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SOME RELATIONSHIPS BETWEEN (p, q)-EULER

POLYNOMIAL OF THE SECOND KIND AND (p, q)-OTHERS

POLYNOMIALS†
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Abstract. We use the definition of Euler polynomials of the second kind

with (p, q)-numbers to identify some identities and properties of these poly-

nomials. We also investigate some relationships between (p, q)-Euler poly-
nomials of the second kind, (p, q)-Bernoulli polynomials, and (p, q)-tangent

polynomials by using the properties of (p, q)-exponential function.
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1. Introduction

For any n ∈ C, the q-number is defined by

[n]q =
1− qn

1− q
=
∑

0≤i≤n

qi = 1 + q + q2 + · · ·+ qn−1.

An intensive and somewhat surprising interest in q-numbers appeared in many
areas of mathematics and applications including q-difference equations, special
functions, q-combinatorics, q-integrable systems, variational q-calculus, q-series,
and so on.

In [1-6], R. Chakrabarti and R. Jagannathan, G. Brodimas et al., and M. Arik
et al. introduced the (p, q)-number to unify various forms of q-oscillator algebras.
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For any n ∈ C, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
. (1.1)

We can note that the (p, q)-number reduces to a q-number when p = 1. In
particular, limq→1[n]p,q = n with p = 1(see [1-2,10]). In [5], R. Chakrabarti
and R. Jagannathan studied (p, q)-differentiation, (p, q)-integration, and the
(p, q)-exponential with the introduction of the (p, q)-numbers. Some applica-
tions of (p, q)-hypergeometric series in the context of two-parameter quantum
groups could be found in 2003, and many mathematicians have studied (p, q)-
Stirling numbers, (p, q)-Bernoulli polynomials, and others polynomials by using
the (p, q)-numbers (see [1-17]).

Definition 1.1. We define the (p, q)-derivative operator as

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x 6= 0, (1.2)

and provided that f is differentiable at 0, Dp,qf(0) = f ′(0). The following
properties of (p, q)-derivative operator are immediate.

Theorem 1.2. For the operator Dp,q the following hold:

(i) Derivative of a product Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

= g(px)Dp,qf(x) + f(qx)Dp,qg(x).

(1.3)

(ii) Derivative of a ratio Dp,q

(
f(x)

g(x)

)
=

g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

(1.4)
In [6], R. B. Corcino found (p, q)-extension of binomials coefficients to estab-

lish various properties that are related to horizontal, triangular, and vertical
functions.

Definition 1.3. The (p, q)-analogue of (x + a)n is defined by

(i) (x + a)np,q =


1

if n = 0
(x + a)(px + aq) · · · (pn−2x + aqn−2)(pn−1x + aqn−1)

if n 6= 0

(ii) (x + a)np,q =

n∑
k=0

[
n
k

]
p,q

p(k
2)q(n−k

2 )xkan−k,

(1.5)
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where

[
n
k

]
p,q

is (p, q)-Gauss-Binomial coefficient.

Definition 1.4. Let z be any complex number with |z| < 1. Two forms of
(p, q)-exponential functions are defined by

ep,q(z) =

∞∑
n=0

p(n
2) zn

[n]p,q!
,

ep−1,q−1(z) =

∞∑
n=0

p−(n
2) zn

[n]p−1,q−1 !
=

∞∑
n=0

q(n
2) zn

[n]p,q!
.

(1.6)

These forms are connected by the following relationship:

ep,q(z)ep−1,q−1(−z) = 1. (1.7)

In 1961, L.Calitz introduced the Euler numbers and polynomials of the second
kind and found some properties thereof.

Definition 1.5. The classical Euler numbers, Ẽn, and the classical Euler

polynomials, Ẽn(x), of the second kind are defined by means of the following
functions:

∞∑
n=0

Ẽn
tn

n!
=

2

et + e−t
,

∞∑
n=0

Ẽn(x)
tn

n!
=

2

et + e−t
etx. (1.8)

These numbers and polynomials are related to the coefficients of the series for
function 1

cosht .

Theorem 1.6. For any positive integer n, we have

(i) For any positive integer m(=odd),

Ẽn(x) = mn
m−1∑
i=0

(−1)iẼn

(
2i + x + 1−m

m

)
for n ≥ 0,

(ii) Ẽl(x + y) =

l∑
n=0

(
l

n

)
Ẽn(x)yl−n,

(iii) Ẽn(x) = (−1)nẼn(−x).

(1.9)

Since these numbers and polynomials’ discovery, many mathematicians have
extensively studied these numbers and polynomials of the second kind and ex-
panded several properties thereof (see [1-2,9,11,14,16]). R. P. Agarwal and C.
S. Ryoo used q-numbers to define the q-extension of Euler polynomials of the
second kind and investigate their properties. In [2], the q-extension of Euler
polynomials of the second kind maintained the properties of Euler polynomi-
als of the second kind, that is, an alternative sum of polynomials with even
coefficients despite containing q-numbers.
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Definition 1.7. Let n be any non-negative integer. For |q| < 1, x ∈ C,
q-Euler polynomials of the second kind are defined by

∞∑
n=0

Ẽn,q(x)
tn

[n]q!
=

2

eq(t) + eq(−t)
eq(tx). (1.10)

Theorem 1.8. For |q| < 1, we have

(i) 2

n∑
l=0

[
n
l

]
q

(−1)n−lxl

=

n∑
l=0

[
n
l

]
q

(
n−l∑
k=0

[
n− l
k

]
q

(−1)k +

n−l∑
k=0

[
n− l
k

]
q

(−1)n−l

)
Ẽl,q(x),

(ii) 2

n∑
l=0

[
n
l

]
q

q(n−l
2 )xl

=

n∑
l=0

[
n
l

]
q

(
n−l−1∏
k=0

(1 + qk) + (−1)n−l
n−l−1∏
k=0

(1− qk)

)
Ẽl,q(x),

(iii) 2

n∑
l=0

[
n
l

]
q

(−1)n−lq(n−l
2 )xl

=

n∑
l=0

[
n
l

]
q

(
n−l−1∏
k=0

(1− qk) + (−1)n−l
n−l−1∏
k=0

(1 + qk)

)
Ẽl,q(x).

(1.11)

In this paper, the main aim is to extend q-Euler polynomials of the second
kind and study some properties of these polynomials by using (p, q)-numbers.
We construct an important lemma to find the special properties of (p, q)-Euler
polynomials of the second kind. Our paper is organized as follows: In Section 2,
we define (p, q)-Euler polynomials of the second kind and find some properties
thereof. In Section 3, we consider some properties of (p, q)-Euler polynomials of
the second kind and establish some relationships between (p, q)-Euler polynomi-
als of the second kind and (p, q)-other polynomials.

2. Some basic properties of the (p, q)-Euler polynomials of the second
kind

In this section, we define Euler numbers of the second kind and Euler poly-
nomials of the second kind with (p, q)-numbers. Using the generating function
of these polynomials of the second kind, we find some basic properties and iden-
tities.
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Definition 2.1. Let n be nonnegative integers and |q/p| < 1. Then we define
(p, q)-Euler polynomials of the second kind by

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!
=

2

ep,q(t) + ep,q(−t)
ep,q(tx). (2.1)

Substituting x = 0 in Definiton 6, above can be simplified as follows:
∞∑

n=0

Ẽn,p,q(0)
tn

[n]p,q!
=

∞∑
n=0

Ẽn,p,q
tn

[n]p,q!
=

2

ep,q(t) + ep,q(−t)
=

1

coshp,q(t)
, (2.2)

where Ẽn,p,q are (p, q)-Euler numbers of the second kind. If q → 1 and p = 1, we
can obtain the classical Euler numbers of the second kind.

Theorem 2.2. For |q| < |p|, we get

(i)

n∑
k=0

[
n
k

]
p,q

p(k
2)(1 + (−1)k)Ẽn−k,p,q(x) = 2p(n

2)xn,

(ii)

n∑
k=0

[
n
k

]
p,q

p(k
2)(1 + (−1)k)Ẽn−k,p,q =

{
2 if n = 0
0 if n 6= 0.

(2.3)

Proof. (i) For ep,q(t) 6= ep,q(−t), we can turn Definition 6 into
∞∑

n=0

Ẽn,p,q(x)
tn

[n]p,q!
(ep,q(t) + ep,q(−t)) = 2ep,q(tx). (2.4)

Using Cauchy’s product, we can transform the above equation (2.4) as
∞∑

n=0

Ẽn,p,q(x)
tn

[n]p,q!
(ep,q(t) + ep,q(−t))

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

p(k
2)(1 + (−1)k)Ẽn−k,p,q(x)

)
tn

[n]p,q!

= 2

∞∑
n=0

p(n
2)xn tn

[n]p,q!
.

(2.5)

The required relation now follows at once.

(ii) Using the same method as (i), we can obtain the required result, so we
omit the proof. �

Theorem 2.3. Let |q/p| < 1. Then, the following holds:

n∑
k=0

[
n
k

]
p,q

(1 + (−1)k)p(k
2)Ẽn−k,p,q(x) = 2

ˆ[n2 ]∑
k=0

[
n

n− 2k

]
p,q

p(k
2)Ẽn−2k,p,q(x),

(2.6)

where ˆ[n] is the greatest integer not to exceed n.
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Proof. The left-hand side in the Theorem 2.2.(i) can be changed to

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!

∞∑
n=0

2p(n
2) t2n

[2n]p,q!

= 2

∞∑
n=0

(
n∑

k=0

[
2n− k

k

]
p,q

p(n−k
2 )Ẽk,p,q(x)

)
t2n−k

[2n− k]p,q!

= 2

∞∑
n=0

 ˆ[n2 ]∑
k=0

[
n

n− 2k

]
p,q

p(k
2)Ẽn−2k,p,q(x)

 tn

[n]p,q!
,

(2.7)

where ˆ[n] is the greatest integer not to exceed n.
Therefore, we obtain the required relation at once. �

Example 2.3. Using Mathematica, the first six (p, q)-Euler polynomials are:

Ẽ0,p,q(x) = 1,

Ẽ1,p,q(x) = x,

Ẽ2,p,q(x) = −1 + px2,

Ẽ3,p,q(x) = x(−p2 − pq − q2 + p3x2),

Ẽ4,p,q(x) = q4 − p5x2 + p6x4 + p4(1− qx2)

+ p2q2(2− qx2) + p3(q − 2q2x2) + p(−1 + q3 − q4x2),

Ẽ5,p,q(x) = −p(p5 − q5)x

p− q
+ p10x5

− (p2 + q2)(p4 + p3q + p2q2 + pq3 + q4)x(−p2 − pq − q2 + p3x2).

(2.8)
Corollary 2.4. From Theorem 2.3, we can see

n∑
k=0

[
n
k

]
p,q

p(k
2)(1 + (−1)k)Ẽn−k,p,q = 2

ˆ[n2 ]∑
k=0

[
n

n− 2k

]
p,q

p(k
2)Ẽn−2k,p,q, (2.9)

where ˆ[n] is a greatest integer not to exceed n.
Corollary 2.5. From Theorem 2.2, Theorem 2.3, and Corollary 2.4, one

holds

(i) 2

ˆ[n2 ]∑
k=0

[
n

n− 2k

]
p,q

p(k
2)Ẽn−2k,p,q(x) = p(n

2)xn,

(ii) 2

ˆ[n2 ]∑
k=0

[
n

n− 2k

]
p,q

p(k
2)Ẽn−2k,p,q =

{
1 if n = 0
0 if n 6= 0

,

(2.10)

where ˆ[n] is a greatest integer not to exceed n.
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Theorem 2.6. Let |q/p| < 1. Then we have

Ẽn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

p(n−k
2 )Ẽk,p,qxn−k. (2.11)

Proof. From the generating function of (p, q)-Euler polynomials of the second
kind, we can obtain

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!
=

2

ep,q(t) + ep,q(−t)
ep,q(tx)

=

∞∑
n=0

Ẽn,p,q
tn

[n]p,q!

∞∑
n=0

p(n
2)xn tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

p(n−k
2 )Ẽk,p,qxn−k

)
tn

[n]p,q!
.

(2.12)

The required relation now follows at once. �

Theorem 2.7. Let |q/p| < 1. One has

Ẽn,p,q =

n∑
k=0

[
n
k

]
p,q

(−1)n−kq(n−k
2 )xn−kẼk,p,q(x). (2.13)

Proof. Since ep,q(tx)ep−1,q−1(−tx) = 1, we can find

∞∑
n=0

Ẽn,p,q
tn

[n]p,q!
=

2

ep,q(t) + ep,q(−t)
ep,q(tx)ep−1,q−1(−tx)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(−1)n−kq(n−k
2 )xn−kẼk,p,q(x)

)
tn

[n]p,q!
,

(2.14)

which gives the required result immediately. �

Theorem 2.8. Let n, k be nonnegative integers. Then the follwing holds:

Dp,qẼn,p,q(x) = [n + 1]p,qẼn,p,q(px). (2.15)

Proof. Considering (p, q)-derivative of xn−k in Theorem 2.6, we find

Dp,qẼn,p,q(x) =

n−1∑
k=0

[
n
k

]
p,q

[n− k]p,qp
(n−k

2 )Ẽk,p,qxn−k−1

= [n + 1]p,q

n∑
k=0

[
n
k

]
p,q

p(n+1−k
2 )Ẽk,p,q(x)n−k

= [n + 1]p,q

n∑
k=0

[
n
k

]
p,q

p(n−k
2 )(px)n−kẼk,p,q.

(2.16)

Using Theorem 2.6 again, the required relation now follows. �
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Theorem 2.9. For |q/p| < 1, the follwing holds:∫ 1

0

Ẽn,p,q(x)dp,qx =
Ẽn+1,p,q

(
1
p

)
− Ẽn+1,p,q

[n + 1]p,q
, (2.17)

where Ẽn,p,q are (p, q)-Euler numbers of the second kind.
Proof. Applying (p, q)-integral in Theorem 2.6, we get∫ 1

0

Ẽn,p,q(x)dp,qx =

n∑
k=0

[
n
k

]
p,q

p(n−k
2 )Ẽk,p,q

∫ 1

0

xn−kdp,qx

=
1

[n + 1]p,q

n∑
k=0

[
n + 1
k

]
p,q

p(n−k
2 )Ẽk,p,qxn−k+1

∣∣∣1
0

=
1

[n + 1]p,q

(
Ẽn+1,p,q

(
1

p

)
− Ẽn+1,p,q(0)

)
.

(2.18)

Therefore, we complete the proof of Theorem 2.9. �

Corollary 2.10. From Theorem 2.9, one has∫ b

a

Ẽn,p,q(x)dp,qx =
Ẽn+1,p,q

(
p−1b

)
− Ẽn+1,p,q

(
p−1a

)
[n + 1]p,q

. (2.19)

Theorem 2.11. For |q/p| < 1, we derive

(i) Ẽn,p,q(x) = (−1)nẼn,p,q(−x),

(ii) p(n
2)Ẽn,p−1,q−1(x) = (−1)1Ẽn,1, pq (−x).

(2.20)

Proof. (i) Replacing x, t with −x,−t, respectively, in (p, q)-Euler polynomials
of the second kind, we have

∞∑
n=0

Ẽn,p,q(−x)
(−t)n

[n]p,q!
=

2

ep,q(−t) + ep,q(t)
ep,q(tx)

=

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!
,

(2.21)

which on comparing the coefficients of both sides immediately gives the required
relation.

(ii) Setting p = 1 and q = p/q in generating function of (p, q)-Euler polyno-
mials of the second kind, we have

∞∑
n=0

Ẽn,1, pq (−x)
(−t)n

[n]1, pq !
=

∞∑
n=0

(−1)nq(n
2)Ẽn,1, pq (−x)

tn

[n]p,q!
. (2.22)
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From a property of (p, q)-numbers, we can note that

(i) [n]1, pq ! =
[n]p,q!

q(n
q)

(ii) e1, pq (t) = ep−1,q−1(t)

(iii) [n]p−1,q−1 ! =
[n]p,q!

p(n
2)q(n

2)
.

(2.23)

Applying the above properties, (2.23), we derive

∞∑
n=0

Ẽn,1, pq (−x)
(−t)n

[n]1, pq !
=

∞∑
n=0

Ẽn,p−1,q−1(x)
tn

[n]p−1,q−1 !

=

∞∑
n=0

p(n
2)q(n

2)Ẽn,p−1,q−1(x)
tn

[n]p,q!
.

(2.24)

Therefore, we complete the proof of Theorem 2.11. �

3. Some relationships between (p, q)-Euler polynomials of the second
kind and (p, q)-other polynomials

In this section, we find symmetric properties of (p, q)-Euler polynomials of
the second kind. Using the horizontal generating function for (p, q)-binomial
coefficient, we also investigate some relations among (p, q)-Euler polynomials of
the second kind, (p, q)-Bernoulli polynomials and (p, q)-tangent polynomials.

Theorem 3.1. For a, b 6= 0, we have

n∑
k=0

[
n
k

]
p,q

(
b

a

)n−2k

Ẽn−k,p,q(
a

b
x)Ẽk,p,q(

b

a
y)

=

n∑
k=0

[
n
k

]
p,q

(a
b

)n−2k
Ẽn−k,p,q(

b

a
x)Ẽk,p,q(

a

b
y).

(3.1)

Proof. Suppose that

A =
4ep,q(tx)ep,q(ty)(

ep,q( b
a t) + ep,q(− b

a t)
) (

ep,q(a
b t) + ep,q(−a

b t
) . (3.2)

The form A turns into

A =
2ep,q(tx)(

ep,q( b
a t) + ep,q(− b

a t)
) 2ep,q(ty)(

ep,q(a
b t) + ep,q(−a

b t)
)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(
b

a

)n−2k

Ẽn−k,p,q(
a

b
x)Ẽk,p,q(

b

a
y)

)
tn

[n]p,q!
.

(3.3)
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The form A can also be transformed as

A =
2ep,q(tx)(

ep,q(a
b t) + ep,q(−a

b t)
) 2ep,q(ty)(

ep,q( b
a t) + ep,q(− b

a t)
)

=

∞∑
n=0

Ẽn,p,q
(
b

a
x

) (a
b t
)n

[n]p,q!

∞∑
n=0

Ẽn,p,q
(a
b
y
) ( b

a t
)n

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

(a
b

)n−2k
Ẽn−k,p,q

(
b

a
x

)
Ẽk,p,q

(a
b
y
)) tn

[n]p,q!
.

(3.4)

Comparing the coefficients of both sides in (3.3) and (3.4), we can find the
required result. �

Corollary 3.2. Putting p = 1 and q → 1, the following holds:
n∑

k=0

(
n

k

)(
b

a

)n−2k

Ẽn−k(
a

b
x)Ẽk(

b

a
y) =

n∑
k=0

(
n

k

)(a
b

)n−2k
Ẽn−k(

b

a
x)Ẽk(

a

b
y).

(3.5)

Lemma 3.3. Let r be a nonnegative integer. Then the following relations
hold

(i) ep,q(t)ep−1,q−1(t) =

∞∑
n=0

n−1∏
r=0

(pr + qr)
tn

[n]p,q!
,

(ii) ep,q(t)ep−1,q−1(−t) =

∞∑
n=0

n−1∏
r=0

(pr − qr)
tn

[n]p,q!
,

(iii) ep,q(−t)ep−1,q−1(−t) =

∞∑
n=0

(−1)n
n−1∏
r=0

(pr + qr)
tn

[n]p,q!
,

(iv) ep,q(−t)ep−1,q−1(t) =

∞∑
n=0

(−1)n
n−1∏
r=0

(pr − qr)
tn

[n]p,q!
.

(3.6)

Proof. (i) From a property of (p, q)-numbers we can note that

p−1,q−1 ! =
[n]p,q!

p(n
2)q(n

2)
. (3.7)

Using the above property, we can get

ep,q(t)ep−1,q−1(t) =

∞∑
n=0

p(n
2) tn

[n]p,q!

∞∑
n=0

p−(n
2) tn

[n]p−1,q−1 !

=

∞∑
n=0

p(n
2) tn

[n]p,q!

∞∑
n=0

q(n
2) tn

[n]p,q!

=

∞∑
n=0

n−1∏
r=0

(pr + qr)
tn

[n]p,q!
.

(3.8)
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(ii) Multiplying ep−1,q−1(−t) with ep,q(t), we have

ep,q(t)ep−1,q−1(−t) =

∞∑
n=0

p(n
2) tn

[n]p,q!

∞∑
n=0

p−(n
2) (−t)n

[n]p−1,q−1 !

=

∞∑
n=0

p(n
2) tn

[n]p,q!

∞∑
n=0

q(n
2) (−t)n

[n]p−1,q−1 !

=

∞∑
n=0

n−1∏
r=0

(pr − qr)
tn

[n]p,q!
.

(3.9)

(iii) Multiplying ep−1,q−1(−t) with ep,q(−t), we have

ep,q(−t)ep−1,q−1(−t) =

∞∑
n=0

(−1)np(n
2) tn

[n]p,q!

∞∑
n=0

(−1)np−(n
2) tn

[n]p−1,q−1 !

=

∞∑
n=0

(−1)np(n
2) tn

[n]p,q!

∞∑
n=0

(−1)nq(n
2) tn

[n]p−1,q−1 !

=

∞∑
n=0

(−1)n
n−1∏
r=0

(pr + qr)
tn

[n]p,q!
.

(3.10)

(iv) Multiplying ep−1,q−1(t) with ep,q(−t), we have

ep,q(−t)ep−1,q−1(t) =

∞∑
n=0

(−1)np(n
2) tn

[n]p,q!

∞∑
n=0

p−(n
2) tn

[n]p−1,q−1 !

=

∞∑
n=0

(−1)np(n
2) tn

[n]p,q!

∞∑
n=0

q(n
2) tn

[n]p−1,q−1 !

=

∞∑
n=0

(−1)n
n−1∏
r=0

(pr − qr)
tn

[n]p,q!
.

(3.11)

Hence, we can find the following results and finish the proof of Lemma 1. �

Theorem 3.4. Let r be a nonnegative integer. Then we obtain

2

n−1∏
r=0

(qr + xrpr) =

n∑
l=0

[
n
l

]
p,q

(
l−1∏
r=0

(pr + qr) + (−1)l
l−1∏
r=0

(pr − qr)

)
Ẽn−l,p,q(x).

(3.12)
Proof. From generating function of (p, q)-Euler polynomials of the second

kind, we can find

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!
=

2ep−1,q−1(t)

ep−1,q−1(t)(ep,q(t) + ep,q(−t))
ep,q(tx). (3.13)
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If ep,q(t)ep−1,q−1(t) + ep,q(−t)ep−1,q−1(t) 6= 0, then we have

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!

(
ep,q(t)ep−1,q−1(t) + ep,q(−t)ep−1,q−1(t)

)
= 2ep−1,q−1(t)ep,q(tx).

(3.14)
Using Lemma 3.3 (i), (iv) on the above equations, the left-hand side can trans-
form to

∞∑
n=0

(
Ẽn,p,q(x)

tn

[n]p,q!

) ∞∑
n=0

(
n−1∏
r=0

(pr + qr) + (−1)n
n−1∏
r=0

(pr − qr)
tn

[n]p,q!

)

=
∞∑

n=0

(
n∑

l=0

[
n
l

]
p,q

(
l−1∏
r=0

(pr + qr) + (−1)l
l−1∏
r=0

(pr − qr)

)
Ẽn−l,p,q(x)

)
tn

[n]p,q!
,

(3.15)
and the right-hand side is transformed as

2ep−1,q−1(t)ep,q(tx) = 2

∞∑
n=0

p−(n
2) tn

[n]p−1,q−1 !

∞∑
n=0

p(n
2)xn tn

[n]p,q!

= 2

∞∑
n=0

( ∞∑
l=0

[
n
l

]
p,q

qlp(n−l
2 )xn−l

)
tn

[n]p,q!

= 2

∞∑
n=0

(
n−1∏
r=0

(qr + xpr)

)
tn

[n]p,q!
.

(3.16)

Therefore, we finish the proof of the required result. �

Corollary 3.5. When x = 0 in Theorem 3.4, we can see

2q(n
2) =

n∑
l=0

[
n
l

]
p,q

(
l−1∏
r=0

(pr + qr) + (−1)l
l−1∏
r=0

(pr − qr)

)
Ẽn−l,p,q, (3.17)

where Ẽn,p,q are (p, q)-Euler numbers of the second kind.

Theorem 3.6. For a nonnegative integer r, we have

2(−1)n
n−1∏
r=0

(qr − xpr) =

n∑
l=0

[
n
l

]
p,q

(
l−1∏
r=0

(pr − qr) + (−1)l
l−1∏
r=0

(pr − qr)

)
Ẽn−l,p,q(x).

(3.18)
Proof. We consider that

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!
=

2ep−1,q−1(−t)
ep−1,q−1(−t)(ep,q(t) + ep,q(−t))

ep,q(tx). (3.19)

We omit this proof since we can use a similiar pattern as Theorem 3.4 to obtain
the following result. �
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Corollary 3.7. Setting x = 0 in Theorem 3.6, we can see

2(−1)nq(n
2) =

n∑
l=0

[
n
l

]
p,q

(
l−1∏
r=0

(pr − qr) + (−1)l
l−1∏
r=0

(pr − qr)

)
Ẽn−l,p,q, (3.20)

where Ẽn,p,q are (p, q)-Euler numbers of the second kind.
Now we refer to (p, q)-Euler polynomials, (p, q)-Bernoulli polynomials and

(p, q)-tangent polynomials. Combining these polynomials on (p, q)-Euler poly-
nomials of the second kind, we investigate some identities.

Definition 3.8. (p, q)-Euler polynomials, (p, q)-Bernoulli polynomials and
(p, q)-tangent polynomials, respectively, are defined as follows:

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q(t) + 1

ep,q(tx),

∞∑
n=0

Bn,p,q(x)
tn

[n]p,q!
=

t

ep,q(t)− 1
ep,q(tx),

∞∑
n=0

Tn,p,q(x)
tn

[n]p,q!
=

2

ep,q(2t)− 1
ep,q(tx).

(3.21)

Theorem 3.9. Let m be nonnegative integer with m > 0. Then we have

Ẽn,p,q(x)

=
1

[2]p,q

n∑
l=0

[
n
l

]
p,q

(
n−l∑
k=0

[
n− l
k

]
p,q

p(n−l−k
2 )Ẽk,p,q
mn−k +

Ẽn−l,p,q
ml

)
El,p,q(mx),

(3.22)
where En,p,q(x) are (p, q)-Euler polynomials.

Proof. From the definition of (p, q)-Euler polynomials of the second kind we
obtain

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q!
=

[2]p,q
ep,q( t

m ) + 1
ep,q(tx)

ep,q( t
m ) + 1

[2]p,q

2

ep,q(t) + ep,q(−t)

=
1

[2]p,q

∞∑
n=0

(
n∑

l=0

[
n
l

]
p,q

n−l∑
k=0

[
n− l
k

]
p,q

p(n−l−k
2 )

mn−k Ẽk,p,qEl,p,q(mx)

)
tn

[n]p,q!

+
1

[2]p,q

∞∑
n=0

(
n∑

l=0

[
n
l

]
p,q

1

ml
El,p,q(mx)Ẽn−l,p,q

)
tn

[n]p,q!
.

(3.23)

Therefore, we complete the proof of Theorem 3.9. �



232 Jung Yoog Kang, R.P. Agarwal

Corollary 3.10. Setting p = 1 and q → 1 in the Theorem 14, we find

Ẽn(x) =
1

2

n∑
l=0

(
n

l

)(n−k∑
k=0

(
n− l

k

)
Ẽk

mn−l −
Ẽn−l

ml

)
El(mx), (3.24)

where Ẽn(x) is classical Euler polynomials of the second kind, and En(x) is
classical Euler polynomials.

Theorem 3.11. Let l, k be nonnegative integers. Then we have

Ẽn−1,p,q(x)[n]p,q

= [n− 1]p,q

n∑
l=0

[
n− 1
l − 1

]
p,q

(
n−1∑
k=0

[
n− l − 1
k − 1

]
p,q

p(n−l−k
2 )Ẽk,p,q

[k]p,qmn−k
Ẽn−l,p,q
[l]p,qml

)
Bl,p,q(mx).

(3.25)
Proof. From Definition 2.1, we can obtain

∞∑
n=0

Ẽn,p,q(x)
tn

[n]p,q

=
t

ep,q( t
m )− 1

ep,q(
t

m
mx)

ep,q( t
m )− 1

t

2

ep,q(t) + ep,q(−t)

=

∞∑
n=0

(
n∑

l=0

[
n− 1

l

]
p,q

n−l∑
k=0

[
n− l − 1
k − 1

]
p,q

p(n−l−k
2 )Ẽk,p,q

[k]p,qmn−k Bl,p,q(mx)

)
tn

[n− 1]p,q!

−
∞∑

n=0

(
n∑

l=0

[
n− 1
l − 1

]
p,q

Ẽn−l,p,q
[l]p,qml

Bl,p,q(mx)

)
tn−1

[n− 1]p,q!
.

(3.26)
The above equation is transformed to

[n]p,q
[n− 1]p,q

Ẽn−1,p,q(x)

=

n∑
l=0

[
n− 1
l − 1

]
p,q

(
n−l∑
k=0

[
n− l − 1
k − 1

]
p,q

p(n−l−k
2 )Ẽk,p,q

[k]p,qmn−k − Ẽn−l,p,q
[l]p,qml

)
Bl,p,q(mx),

(3.27)
and we immediately find the result of Theorem 3.11. �

Corollary 3.12. Setting p = 1 and q → 1, we have

nẼn−1(x) = (n− 1)

n∑
l=0

(
n− 1

l − 1

)(n−1∑
k=0

(
n− l − 1

k − 1

)
Ẽk

kmn−k −
Ẽn−l

lml

)
Bl(mx),

(3.28)

where Ẽn(x) is classical Euler polynomials of the second kind, Ẽ is classical
Euler numbers of the second kind, and Bn(x) is classical Bernoulli polynomials.
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Theorem 3.13. For nonnegative integers, l and k, we investigate

Ẽn,p,q(x)

=
1

[2]p,q

n∑
l=0

[
n
l

]
p,q

(
n−l∑
k=0

[
n− l
k

]
p,q

2n−k−lp(n−l−k
2 )Ẽk,p,q

mn−k +
Ẽn−l,p,q

ml

)
Tl,p,q(

mx

2
).

(3.29)
Proof. Using generating function of (p, q)-Euler polynomials of the second

kind, we get
∞∑

n=0

Ẽn,p,q(x)
tn

[n]p,q!

=
[2]p,q

ep,q( 2t
m ) + 1

ep,q(
2t

m

my

2
)
ep,q( 2t

m ) + 1

[2]p,q

2

ep,q(t) + ep,q(−t)

=
1

[2]p,q

∞∑
n=0

(
Tn,p,q(

mx

2
)

tn

mn[n]p,q!

) ∞∑
n=0

(
p(n

2)(
2

m
)n

tn

[n]p,q!

) ∞∑
n=0

(
Ẽn,p,q

tn

[n]p,q!

)

+
1

[2]p,q

∞∑
n=0

(
Tn,p,q(

mx

2
)

tn

mn[n]p,q!

) ∞∑
n=0

(
Ẽn,p,q

tn

[n]p,q!

)

=
1

[2]p,q

∞∑
n=0

(
n∑

l=0

[
n
l

]
p,q

n−l∑
k=0

[
n− l
k

]
p,q

2n−k−lp(n−l−k
2 )Ẽk,p,q

mn−k Tl,p,q(
mx

2
)

)
tn

[n]p,q!

+
1

[2]p,q

∞∑
n=0

(
n∑

l=0

[
n
l

]
p,q

Ẽn−l,p,q
ml

Tl,p,q(
mx

2
)

)
tn

[n]p,q!
.

(3.30)
Hence, we finish the proof of Theorem 3.13. �

Corollary 3.14. Putting p = 1 in Theorem 3.13, the following relation holds:

Ẽn,q(x)

=
1

[2]q

∞∑
n=0

[
n
l

]
q

(
n−l∑
k=0

[
n− l
k

]
q

2n−k−lẼk,q
mn−k +

Ẽn−l,q
ml

)
Tl,q(

mx

2
),

(3.31)

where Tn,q(x) is q-tangent polynomials.

References

1. G.E. Andrews, R. Askey, R. Roy, Special functions, Cambridge Press, Cambridge, UK 1999.
2. R. Ayoub, Euler and zeta function, Amer. Math. Monthly 81 (1974), 1067-1086.
3. R.P. Agarwal, J.Y. Kang, C.S. Ryoo, Some properties of (p, q)-tangent polynomials, J.

Computational Analysis and Applications 24 (2018), 1439-1454.
4. Yoshifusa Ito, Representation of functions by superpositions of a step or sigmoid function

and their applications to neural network theory, Neural Networks 4 (1991), 385-394.

5. Buckholtz, Knuth, Computation of tangent, Euler and Bernoulli numbers, M. Comput. 21
(1967), 663-688.



234 Jung Yoog Kang, R.P. Agarwal

6. L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, The Netherlands, 1974.

7. L. Carlitz, Scoville, Tangent numbers and operators, Duke M. J. 39 (1972), 413-429.
8. Jun Han, Claudio Moraga, The influence of the sigmoid function parameters on the speed

of backpropagation learning, International Workshop on Artificial Neural Networks, DOI

https://doi.org/10.1007/3-540-59497-3175.
9. Jun Han, Robert S Wilson, Sue E Leurgans, Sigmoidal mixed models for longitudinal data,

Statistical Methods in Medical Research, DOI https://doi.org/10.1177/0962280216645632.

10. H.K. Kwan , Simple sigmoid-like activation function suitable for digital hardware imple-
mentation, Electronics Letters 28 (1992), DOI: 10.1049/el:19920877.

11. Miran Kim, Yongsoo Song, Shuang Wang, Yuhou Xia, Xiaoqian Jiang, Secure Logistic

Regression Based on Homomorphic Encryption: Design and Evaluation, JMIR Med Inform.
6 (2018), DOI: 10.2196/medinform.8805.

12. Q.M. Luo, H.M. Srivastava, q-Extensions of some relationships between the Bernoulli and
Euler polynomials, Taiwan. J. Math. 15 (2011), 241-257.
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