REFLECTION SYMMETRIES OF THE q-GENOCCHI POLYNOMIALS

  • Received : 2010.02.19
  • Accepted : 2010.05.19
  • Published : 2010.09.30

Abstract

One purpose of this paper is to consider the reflection symmetries of the q-Genocchi polynomials $G^*_{n,q}(x)$. We also observe the structure of the roots of q-Genocchi polynomials, $G^*_{n,q}(x)$, using numerical investigation. By numerical experiments, we demonstrate a remarkably regular structure of the real roots of $G^*_{n,q}(x)$.

Keywords

References

  1. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl., 326 (2007), 1458-1465. https://doi.org/10.1016/j.jmaa.2006.03.037
  2. T.Kim, C.S.Ryoo, L.C.Jang, S.H.Rim, Exploring the q-Riemann Zeta function and q-Bernoulli polynomials, Discrete Dynamics in Nature and Society, 2005(2), 171-181.
  3. C.S. Ryoo, A numerical investigation on the zeros of the Genocchi polynomials, Journal of Applied Mathematics and Computing, 22(2006), 125-132. https://doi.org/10.1007/BF02896465
  4. C.S. Ryoo, A numerical computation on the structure of the roots of q-extension of Genocchi polynomials, Applied Mathematics Letters, 21(2008), 348-354. https://doi.org/10.1016/j.aml.2007.05.005
  5. C.S. Ryoo, Calculating zeros of the twisted Genocchi polynomials, Advan. Stud. Contemp. Math., 17(2008), 147-159.
  6. C.S. Ryoo, Calculating zeros of the second kind Euler polynomials, Journal of Computational Analysis and Applications, 12(2010), 828-833.
  7. C.S.Ryoo, T.Kim, R.P. Agarwal, Distribution of the roots of the Euler-Barnes' type q-Euler polynomials , Neural, Parallel & Scientific Computations, 13(2005), 381-392.