

(1 + λt)
x/λ

so that

Bn(x | λ) =

n∑
m=0

(
n

m

)
Bn(λ)

(x
λ

)
n−m

λn−m.

From (14), we note that

∞∑
n=0

lim
λ→0
Bn(x | λ)

tn

n!
= lim
λ→0

t

(λt+ 1)
1/λ − 1

(1 + λt)
x/λ

=
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
,

where Bn(x) are Bernoulli polynomials.
Ozarslan [1] defined unified form of the Apostol-Bernoulli, Euler and Genoc-

chi polynomials

(15)

∞∑
n=0

P
(α)
n,β (x : k, a, b)

tn

n!
=

(
21−ktk

βbet − ab

)α
ext,

k ∈ Z, a, b ∈ R\ {0} , α, β ∈ C.
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2. Unified Apostol-Korobov type polynomials

In this section, we define unified Apostol-Korobov type polynomials. We
investigate these polynomials and give some explicit identities and relations for
these polynomials.

Firstly, we define the Apostol-Korobov polynomials Kn,α (x : λ) and the
Apostol-Korobov type Changhee polynomials are defined the following gener-
ating functions, respectively

(16)

∞∑
n=0

Kn,α (x : λ)
tn

n!
=

λt

α (1 + t)
λ − 1

(1 + t)
x

and

(17)

∞∑
n=0

Chn,α (x : λ)
tn

n!
=

2

α (1 + t)
λ

+ 1
(1 + t)

x
,

where α ∈ N0.
We consider the following unified form of the Apostol-Korobov polynomials

(18)

∞∑
n=0

Rn,β (x : k, a, b, λ)
tn

n!
=

21−k (λt)
k

βb (1 + t)
λ − ab

(1 + t)
x

.

Remark 2.1. Setting k = a = b = 1 and α = β in (18), we get

Rn,α (x : k, 1, 1, λ) = Kn,α (x : λ) .

Remark 2.2. Setting k = 0, a = −1, b = 1 and α = β in (18), we get

Rn,α (x : 0,−1, 1, λ) = Chn,α (x : λ) .

From (18), we get the following relations

(i) Rn,β (x : k, a, b, λ) =

n∑
m=0

(
n

m

)
Rm,β (0 : k, a, b, λ) (x)n−m ,

(ii) Rn,β (x+ y : k, a, b, λ) =

n∑
m=0

(
n

m

)
Rm,β (x : k, a, b, λ) (y)n−m

and

(iii) Rn,β (x+ y : k, a, b, λ) =

n∑
m=0

(
n

m

)
Rm,β (0 : k, a, b, λ) (x+ y)n−m .

Theorem 2.3. The following relation holds true:

βb
l∑

m=0

1

m! (l −m)!
Rm,β (x : k, a, b, λ) (λ)l−m −

ab

l!
Rl,β (x : k, a, b, λ)(19)

= 21−kλk
(x)l−k
(l − k)!

.
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Proof. By using (18), we write by

∞∑
n=0

Rn,β (x : k, a, b, λ)
tn

n!

(
βb (1 + t)

λ − ab
)

= 21−k (λt)
k

(1 + t)
x

and

∞∑
l=0

(
βb

l∑
m=0

(
l

m

)
Rm,β (x : k, a, b, λ) (λ)l−m − a

bRl,β (x : k, a, b, λ)

)
tl

l!

= 21−kλk
∞∑
l=0

(x)l
tl+k

l!
= 21−kλk

∞∑
l=k

(x)l−k
1

(l − k)!
tl.

Comparing the coefficients of tn on both sides, we have (19). �

Theorem 2.4. There is the following relation between unified Apostol-Korobov
polynomials and the weighted Stirling numbers of second kind S (n,m, x) and
unified Apostol-Bernoulli, Euler and Genocchi polynomials Rn,β (x : k, a, b, λ)
as

n−k∑
m=0

Rm,β (x : k, a, b, λ)S2 (n− k,m)

(n− k)!

=

n∑
i=0

1

n! (n− i)!
Rn−i,β (0 : k, a, b)λmk!S2 (i, k, x) .(20)

Proof. By replacing t by et − 1 in (18), we get

∞∑
m=0

Rm,β (x : k, a, b, λ)
(et − 1)

m

m!
=

21−kλk (et − 1)
k
ext

βbetλ − ab
,

∞∑
m=0

Rm,β (x : k, a, b, λ)

∞∑
n=m

S2 (n,m)
tn

n!
=

21−k (λt)
k
t−k

βbetλ − ab
k!

(et − 1) ext

k!
.

By using (4) and (15) in the last equations, we have

∞∑
n=0

n∑
m=0

Rm,β (x : k, a, b, λ)S2 (n,m)
tn

n!

= t−k
∞∑
n=0

n∑
i=0

(
n

i

)
Rn−i,β (0 : k, a, b)λmk!S2 (i, k, x)

tn

n!
.

From here, comparing the coefficients of tn, we have (20). �

From lim
µ→0

(1 + µt)
1/µ

= et, we consider the degenerate function of t which

are given by

t = lim
µ→0

log (1 + µt)
1/µ

.
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log(1+µt)
µ is called the degenerate function of t. Now, we consider the degen-

erate unified Apostol-Korobov type polynomials by
∞∑
n=0

Rn,β,µ (x : k, a, b, λ)
tn

n!

=
21−kλk

(
log (1 + µt)

1/µ
)k

βb
[
1 + log (1 + µt)

1/µ
]λ
− ab

[
1 + log (1 + µt)

1/µ
]x

,(21)

where µ ∈ R+.

Theorem 2.5. There is the following relation between the degenerate unified
Apostol-Korobov type polynomials and weighted Stirling numbers of second kind
S(n,m, x)

j−k∑
p=0

µplpS2 (j − k, p)
∞∑
m=0

Rm,β,µ (x : k, a, b, λ)
λ−m

m! (j − k)!

m∑
l=0

(
m

l

)
(−1)

m−l(22)

=
j∑
i=0

(
j

i

)
Rj−i,β (0 : k, a, b)λj−iS2 (i, k, x).

Proof. By using t by eµ(e
t−1)−1
µ in (21), we get

(23)

∞∑
m=0

Rm,β,µ (x : k, a, b, λ)µ−m

(
eµ(et−1) − 1

)m
m!

=
21−kλk (et − 1)

k
etx

βbetλ − ab
.

The left side of the equation (23),

∞∑
m=0

Rm,β,µ (x : k, a, b, λ)
µ−m

m!

m∑
l=0

(
m

l

)
(−1)

m−l
eµl(e

t−1)

(24)

=

∞∑
m=0

Rm,β,µ (x : k, a, b, λ)
µ−m

m!

m∑
l=0

(
m

l

)
(−1)

m−l
∞∑
p=0

µplp
(et − 1)

p

p!

=

∞∑
m=0

Rm,β,µ (x : k, a, b, λ)
µ−m

m!

m∑
l=0

(
m

l

)
(−1)

m−l
∞∑
p=0

µplp
∞∑
j=p

S2 (j, p)
tj

j!

=

∞∑
j=0

(
j∑
p=0

µplpS2 (j, p)

∞∑
m=0

Rm,β,µ (x : k, a, b, λ)
µ−m

m!

m∑
l=0

(
m

l

)
(−1)

m−l

)
tj

j!
.

By using (4) and (15) in right side of the equation (23)

(25) = t−k
∞∑
n=0

n∑
i=0

(
n

i

)
Rj−i,β (0 : k, a, b)λn−iS2 (i, k, x)

tn

n!
.
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From (24) and (25), comparing the coefficients of tn, we have (22). �

3. On the q-poly-Korobov polynomials and the q-poly-Korobov
type Changhee polynomials

In this section, we introduce and investigate some properties and explicit re-
lations between the q-poly-Korobov polynomials and the q-poly-Korobov type
Changhee polynomials.

We define the q-poly-Korobov polynomials and the q-poly-Korobov type
Changhee polynomials the following generating functions, respectively;

(26)

∞∑
n=0

K(k)
n,q(x | λ)

tn

n!
=
λLi[k,q] (1− e−t)

(t+ 1)
λ − 1

(1 + t)
x

and

(27)

∞∑
n=0

Ch(k)n,q(x | λ)
tn

n!
=

2Li[k,q] (1− e−t)

t
(

(t+ 1)
λ

+ 1
) (1 + t)

x
,

where q ∈ R, 0 < q ≤ 1 and the poly-logarithm function is defined as

(28) Li[k,q] (t) =

∞∑
n=1

tn

[n]
k
q

.

The polynomials K
(k)
n,q(λ) := K

(k)
n,q(0 | λ) are called the q-poly-Korobov num-

bers and the polynomial Ch
(k)
n,q(λ) = Ch

(k)
n,q(0 | λ) are called the q-poly-Korobov

type Changhee numbers.
The q-numbers and q-factorial are defined by

[n]q =
1− qn

1− q
, q 6= 1, [n]q! = [n]q [n− 1]q · · · [1]q ,

n ∈ N and q ∈ C, respectively where [0]q! = 1.
The first values of the q-polylogarithm function for k ≤ 0,

Li[0,q] (t) =
t

1− t
, Li[−1,q] (t) =

t

(1− t) (1− qt)
.

The q-polylagarithm function for k ≤ 0 is a rational functions. For k is a
nonnegative integer

Li[−k,q] (t) =
1

(1− q)k
k∑
l=0

(
k

l

)
(−1)

l qlt

1− qlt
.

For n = 2 in (8), we get Li[1,1] (1− e−t) = t2

2! .
From (26) and (27), for k = q = 1, we have

K
(1)
l,1 (x | λ) =

1

2
l K

(k)
l−1(x | λ) and Ch

(1)
l,1 (x | λ) =

1

2
l Ch

(k)
l−1(x | λ), l ≥ 1.
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Theorem 3.1. The following relations holds true:

K(k)
n,q(x | λ) =

n∑
m=0

(
n

m

)
K(k)
m,q(λ) (x)n−m ,

(i) Ch(k)n,q(x | λ) =

n∑
m=0

(
n

m

)
Ch(k)m,q(λ) (x)n−m ,

K(k)
n,q(x+ y | λ) =

n∑
m=0

(
n

m

)
K(k)
m,q(x | λ) (y)n−m

and

(ii) Ch(k)n,q(x+ y | λ) =

n∑
m=0

(
n

m

)
Ch(k)m,q(x | λ) (y)n−m .

Theorem 3.2. There are the following relationships for the q-poly-Korobov
polynomials and the q-poly-Korobov type Changhee polynomials as

K(k)
m,q(x+ λ | λ)−K(k)

m,q(x | λ)

= λ

m∑
j=0

(
m

j

) j−1∑
n=0

(−1)
n+1+j

(n+ 1)!

[n+ 1]
k
q

S2 (j, n+ 1) (x)m−j(29)

and

m
(
Ch

(k)
m−1,q(x+ λ | λ) + Ch

(k)
m−1,q(x | λ)

)
= 2

m∑
j=0

(
m

j

) j−1∑
n=0

(−1)
n+1+j

(n+ 1)!

[n+ 1]
k
q

S2 (j, n+ 1) (x)m−j .(30)

Proof. By using (3), (26) and (28), we write as
∞∑
m=0

(
K(k)
m,q(x+ λ | λ)−K(k)

m,q(x | λ)
) tn
n!

= λLik,q
(
1− e−t

)
(1 + t)

x

= λ

∞∑
n=0

(−1)
n+1

(n+ 1)!

[n+ 1]
k
q

(e−t − 1)
n+1

(n+ 1)!
(1 + t)

x

= λ

∞∑
n=0

(−1)
n+1

(n+ 1)!

[n+ 1]
k
q

∞∑
j=n+1

S2 (j, n+ 1)
(−t)j

j!

∞∑
l=0

(x)l
tl

l!

= λ

∞∑
m=0

 m∑
j=0

(
m

j

) j−1∑
n=0

(−1)
n+1+j

(n+ 1)!

[n+ 1]
k
q

S2 (j, n+ 1) (x)m−j

 tm

m!
.

Comparing the coefficients of both sides, we have (29).
Since the proof of (30) is similar to (29), we omit it. �
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From (29) and (30), we have the following Corollary 3.3.

Corollary 3.3. There is the following relation between the q-poly-Korobov poly-
nomials and the q-poly-Korobov type Changhee polynomials

2
[
K(k)
m,q(x+ λ | λ)−K(k)

m,q(x | λ)
]

= λm
[
Ch

(k)
m−1,q(x+ λ | λ) + Ch

(k)
m−1,q(x | λ)

]
.

Theorem 3.4. The following relation for the q-poly-Korobov polynomial holds
true: (

n∑
m=0

(
n

m

)
K(k)
m,q(x | λ) (x)n−m −K

(k)
n,q(x | λ)

)

= λ

m∑
j=0

(
m

j

) j−1∑
n=0

(−1)
n+1+j

(n+ 1)!

[n+ 1]
k
q

S2 (j, n+ 1) (x)m−j .(31)

Proof. By using (3) and (26), we write as

∞∑
n=0

K(k)
n,q(x | λ)

tn

n!

(
(1 + t)

λ − 1
)

= λLik,q
(
1− e−t

)
(1 + t)

x

and
∞∑
m=0

K(k)
m,q(x | λ)

tm

m!

∞∑
l=0

(x)l
tl

l!
−
∞∑
n=0

K(k)
n,q(x | λ)

tn

n!

= λ

∞∑
m=0

 m∑
j=0

(
m

j

) j−1∑
n=0

(−1)
n+1+j

(n+ 1)!

[n+ 1]
k
q

S2 (j, n+ 1) (x)m−j

 tm

m!
.

By using Cauchy product and comparing the coefficients of tn

n! , we have (31).
�

From (29) and (31), we have the following Corollary 3.5.

Corollary 3.5. There is another relation for the q-poly-Korobov polynomials
as (

K(k)
m,q(x+ λ | λ)−K(k)

m,q(x | λ)
)

=

m∑
n=0

(
m

n

)
K(k)
n,q(x | λ) (λ)m−n −K

(k)
m,q(x | λ).

Theorem 3.6. The following relation holds true:(
m∑
n=0

n

(
m

n

)
Ch

(k)
n−1,q(x | λ) (x)m−n +mCh

(k)
m−1,q(x | λ)

)
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= 2

m∑
j=0

(
m

j

) j−1∑
n=0

(−1)
n+1+j

(n+ 1)!

[n+ 1]
k
q

S2 (j, n+ 1) (x)m−j .(32)

From (30) and (32), we have the following Corollary.

Corollary 3.7. There is the another relation for the q-poly-Korobov type
Changhee polynomial:

m
(
Ch

(k)
m−1,q(x+ λ | λ) + Ch

(k)
m−1,q(x | λ)

)
=

m∑
n=0

n

(
m

n

)
Ch

(k)
n−1,q(x | λ) (x)m−n +mCh

(k)
m−1,q(x | λ).

Theorem 3.8. There is the following relation between the q-poly-Korobov poly-
nomials and the Bernoulli polynomials

(33)

∞∑
n=0

K(k)
n,q(x | λ)S2(m,n) (−1)

m
=

m∑
l=0

(
m

l

)
λm−l (−1)

l
l!

[l + 1]
k
q

Bm−l

(x
λ

)
.

Proof. Replacing t by e−t − 1 in (26), we get
∞∑
n=0

K(k)
n,q(x | λ)

(e−t − 1)
n

n!
=

λe−tx

e−tλ − 1
Lik,q (−t)

and
∞∑
n=0

K(k)
n,q(x | λ)

∞∑
m=n

S2(m,n) (−1)
m tm

m!

= −
∞∑
m=0

Bm

(x
λ

)
(−λ)

m tm

m!

∞∑
l=0

(−1)
l+1

l!

[l + 1]
k
q

tl

l!
.

By using Cauchy product and comparing the coefficients, we have (33). �

Theorem 3.9. There is the following relation between the q-poly-Korobov type
Changhee polynomials and the Euler polynomials:

m∑
n=0

nCh
(k)
n−1,q(x | λ)S2 (m,n) (−1)

m

= −m
m−1∑
l=0

(
m− 1

l

)
(−λ)

m−l−1
l! (−1)

l

[l + 1]
k
q

Em−1−l

(x
λ

)
.(34)

Proof. Using t by e−t − 1 in (27), we get
∞∑
n=0

Ch(k)n,q(x | λ)
(e−t − 1)

n+1

n!
=

2e−tx

e−tλ + 1
Lik,q (−t) ,

∞∑
n=0

nCh
(k)
n−1,q(x | λ)

∞∑
m=n

S2 (m,n) (−1)
m tm

m!
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= − t
∞∑
r=0

Er

(x
λ

)
(−λ)

r t
r

r!

∞∑
l=0

l! (−1)
l

[l + 1]
k
q

tl

l!

and
∞∑
m=0

m∑
n=0

nCh
(k)
n−1,q(x | λ)S2 (m,n) (−1)

m tm

m!

= −
∞∑
m=0

m

m−1∑
l=0

(
m− 1

l

)
Em−1−l

(x
λ

)
(−λ)

m−l−1 l! (−1)
l

[l + 1]
k
q

tm

m!
.

Comparing the coefficients, we have (34). �

4. Conclusion

In recent years, many mathematicians studied Korobov polynomials and
Korobov type Changhee polynomials. The classical Bernoulli polynomials and
Euler polynomials are studied many mathematicians ([1–18]). Srivastava [16],
Srivastava et al. in ([17, 18]) introduced and investigated basic properties of
these polynomials. They proved some theorems and explicit relations for these
polynomials. Carlitz ([3], [4]) introduced degenerate Bernoulli polynomials
and weighted degenerate Bernoulli polynomials. Bayad et al. [2] and Hama-
hata [4], Imatomi et al. [7], Kim et al. ([8–10, 12]) considered and investi-
gated poly-Bernoulli and poly-Euler polynomials. Kruchinin [14] introduced
Korobov polynomials. Kim et al. [12] introduced Korobov type polynomials
and Korobov-type Changhee polynomials.

In this work, we define the unified form of the Apostol-Korobov, Apostol-
Korobov type Changhee polynomials. We give explicit relations for these poly-
nomials. Further, we define the q-poly-Korobov polynomials and the q-poly-
Korobov type Changhee polynomials. We prove some relations between these
polynomials and the Bernoulli polynomials and the Euler polynomials.
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