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SYMMETRIC PROPERTIES OF CARLITZ’S TYPE

(p, q)-GENOCCHI POLYNOMIALS

A HYUN KIM

Abstract. This paper defines Carlitz’s type (p, q)-Genocchi polynomials
and Carlitz’s type (h, p, q)-Genocchi polynomials, and explains fourteen

properties which can be complemented by Carlitz’s type (p, q)-Genocchi

polynomials and Carlitz’s type (h, p, q)-Genocchi polynomials, including
distribution relation, symmetric property, and property of complement.

Also, it explores alternating powers sums by proving symmetric property

related to Carlitz’s type (p, q)-Genocchi polynomials.
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1. Introduction

Many researchers have investigated Genocchi numbers Gn and Genocchi poly-
nomials Gn(x). Until now, Genocchi numbers and Genocchi polynomials have
been studied in many field, such as analytic number theory, theory of modular
forms and quantum physics(see [1-7]).

This paper uses the following notations: N = {1, 2, 3, · · · } denotes the natural
numbers, Z−0 = {0,−1,−2,−3, · · · } denotes the set of non-positive integers, Z
denotes the set of integers, R denotes the set of real numbers, and C denotes the
set of complex numbers.
q-number and (p, q)-number are defined by

[n]q =
1− qn

1− q
and [n]p,q =

pn − qn

p− q
.

It is obvious that (p, q)-number includes symmetric property, which is q-
number as p = 1. Especially, we have lim

q→1
[n]p,q = n when p = 1.
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We know that the classical Genocchi numbers Gn and polynomials Gn(x) are
defined by the following generating functions:

2t

et + 1
=

∞∑
n=0

Gn
tn

n!
(|t| < π)

and
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
(|t| < π).

Many mathematicians have studied q-Genocchi numbers and polynomials, an
extension of classical Genocchi numbers and polynomials. From now on, this
paper will introduce q-Genocchi, which has been studied by several researchers.

First, Kim defined q-extension of Genocchi numbers Gn,q and q-analogue of
Genocchi polynomials Gn,q(x) in 2007, as follows(see [4]):

Gq(t) =

∞∑
n=0

Gn,q
tn

n!
= [2]qt

∞∑
n=0

(−1)nqne[n]qt

and

Gq(x, t) =

∞∑
n=0

Gn,q(x)
tn

n!
= [2]qt

∞∑
n=0

(−1)nqn+xe[n+x]qt,

where q ∈ C with |q| < 1.
Also, he examined the properties of q-analogue of Genocchi polynomials such

as distribution relation. He gave some connection between q-extension of Euler
polynomials and q-extension of Genocchi numbers.

Seocond, Ryoo and Kang defined q-Genocchi numbers G
(α)
n,q and polynomials

G
(α)
n,q(x) with weak weight α in 2012, as follows(see [5]):

F (α)
q (t) =

∞∑
n=0

G(α)
n,q

tn

n!
= [2]qαt

∞∑
n=0

(−1)nqαne[n]qt

and

F (α)
q (x, t)

∞∑
n=0

G(α)
n,q(x)

tn

n!
= [2]qαt

∞∑
n=0

(−1)nqαne[n+x]qt,

where α ∈ C .
They investigeted the properties of q-Genocchi polynomialsG

(α)
n,q(x) with weak

weight α such as property of complement. Furthermore, they compared between
q-Genocchi polynomials and q-Genocchi Zeta function.

Finally, Kang and Ryoo defined the twisted q-Genocchi polynomials Gn,q,w(x)
in 2014, as follows(see [2]):

∞∑
n=0

Gn,q,w(x)
tn

n!
= [2]qt

∞∑
n=0

(−1)nqnwne[n+x]qt,

where r is a positive integer and w is r-th root of 1.
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They derived some properties of the twisted q-Genocchi polynomials such as
symmetric property.

Next, it will introduce definition of Hurwitz (p, q)-Euler Zeta function, which
is an extension of Hurwitz Euler Zeta function. For s ∈ C with Re(s) > 0 and
x /∈ Z−0 , Hurwitz (p, q)-Euler Zeta function ζp,q(s, x) defined by the following
generation function(see [6, 7]):

ζp,q(s, x) = [2]q

∞∑
n=0

(−1)nqn

[n+ x]sp,q
. (1.1)

This paper modifies q-Genocchi numbers and polynomials, which is mentioned
above, and studies (p, q)-Genocchi numbers and polynomials that is extended by
q-Genocchi numbers and polynomials. To be specific, it defines Carlitz’s type
(p, q)-Genocchi numbers Gn,p,q and polynomials Gn,p,q(x). Also, it gives some
general properties of Carlitz’s type (p, q)-Genocchi polynomials. At the end, it
examines symmetric properties of Carlitz’s type (p, q)-Genocchi polynomials.

2. Some properties of Carlitz’s type (p, q)-Genocchi numbers and
polynomials

In this section, we define Carlitz’s type (p, q)-Genocchi numbers Gn,p,q and

polynomialsGn,p,q(x) and Carlitz’s type (h, p, q)-Genocchi polynomialsG
(h)
n,p,q(x).

It derives some several properties.

Definition 2.1. For 0 < q < p ≤ 1, Carlitz’s type (p, q)-Genocchi numbers
Gn,p,q and polynomials Gn,p,q(x) are defined as the following generating func-
tions

Fp,q(t) =

∞∑
n=0

Gn,p,q
tn

n!
= [2]qt

∞∑
m=0

(−1)mqme[m]p,qt (2.1)
and

Fp,q(x, t) =

∞∑
n=0

Gn,p,q(x)
tn

n!
= [2]qt

∞∑
m=0

(−1)mqme[m+x]p,qt, (2.2)

respectively.

If we put p = 1 and let q → 1 in equations (2.1) and (2.2), then Carlitz’s type
(p, q)-Genocchi numbers Gn,p,q reduce to the classical Genocchi numbers Gn
and Carlitz’s type (p, q)-Genocchi polynomials Gn,p,q(x) reduce to the classical
Genocchi polynomials Gn(x). In other words, they are:

lim
q→1

Gn,p,q = Gn and lim
q→1

Gn,p,q(x) = Gn(x).

Definition 2.2. For 0 < q < p ≤ 1, Carlitz’s type (h, p, q)-Genocchi polynomials

G
(h)
n,p,q(x) is defined as the following generating function

∞∑
n=0

G(h)
n,p,q(x)

tn

n!
= [2]qt

∞∑
k=0

(−1)kqkpkhe[x+k]p,qt.
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In particular, Carlitz’s type (h, p, q)-Genocchi polynomials are Carlitz’s type

(h, p, q)-Genocchi numbers when x = 0, that is, G
(h)
n,p,q = G

(h)
n,p,q(0) denotes

Carlitz’s type (h, p, q)-Genocchi numbers.
By using Definition 2.2, we get

∞∑
n=0

G(h)
n,p,q(x)

tn

n!
= [2]qt

∞∑
m=0

(−1)mqmpmhe[x+m]p,qt

= [2]qt

∞∑
m=0

(−1)mqmpmh
∞∑
n=0

[x+m]np,q
tn

n!

= [2]q

∞∑
n=0

∞∑
m=0

(−1)mqmpmhn [x+m]n−1p,q

tn

n!
.

(2.3)

Hence, we get the following theorem by comparing the coefficients of tn

n! and
then putting n = n+ 1 on both sides of the above equation (2.3).

Theorem 2.3. For non-negative integer n, we obtain

G
(h)
n+1,p,q(x)

n+ 1
= [2]q

∞∑
m=0

(−1)mqmphm[m+ x]np,q.

We find by utilizing Definition 2.2 that
∞∑
n=0

G(h)
n,p,q(x)

tn

n!
= [2]qt

∞∑
k=0

(−1)kqkpkhe[x+k]p,qt

= [2]qt

∞∑
n=0

(
1

p− q

)n ∞∑
k=0

(−1)kqkpkh
(
px+k − qx+k

)n tn
n!

= [2]qt

∞∑
n=0

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlpx(n−l)

×
∞∑
k=0

(−1)kqk(1+l)pk(n−l+h)
tn

n!

= [2]q

∞∑
n=0

n

(
1

p− q

)n−1

×
n−1∑
l=0

(
n− 1

l

)
(−1)lqxlpx(n−1−l)

1

1 + ql+1pn−1−l+h
tn

n!
.

(2.4)

Therefore, we get the following theorem by comparing the coefficients of tn

n!
and then putting n = n+ 1 on both sides of the equation (2.4).

Theorem 2.4. For non-negative integer n, we have

G
(h)
n+1,p,q(x)

n+ 1
= [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlpx(n−l)

1

1 + ql+1pn−l+h
.
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Next, we get the following theorem by using equation (2.2) in the same way
as in equation (2.4).

Theorem 2.5. For non-negative integer n, we obtain

Gn+1,p,q(x)

n+ 1
= [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqxlpx(n−l)

1

1 + ql+1pn−l
.

If we compare the above Theorem 2.4 and Theorem 2.5, we can see that
Theorem 2.4 and Theorem 2.5 are the same results when h = 0.

By using Theorem 2.5, we obtain

Gn+1,p,q(x)

n+ 1
= [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqlxpx(n−l)

1

1 + ql+1pn−l

= [2]q

(
1

p− q

)n n∑
l=0

(
n

l

)
(−1)lqlxpx(n−l)

1

1 + qm(l+1)pm(n−l)

×
m−1∑
a=0

(−1)aqa(l+1)pa(n−l)

=
[2]q

[2]qm
[m]np,q

m−1∑
a=0

(−1)aqa
Gn+1,pm,qm

(
a+x
m

)
n+ 1

.

(2.5)

Consequently, we get the following theorem from the above equation (2.5).
This theorem is called distribution relation.

Theorem 2.6. (Distribution relation) For non-negative integer n and any pos-
itive odd integer m, we have

Gn+1,p,q(x) =
[2]q

[2]qm
[m]np,q

m−1∑
a=0

(−1)aqaGn+1,pm,qm

(
a+ x

m

)
. (2.6)

Let us put h = 0 in Theorem 2.3, we have

Gn+1,p,q(x)

n+ 1
= [2]q

∞∑
m=0

(−1)mqm[m+ x]np,q

= [2]q

∞∑
m=0

(−1)mqm
n∑
l=0

(
n

l

)
qxl[m]lp,q[x]n−lp,q p

m(n−l)

=

n∑
l=0

(
n

l

)
[x]n−lp,q q

xl
G

(n−l)
l+1,p,q

l + 1
.

(2.7)

Therefore, we get the following theorem from the above equation (2.7). It is
the connection between Carlitz’s type (p, q)-Genocchi polynomials Gn,p,q(x) and

Carlitz’s type (h, p, q)-Genocchi polynomials G
(h)
n,p,q(x).
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Theorem 2.7. For non-negative integer n, we have

Gn+1,p,q(x)

n+ 1
=

n∑
l=0

(
n

l

)
[x]n−lp,q q

xl
G

(n−l)
l+1,p,q

l + 1
.

By using Theorem 2.5, we obtain

Gn+1,p−1,q−1(1− x)

n+ 1

= [2]q−1

(
1

p−1 − q−1

)n
×

n∑
l=0

(
n

l

)
(−1)lq−(1−x)lp−(1−x)(n−l)

1

1 + q−(l+1)p−(n−l)

=

(
1

p− q

)n
pnqn(−1)n[2]q

n∑
l=0

(
n

l

)
(−1)lqxlpx(n−l)

1

1 + ql+1pn−l

= pnqn(−1)n
Gn+1,p,q(x)

n+ 1
.

(2.8)

Hence, we get the following theorem from the above equation (2.8). This
theorem is called property of complement.

Theorem 2.8. (Property of complement) For non-negative integer n, we have

Gn+1,p−1,q−1(1− x) = pnqn(−1)nGn+1,p,q(x).

We can easily observe the following equation.

− [2]qt

∞∑
k=0

(−1)n+kqn+ke[n+k]p,qt + [2]qt

∞∑
k=0

(−1)kqke[k]p,qt

= [2]qt

n−1∑
k=0

(−1)kqke[k]p,qt.

(2.9)

If we express the left-hand side of the above equation (2.9) as Carlitz’s type
(p, q)-Genocchi numbers Gn,p,q and polynomials Gn,p,q(x), then we have

(−1)n+1qn
∞∑
m=0

Gm,p,q(n)
tm

m!
+

∞∑
m=0

Gm,p,q
tm

m!

= [2]qt

n−1∑
k=0

(−1)kqke[k]p,qt

=

∞∑
m=0

(
[2]qm

n−1∑
k=0

(−1)kqk[k]m−1p,q

)
tm

m!
.

(2.10)

Therefore, we get the following theorem by comparing the coefficients of tm

m!
on both sides of the above equation (2.10).



Symmetric properties of Carlitz’s type (p, q)-Genocchi polynomials 323

Theorem 2.9. For m,n ∈ N, we get

(−1)n+1qnGm,p,q(n) +Gm,p,q
[2]qm

=

n−1∑
k=0

(−1)kqk[k]m−1p,q .

The above theorem is explained as an alternating sums using Carlitz’s type
(p, q)-Genocchi numbers Gn,p,q and polynomials Gn,p,q(x).

3. Symmtric properties of the Carlitz’s type (p, q)-Genocchi
polynomials

In section 3, this paper investigates the relation between Carlitz’s type (p, q)-
Genocchi polynomials Gn,p,q(x) and Hurwitz (p, q)-Euler Zeta function ζp,q(s, x).
After that it derives symmetric property of Carlitz’s type (p, q)-Genocchi poly-
nomials Gn,p,q(x).

By using equation (2.2), we get

dk

dtk
Fp,q(x, t)

∣∣∣∣
t=0

=
dk

dtk
[2]q

∞∑
m=0

(−1)mqme[m+x]p,qt

∣∣∣∣
t=0

= [2]qk

∞∑
m=0

(−1)mqm[m+ x]k−1p,q

(3.1)

and (
d

dt

)k( ∞∑
n=0

Gn,p,q(x)
tn

n!

)∣∣∣∣
t=0

=

∞∑
n=k

Gn,p,q(x)
tn−k

(n− k)!

∣∣∣∣
t=0

= Gk,p,q(x).

(3.2)

Thus, we get the following theorem by comparing the equations (3.1) and
(3.2), and then putting n = n+ 1 on both sides.

Theorem 3.1. For non-negative integer k, we have

Gk+1,p,q(x)

k + 1
= [2]q

∞∑
m=0

(−1)mqm[m+ x]kp,q.

By using equation (1.1) and Theroem 3.1, we get

ζp,q(−k, x) = [2]q

∞∑
m=0

(−1)mqm

[m+ x]−kp,q

= [2]q

∞∑
m=0

(−1)mqm[m+ x]kp,q

=
Gk+1,p,q(x)

k + 1
.

(3.3)
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Therefore, we get the following theorem from the above equation (3.3). This
theorem is connection between Carlitz’s type (p, q)-Genocchi polynomialsGn,p,q(x)
and Hurwitz (p, q)-Euler Zeta function ζp,q(s, x).

Theorem 3.2. For non-negative integer k, we have

ζp,q(−k, x) =
Gk+1,p,q(x)

k + 1
.

By substituting w1x + w1i
w2

for x and replacing p with pw2 and q with qw2 in
Theorem 3.1, respectively, we derive

Gn+1,pw2 ,qw2

(
w1x+ w1i

w2

)
n+ 1

= [2]qw2

∞∑
k=0

(−1)kqw2k

[
k + w1x+

w1i

w2

]n
pw2 ,qw2

=
[2]qw2

[w2]np,q

∞∑
k=0

(−1)kqw2k [w2k + w1w2x+ w1i]
n
p,q .

(3.4)

For any non-negative integer k and positive odd integer w1, there exist unique
non-negative integer r such that k = w1r + j with 0 ≤ j ≤ w1 − 1. Hence, this
can be written as

Gn+1,pw2 ,qw2

(
w1x+ w1i

w2

)
n+ 1

=
[2]qw2

[w2]np,q

∞∑
w1r+j=0

(−1)w1r+jqw2(w1r+j) [w2(w1r + j) + w1w2x+ w1i]
n
p,q

=
[2]qw2

[w2]np,q

w1−1∑
j=0

∞∑
r=0

(−1)w1r+jqw2(w1r+j) [w2(w1r + j) + w1w2x+ w1i]
n
p,q .

(3.5)

Let us put
[2]qw1

[w1]np,q

w2−1∑
i=0

(−1)iqw1i on both sides of the above equation (3.5),

we obtain

[2]qw1

[w1]np,q

w2−1∑
i=0

(−1)iqw1i
Gn+1,pw2 ,qw2

(
w1x+ w1i

w2

)
n+ 1

=
[2]qw1

[w1]np,q

[2]qw2

[w2]np,q

w2−1∑
i=0

w1−1∑
j=0

×
∞∑
r=0

(−1)r+i+jqw1w2r+w1i+w2j [w1w2(x+ r) + w1i+ w2j]
n
p,q .

(3.6)



Symmetric properties of Carlitz’s type (p, q)-Genocchi polynomials 325

From similar method of the equation (3.4), we get

Gn+1,pw1 ,qw1

(
w2x+ w2j

w1

)
n+ 1

=
[2]qw1

[w1]np,q

∞∑
k=0

(−1)kqw1k [w1k + w1w2x+ w2j]
n
p,q .

(3.7)

After some calculations in the above equation (3.7) and then applies
[2]qw2

[w2]np,q

∑w1−1
j=0 (−1)jqw2j , we have

[2]qw2

[w2]np,q

w1−1∑
j=0

(−1)jqw2j
Gn+1,pw1 ,qw1

(
w2x+ w2j

w1

)
n+ 1

=
[2]qw1

[w1]np,q

[2]qw2

[w2]np,q

w2−1∑
i=0

w1−1∑
j=0

×
∞∑
r=0

(−1)r+i+jqw1w2r+w1i+w2j [w1w2(r + x) + w1i+ w2j]
n
p,q .

(3.8)

Consequently, we get the following theorem by comparing the results of the
equations (3.6) and (3.8).

Theorem 3.3. (Symmetric property) For non-negative integer n and any odd
positive intger w1 and w2, we have

[2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1iGn+1,pw2 ,qw2

(
w1x+

w1i

w2

)

= [2]qw2 [w1]np,q

w1−1∑
j=0

(−1)jqw2jGn+1,pw1 ,qw1

(
w2x+

w2j

w1

)
.

By using Theroem 3.2 and Theroem 3.3, we get the following corollary.

Corollary 3.4. For any positive odd intger w1 and w2, we have

[2]qw1 [w1]np,q

w2−1∑
i=0

(−1)iqw1iζpw2 ,qw2

(
n,w1x+

w1i

w2

)

= [2]qw2 [w2]np,q

w1−1∑
j=0

(−1)jqw2jζpw1 ,qw1

(
n,w2x+

w2j

w1

)
.

By taking w1 = 1 and replacing x with x
w2

in Theorem 3.3, we obtain

[2]q[w2]np,q

w2−1∑
i=0

(−1)iqiGn+1,pw2 ,qw2

(
x

w2
+

i

w2

)
= [2]qw2Gn+1,p,q(x).

(3.9)
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Hence, we get the following corollary by calculating the above equation (3.9).

Corollary 3.5. For non-negative integer n and any positive odd integer w2, we
get

Gn+1,p,q(x) =
[2]q[w2]np,q

[2]qw2

w2−1∑
i=0

(−1)iqiGn+1,pw2 ,qw2

(
x+ i

w2

)
. (3.10)

Proofs of Theorem 2.6 and Corollary 3.5 are different but the results are the
same. Thus, Corollary 3.5 can be called distribution relation.

If we put w1 = 1 and w2 = 3 in Theorem 3.3, then we get the following
corllary.

Corollary 3.6. For non-negative integer n, we obtain

Gn+1,p3,q3

(x
3

)
− qGn+1,p3,q3

(
x+ 1

3

)
+ q2Gn+1,p3,q3

(
x+ 2

3

)
=

[2]q3

[2]q[3]np,q
Gn+1,p,q (x) .

Next, by applying toalternating series, we can get different result of symmetric
property. By using Theorem 3.3, we have

[2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1i
Gn+1,pw2 ,qw2

(
w1x+ w1i

w2

)
n+ 1

= [2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1i[2]qw2

∞∑
m=0

(−1)mqw2m

[
m+ w1x+

w1i

w2

]n
pw2 ,qw2

= [2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1i[2]qw2

×
∞∑
m=0

(−1)mqw2m

(
qw1i[m+ w1x]pw2 ,qw2 + pw2(m+w1x)[i]pw1 ,qw1

[w1]p,q
[w2]p,q

)n

= [2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1i[2]qw2

∞∑
m=0

(−1)mqw2m

×
n∑
l=0

(
n

l

)
qw1i(n−l)[m+ w1x]n−lpw2 ,qw2p

w2mlpw1w2xl[i]lpw1 ,qw1

(
[w1]p,q
[w2]p,q

)l
.
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From Theorem 2.3, we get

[2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1i
Gn+1,pw2 ,qw2

(
w1x+ w1i

w2

)
n+ 1

= [2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1i

×
n∑
l=0

(
n

l

)
qw1i(n−l)pw1w2xl

G
(l)
n−l+1,pw2 ,qw2 (w1x)

n− l + 1
[i]lpw1 ,qw1

(
[w1]p,q
[w2]p,q

)l

= [2]qw1

n∑
l=0

(
n

l

)
[w1]lp,q[w2]n−lp,q p

w1w2xl
G

(l)
n−l+1,pw2 ,qw2 (w1x)

n− l + 1

×
w2−1∑
i=0

(−1)iqw1i(n−l+1)[i]lpw1 ,qw1 .

(3.11)

As a result of the above the equation (3.11), we obtain

[2]qw1 [w2]np,q

w2−1∑
i=0

(−1)iqw1i
Gn+1,pw2 ,qw2

(
w1x+ w1i

w2

)
n+ 1

= [2]qw1

n∑
l=0

(
n

l

)
[w1]lp,q[w2]n−lp,q p

w1w2xl
Gn−l+1,pw2 ,qw2 (w1x)

n− l + 1
En,l,pw1 ,qw1 (w2)

(3.12)

and

[2]qw2 [w1]np,q

w1−1∑
j=0

(−1)jqw2j
Gn+1,pw1 ,qw1

(
w2x+ w2j

w1

)
n+ 1

= [2]qw2

n∑
l=0

(
n

l

)
[w2]lp,q[w1]n−lp,q p

w1w2xl
Gn−l+1,pw1 ,qw1 (w2x)

n− l + 1
En,l,pw2 ,qw2 (w1).

(3.13)

Consequently, we get the following theorem from the equations (3.12) and
(3.13).

Theorem 3.7. For any positive odd integer w1 and w2, we have

[2]qw1

n∑
l=0

(
n

l

)
[w1]lp,q[w2]n−lp,q p

w1w2xl
Gn−l+1,pw2 ,qw2 (w1x)

n− l + 1
En,l,pw1 ,qw1 (w2)

= [2]qw2

n∑
l=0

(
n

l

)
[w2]lp,q[w1]n−lp,q p

w1w2xl
Gn−l+1,pw1 ,qw1 (w2x)

n− l + 1
En,l,pw2 ,qw2 (w1),

where En,l,p,q(k) =
∑k−1
i=0 (−1)iq(1+n−l)i[i]lp,q is called as alternating series.
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