SYMMETRIC PROPERTIES OF CARLITZ'S TYPE (p, q)-GENOCCHI POLYNOMIALS

A HYUN KIM

Abstract

This paper defines Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, and explains fourteen properties which can be complemented by Carlitz's type (p, q)-Genocchi polynomials and Carlitz's type (h, p, q)-Genocchi polynomials, including distribution relation, symmetric property, and property of complement. Also, it explores alternating powers sums by proving symmetric property related to Carlitz's type (p, q)-Genocchi polynomials.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. Key words and phrases : Hurwitz Euler Zeta function, Genocchi polynomials and numbers, (p, q)-Genocchi polynomials.

1. Introduction

Many researchers have investigated Genocchi numbers G_{n} and Genocchi polynomials $G_{n}(x)$. Until now, Genocchi numbers and Genocchi polynomials have been studied in many field, such as analytic number theory, theory of modular forms and quantum physics(see [1-7]).

This paper uses the following notations: $\mathbb{N}=\{1,2,3, \cdots\}$ denotes the natural numbers, $\mathbb{Z}_{0}^{-}=\{0,-1,-2,-3, \cdots\}$ denotes the set of non-positive integers, \mathbb{Z} denotes the set of integers, \mathbb{R} denotes the set of real numbers, and \mathbb{C} denotes the set of complex numbers.
q-number and (p, q)-number are defined by

$$
[n]_{q}=\frac{1-q^{n}}{1-q} \quad \text { and } \quad[n]_{p, q}=\frac{p^{n}-q^{n}}{p-q}
$$

It is obvious that (p, q)-number includes symmetric property, which is q number as $p=1$. Especially, we have $\lim _{q \rightarrow 1}[n]_{p, q}=n$ when $p=1$.

[^0]We know that the classical Genocchi numbers G_{n} and polynomials $G_{n}(x)$ are defined by the following generating functions:

$$
\frac{2 t}{e^{t}+1}=\sum_{n=0}^{\infty} G_{n} \frac{t^{n}}{n!} \quad(|t|<\pi)
$$

and

$$
\frac{2 t}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} G_{n}(x) \frac{t^{n}}{n!} \quad(|t|<\pi)
$$

Many mathematicians have studied q-Genocchi numbers and polynomials, an extension of classical Genocchi numbers and polynomials. From now on, this paper will introduce q-Genocchi, which has been studied by several researchers.

First, Kim defined q-extension of Genocchi numbers $G_{n, q}$ and q-analogue of Genocchi polynomials $G_{n, q}(x)$ in 2007, as follows(see [4]):

$$
G_{q}(t)=\sum_{n=0}^{\infty} G_{n, q} \frac{t^{n}}{n!}=[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n} e^{[n]_{q} t}
$$

and

$$
G_{q}(x, t)=\sum_{n=0}^{\infty} G_{n, q}(x) \frac{t^{n}}{n!}=[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n+x} e^{[n+x]_{q} t}
$$

where $q \in \mathbb{C}$ with $|q|<1$.
Also, he examined the properties of q-analogue of Genocchi polynomials such as distribution relation. He gave some connection between q-extension of Euler polynomials and q-extension of Genocchi numbers.

Seocond, Ryoo and Kang defined q-Genocchi numbers $G_{n, q}^{(\alpha)}$ and polynomials $G_{n, q}^{(\alpha)}(x)$ with weak weight α in 2012, as follows(see [5]):

$$
F_{q}^{(\alpha)}(t)=\sum_{n=0}^{\infty} G_{n, q}^{(\alpha)} \frac{t^{n}}{n!}=[2]_{q^{\alpha}} t \sum_{n=0}^{\infty}(-1)^{n} q^{\alpha n} e^{[n]_{q} t}
$$

and

$$
F_{q}^{(\alpha)}(x, t) \sum_{n=0}^{\infty} G_{n, q}^{(\alpha)}(x) \frac{t^{n}}{n!}=[2]_{q^{\alpha}} t \sum_{n=0}^{\infty}(-1)^{n} q^{\alpha n} e^{[n+x]_{q} t}
$$

where $\alpha \in \mathbb{C}$.
They investigeted the properties of q-Genocchi polynomials $G_{n, q}^{(\alpha)}(x)$ with weak weight α such as property of complement. Furthermore, they compared between q-Genocchi polynomials and q-Genocchi Zeta function.

Finally, Kang and Ryoo defined the twisted q-Genocchi polynomials $G_{n, q, w}(x)$ in 2014, as follows(see [2]):

$$
\sum_{n=0}^{\infty} G_{n, q, w}(x) \frac{t^{n}}{n!}=[2]_{q} t \sum_{n=0}^{\infty}(-1)^{n} q^{n} w^{n} e^{[n+x]_{q} t}
$$

where r is a positive integer and w is r-th root of 1 .

They derived some properties of the twisted q-Genocchi polynomials such as symmetric property.

Next, it will introduce definition of Hurwitz (p, q)-Euler Zeta function, which is an extension of Hurwitz Euler Zeta function. For $s \in \mathbb{C}$ with $\operatorname{Re}(s)>0$ and $x \notin \mathbb{Z}_{0}^{-}$, Hurwitz (p, q)-Euler Zeta function $\zeta_{p, q}(s, x)$ defined by the following generation function(see $[6,7])$:

$$
\begin{equation*}
\zeta_{p, q}(s, x)=[2]_{q} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n}}{[n+x]_{p, q}^{s}} \tag{1.1}
\end{equation*}
$$

This paper modifies q-Genocchi numbers and polynomials, which is mentioned above, and studies (p, q)-Genocchi numbers and polynomials that is extended by q-Genocchi numbers and polynomials. To be specific, it defines Carlitz's type (p, q)-Genocchi numbers $G_{n, p, q}$ and polynomials $G_{n, p, q}(x)$. Also, it gives some general properties of Carlitz's type (p, q)-Genocchi polynomials. At the end, it examines symmetric properties of Carlitz's type (p, q)-Genocchi polynomials.

2. Some properties of Carlitz's type (p, q)-Genocchi numbers and polynomials

In this section, we define Carlitz's type (p, q)-Genocchi numbers $G_{n, p, q}$ and polynomials $G_{n, p, q}(x)$ and Carlitz's type (h, p, q)-Genocchi polynomials $G_{n, p, q}^{(h)}(x)$. It derives some several properties.

Definition 2.1. For $0<q<p \leq 1$, Carlitz's type (p, q)-Genocchi numbers $G_{n, p, q}$ and polynomials $G_{n, p, q}(x)$ are defined as the following generating functions
and

$$
\begin{gather*}
F_{p, q}(t)=\sum_{n=0}^{\infty} G_{n, p, q} \frac{t^{n}}{n!}=[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[m]_{p, q} t} \tag{2.1}\\
F_{p, q}(x, t)=\sum_{n=0}^{\infty} G_{n, p, q}(x) \frac{t^{n}}{n!}=[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[m+x]_{p, q} t}, \tag{2.2}
\end{gather*}
$$

respectively.
If we put $p=1$ and let $q \rightarrow 1$ in equations (2.1) and (2.2), then Carlitz's type (p, q)-Genocchi numbers $G_{n, p, q}$ reduce to the classical Genocchi numbers G_{n} and Carlitz's type (p, q)-Genocchi polynomials $G_{n, p, q}(x)$ reduce to the classical Genocchi polynomials $G_{n}(x)$. In other words, they are:

$$
\lim _{q \rightarrow 1} G_{n, p, q}=G_{n} \text { and } \lim _{q \rightarrow 1} G_{n, p, q}(x)=G_{n}(x)
$$

Definition 2.2. For $0<q<p \leq 1$, Carlitz's type (h, p, q)-Genocchi polynomials $G_{n, p, q}^{(h)}(x)$ is defined as the following generating function

$$
\sum_{n=0}^{\infty} G_{n, p, q}^{(h)}(x) \frac{t^{n}}{n!}=[2]_{q} t \sum_{k=0}^{\infty}(-1)^{k} q^{k} p^{k h} e^{[x+k]_{p, q} t}
$$

In particular, Carlitz's type (h, p, q)-Genocchi polynomials are Carlitz's type (h, p, q)-Genocchi numbers when $x=0$, that is, $G_{n, p, q}^{(h)}=G_{n, p, q}^{(h)}(0)$ denotes Carlitz's type (h, p, q)-Genocchi numbers.

By using Definition 2.2, we get

$$
\begin{align*}
\sum_{n=0}^{\infty} G_{n, p, q}^{(h)}(x) \frac{t^{n}}{n!} & =[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} p^{m h} e^{[x+m]_{p, q} t} \\
& =[2]_{q} t \sum_{m=0}^{\infty}(-1)^{m} q^{m} p^{m h} \sum_{n=0}^{\infty}[x+m]_{p, q}^{n} \frac{t^{n}}{n!} \tag{2.3}\\
& =[2]_{q} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty}(-1)^{m} q^{m} p^{m h} n[x+m]_{p, q}^{n-1} \frac{t^{n}}{n!}
\end{align*}
$$

Hence, we get the following theorem by comparing the coefficients of $\frac{t^{n}}{n!}$ and then putting $n=n+1$ on both sides of the above equation (2.3).
Theorem 2.3. For non-negative integer n, we obtain

$$
\frac{G_{n+1, p, q}^{(h)}(x)}{n+1}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} p^{h m}[m+x]_{p, q}^{n}
$$

We find by utilizing Definition 2.2 that

$$
\begin{align*}
\sum_{n=0}^{\infty} G_{n, p, q}^{(h)}(x) \frac{t^{n}}{n!} & =[2]_{q} t \sum_{k=0}^{\infty}(-1)^{k} q^{k} p^{k h} e^{[x+k]_{p, q} t} \\
& =[2]_{q} t \sum_{n=0}^{\infty}\left(\frac{1}{p-q}\right)^{n} \sum_{k=0}^{\infty}(-1)^{k} q^{k} p^{k h}\left(p^{x+k}-q^{x+k}\right)^{n} \frac{t^{n}}{n!} \\
= & {[2]_{q} t \sum_{n=0}^{\infty}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} p^{x(n-l)} } \\
& \times \sum_{k=0}^{\infty}(-1)^{k} q^{k(1+l)} p^{k(n-l+h)} \frac{t^{n}}{n!} \tag{2.4}\\
& =[2]_{q} \sum_{n=0}^{\infty} n\left(\frac{1}{p-q}\right)^{n-1} \\
& \times \sum_{l=0}^{n-1}\binom{n-1}{l}(-1)^{l} q^{x l} p^{x(n-1-l)} \frac{1}{1+q^{l+1} p^{n-1-l+h}} \frac{t^{n}}{n!}
\end{align*}
$$

Therefore, we get the following theorem by comparing the coefficients of $\frac{t^{n}}{n!}$ and then putting $n=n+1$ on both sides of the equation (2.4).
Theorem 2.4. For non-negative integer n, we have

$$
\frac{G_{n+1, p, q}^{(h)}(x)}{n+1}=[2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} p^{x(n-l)} \frac{1}{1+q^{l+1} p^{n-l+h}}
$$

Next, we get the following theorem by using equation (2.2) in the same way as in equation (2.4).

Theorem 2.5. For non-negative integer n, we obtain

$$
\frac{G_{n+1, p, q}(x)}{n+1}=[2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} p^{x(n-l)} \frac{1}{1+q^{l+1} p^{n-l}}
$$

If we compare the above Theorem 2.4 and Theorem 2.5 , we can see that Theorem 2.4 and Theorem 2.5 are the same results when $h=0$.

By using Theorem 2.5, we obtain

$$
\begin{align*}
\frac{G_{n+1, p, q}(x)}{n+1} & =[2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} p^{x(n-l)} \frac{1}{1+q^{l+1} p^{n-l}} \\
& =[2]_{q}\left(\frac{1}{p-q}\right)^{n} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{l x} p^{x(n-l)} \frac{1}{1+q^{m(l+1)} p^{m(n-l)}} \\
& \times \sum_{a=0}^{m-1}(-1)^{a} q^{a(l+1)} p^{a(n-l)} \tag{2.5}\\
& =\frac{[2]_{q}}{[2]_{q^{m}}}[m]_{p, q}^{n} \sum_{a=0}^{m-1}(-1)^{a} q^{a} \frac{G_{n+1, p^{m}, q^{m}}\left(\frac{a+x}{m}\right)}{n+1}
\end{align*}
$$

Consequently, we get the following theorem from the above equation (2.5). This theorem is called distribution relation.

Theorem 2.6. (Distribution relation) For non-negative integer n and any positive odd integer m, we have

$$
\begin{equation*}
G_{n+1, p, q}(x)=\frac{[2]_{q}}{[2]_{q^{m}}}[m]_{p, q}^{n} \sum_{a=0}^{m-1}(-1)^{a} q^{a} G_{n+1, p^{m}, q^{m}}\left(\frac{a+x}{m}\right) . \tag{2.6}
\end{equation*}
$$

Let us put $h=0$ in Theorem 2.3, we have

$$
\begin{align*}
\frac{G_{n+1, p, q}(x)}{n+1} & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[m+x]_{p, q}^{n} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \sum_{l=0}^{n}\binom{n}{l} q^{x l}[m]_{p, q}^{l}[x]_{p, q}^{n-l} p^{m(n-l)} \tag{2.7}\\
& =\sum_{l=0}^{n}\binom{n}{l}[x]_{p, q}^{n-l} q^{x l} \frac{G_{l+1, p, q}^{(n-l)}}{l+1}
\end{align*}
$$

Therefore, we get the following theorem from the above equation (2.7). It is the connection between Carlitz's type (p, q)-Genocchi polynomials $G_{n, p, q}(x)$ and Carlitz's type (h,p,q)-Genocchi polynomials $G_{n, p, q}^{(h)}(x)$.

Theorem 2.7. For non-negative integer n, we have

$$
\frac{G_{n+1, p, q}(x)}{n+1}=\sum_{l=0}^{n}\binom{n}{l}[x]_{p, q}^{n-l} q^{x l} \frac{G_{l+1, p, q}^{(n-l)}}{l+1} .
$$

By using Theorem 2.5, we obtain

$$
\begin{align*}
& \frac{G_{n+1, p^{-1}, q^{-1}(1-x)}}{n+1} \\
& =[2]_{q^{-1}}\left(\frac{1}{p^{-1}-q^{-1}}\right)^{n} \\
& \times \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{-(1-x) l} p^{-(1-x)(n-l)} \frac{1}{1+q^{-(l+1)} p^{-(n-l)}} \tag{2.8}\\
& =\left(\frac{1}{p-q}\right)^{n} p^{n} q^{n}(-1)^{n}[2]_{q} \sum_{l=0}^{n}\binom{n}{l}(-1)^{l} q^{x l} p^{x(n-l)} \frac{1}{1+q^{l+1} p^{n-l}} \\
& =p^{n} q^{n}(-1)^{n} \frac{G_{n+1, p, q}(x)}{n+1} .
\end{align*}
$$

Hence, we get the following theorem from the above equation (2.8). This theorem is called property of complement.

Theorem 2.8. (Property of complement) For non-negative integer n, we have

$$
G_{n+1, p^{-1}, q^{-1}}(1-x)=p^{n} q^{n}(-1)^{n} G_{n+1, p, q}(x)
$$

We can easily observe the following equation.

$$
\begin{align*}
& -[2]_{q} t \sum_{k=0}^{\infty}(-1)^{n+k} q^{n+k} e^{[n+k]_{p, q} t}+[2]_{q} t \sum_{k=0}^{\infty}(-1)^{k} q^{k} e^{[k]_{p, q} t} \\
& =[2]_{q} t \sum_{k=0}^{n-1}(-1)^{k} q^{k} e^{[k]_{p, q} t} \tag{2.9}
\end{align*}
$$

If we express the left-hand side of the above equation (2.9) as Carlitz's type (p, q)-Genocchi numbers $G_{n, p, q}$ and polynomials $G_{n, p, q}(x)$, then we have

$$
\begin{align*}
& (-1)^{n+1} q^{n} \sum_{m=0}^{\infty} G_{m, p, q}(n) \frac{t^{m}}{m!}+\sum_{m=0}^{\infty} G_{m, p, q} \frac{t^{m}}{m!} \\
& =[2]_{q} t \sum_{k=0}^{n-1}(-1)^{k} q^{k} e^{[k]_{p, q} t} \tag{2.10}\\
& =\sum_{m=0}^{\infty}\left([2]_{q} m \sum_{k=0}^{n-1}(-1)^{k} q^{k}[k]_{p, q}^{m-1}\right) \frac{t^{m}}{m!}
\end{align*}
$$

Therefore, we get the following theorem by comparing the coefficients of $\frac{t^{m}}{m!}$ on both sides of the above equation (2.10).

Theorem 2.9. For $m, n \in \mathbb{N}$, we get

$$
\frac{(-1)^{n+1} q^{n} G_{m, p, q}(n)+G_{m, p, q}}{[2]_{q} m}=\sum_{k=0}^{n-1}(-1)^{k} q^{k}[k]_{p, q}^{m-1} .
$$

The above theorem is explained as an alternating sums using Carlitz's type (p, q)-Genocchi numbers $G_{n, p, q}$ and polynomials $G_{n, p, q}(x)$.

3. Symmtric properties of the Carlitz's type (p, q)-Genocchi polynomials

In section 3, this paper investigates the relation between Carlitz's type (p, q) Genocchi polynomials $G_{n, p, q}(x)$ and Hurwitz (p, q)-Euler Zeta function $\zeta_{p, q}(s, x)$. After that it derives symmetric property of Carlitz's type (p, q)-Genocchi polynomials $G_{n, p, q}(x)$.

By using equation (2.2), we get

$$
\begin{align*}
\left.\frac{d^{k}}{d t^{k}} F_{p, q}(x, t)\right|_{t=0} & =\left.\frac{d^{k}}{d t^{k}}[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} e^{[m+x]_{p, q} t}\right|_{t=0} \tag{3.1}\\
& =[2]_{q} k \sum_{m=0}^{\infty}(-1)^{m} q^{m}[m+x]_{p, q}^{k-1}
\end{align*}
$$

and

$$
\begin{align*}
\left.\left(\frac{d}{d t}\right)^{k}\left(\sum_{n=0}^{\infty} G_{n, p, q}(x) \frac{t^{n}}{n!}\right)\right|_{t=0} & =\left.\sum_{n=k}^{\infty} G_{n, p, q}(x) \frac{t^{n-k}}{(n-k)!}\right|_{t=0} \tag{3.2}\\
& =G_{k, p, q}(x)
\end{align*}
$$

Thus, we get the following theorem by comparing the equations (3.1) and (3.2), and then putting $n=n+1$ on both sides.

Theorem 3.1. For non-negative integer k, we have

$$
\frac{G_{k+1, p, q}(x)}{k+1}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[m+x]_{p, q}^{k}
$$

By using equation (1.1) and Theroem 3.1, we get

$$
\begin{align*}
\zeta_{p, q}(-k, x) & =[2]_{q} \sum_{m=0}^{\infty} \frac{(-1)^{m} q^{m}}{[m+x]_{p, q}^{-k}} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m}[m+x]_{p, q}^{k} \tag{3.3}\\
& =\frac{G_{k+1, p, q}(x)}{k+1}
\end{align*}
$$

Therefore, we get the following theorem from the above equation (3.3). This theorem is connection between Carlitz's type (p, q)-Genocchi polynomials $G_{n, p, q}(x)$ and Hurwitz (p, q)-Euler Zeta function $\zeta_{p, q}(s, x)$.

Theorem 3.2. For non-negative integer k, we have

$$
\zeta_{p, q}(-k, x)=\frac{G_{k+1, p, q}(x)}{k+1}
$$

By substituting $w_{1} x+\frac{w_{1} i}{w_{2}}$ for x and replacing p with $p^{w_{2}}$ and q with $q^{w_{2}}$ in Theorem 3.1, respectively, we derive

$$
\begin{align*}
& \frac{G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)}{n+1} \\
& =[2]_{q^{w_{2}}} \sum_{k=0}^{\infty}(-1)^{k} q^{w_{2} k}\left[k+w_{1} x+\frac{w_{1} i}{w_{2}}\right]_{p^{w_{2}, q^{w_{2}}}}^{n} \tag{3.4}\\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{p, q}^{n}} \sum_{k=0}^{\infty}(-1)^{k} q^{w_{2} k}\left[w_{2} k+w_{1} w_{2} x+w_{1} i\right]_{p, q}^{n}
\end{align*}
$$

For any non-negative integer k and positive odd integer w_{1}, there exist unique non-negative integer r such that $k=w_{1} r+j$ with $0 \leq j \leq w_{1}-1$. Hence, this can be written as

$$
\begin{align*}
& \frac{G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)}{n+1} \\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{p, q}^{n}} \sum_{w_{1} r+j=0}^{\infty}(-1)^{w_{1} r+j} q^{w_{2}\left(w_{1} r+j\right)}\left[w_{2}\left(w_{1} r+j\right)+w_{1} w_{2} x+w_{1} i\right]_{p, q}^{n} \tag{3.5}\\
& =\frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{p, q}^{n}} \sum_{j=0}^{w_{1}-1} \sum_{r=0}^{\infty}(-1)^{w_{1} r+j} q^{w_{2}\left(w_{1} r+j\right)}\left[w_{2}\left(w_{1} r+j\right)+w_{1} w_{2} x+w_{1} i\right]_{p, q}^{n} .
\end{align*}
$$

Let us put $\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{p, q}^{n}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i}$ on both sides of the above equation (3.5), we obtain

$$
\begin{align*}
& \frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{p, q}^{n}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \frac{G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)}{n+1} \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{p, q}^{n}} \frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{p, q}^{n}} \sum_{i=0}^{w_{2}-1} \sum_{j=0}^{w_{1}-1} \tag{3.6}\\
& \times \sum_{r=0}^{\infty}(-1)^{r+i+j} q^{w_{1} w_{2} r+w_{1} i+w_{2} j}\left[w_{1} w_{2}(x+r)+w_{1} i+w_{2} j\right]_{p, q}^{n}
\end{align*}
$$

From similar method of the equation (3.4), we get

$$
\begin{align*}
& \frac{G_{n+1, p^{w_{1}}, q^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right)}{n+1} \tag{3.7}\\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{p, q}^{n}} \sum_{k=0}^{\infty}(-1)^{k} q^{w_{1} k}\left[w_{1} k+w_{1} w_{2} x+w_{2} j\right]_{p, q}^{n}
\end{align*}
$$

After some calculations in the above equation (3.7) and then applies $\frac{[2]_{q} w_{2}}{\left[w_{2}\right]_{p, q}^{n}} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j}$, we have

$$
\begin{align*}
& \frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{p, q}^{n}} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \frac{G_{n+1, p^{w_{1}}, q^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right)}{n+1} \\
& =\frac{[2]_{q^{w_{1}}}}{\left[w_{1}\right]_{p, q}^{n}} \frac{[2]_{q^{w_{2}}}}{\left[w_{2}\right]_{p, q}^{n}} \sum_{i=0}^{w_{2}-1} \sum_{j=0}^{w_{1}-1} \tag{3.8}\\
& \quad \times \sum_{r=0}^{\infty}(-1)^{r+i+j} q^{w_{1} w_{2} r+w_{1} i+w_{2} j}\left[w_{1} w_{2}(r+x)+w_{1} i+w_{2} j\right]_{p, q}^{n}
\end{align*}
$$

Consequently, we get the following theorem by comparing the results of the equations (3.6) and (3.8).
Theorem 3.3. (Symmetric property) For non-negative integer n and any odd positive intger w_{1} and w_{2}, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)} \\
& =[2]_{q^{w_{2}}}\left[w_{1}\right]_{p, q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} G_{n+1, p^{w_{1}}, q^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right) .
\end{aligned}
$$

By using Theroem 3.2 and Theroem 3.3, we get the following corollary.
Corollary 3.4. For any positive odd intger w_{1} and w_{2}, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{1}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \zeta_{p^{w_{2}}, q^{w_{2}}}\left(n, w_{1} x+\frac{w_{1} i}{w_{2}}\right)} \\
& =[2]_{q^{w_{2}}}\left[w_{2}\right]_{p, q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \zeta_{p^{w_{1}}, q^{w_{1}}}\left(n, w_{2} x+\frac{w_{2} j}{w_{1}}\right) .
\end{aligned}
$$

By taking $w_{1}=1$ and replacing x with $\frac{x}{w_{2}}$ in Theorem 3.3, we obtain

$$
\begin{align*}
& {[2]_{q}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{i} G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(\frac{x}{w_{2}}+\frac{i}{w_{2}}\right)} \tag{3.9}\\
& =[2]_{q^{w_{2}}} G_{n+1, p, q}(x)
\end{align*}
$$

Hence, we get the following corollary by calculating the above equation (3.9).

Corollary 3.5. For non-negative integer n and any positive odd integer w_{2}, we get

$$
\begin{equation*}
G_{n+1, p, q}(x)=\frac{[2]_{q}\left[w_{2}\right]_{p, q}^{n}}{[2]_{q^{w_{2}}}} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{i} G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(\frac{x+i}{w_{2}}\right) \tag{3.10}
\end{equation*}
$$

Proofs of Theorem 2.6 and Corollary 3.5 are different but the results are the same. Thus, Corollary 3.5 can be called distribution relation.

If we put $w_{1}=1$ and $w_{2}=3$ in Theorem 3.3 , then we get the following corllary.

Corollary 3.6. For non-negative integer n, we obtain

$$
\begin{aligned}
& G_{n+1, p^{3}, q^{3}}\left(\frac{x}{3}\right)-q G_{n+1, p^{3}, q^{3}}\left(\frac{x+1}{3}\right)+q^{2} G_{n+1, p^{3}, q^{3}}\left(\frac{x+2}{3}\right) \\
& =\frac{[2]_{q^{3}}}{[2]_{q}[3]_{p, q}^{n}} G_{n+1, p, q}(x) .
\end{aligned}
$$

Next, by applying toalternating series, we can get different result of symmetric property. By using Theorem 3.3, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \frac{G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)}{n+1}} \\
& =[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i}[2]_{q^{w_{2}}} \sum_{m=0}^{\infty}(-1)^{m} q^{w_{2} m}\left[m+w_{1} x+\frac{w_{1} i}{w_{2}}\right]_{p^{w_{2}, q^{w_{2}}}}^{n} \\
& =[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i}[2]_{q^{w_{2}}} \\
& \quad \times \sum_{m=0}^{\infty}(-1)^{m} q^{w_{2} m}\left(q^{w_{1} i}\left[m+w_{1} x\right]_{p^{w_{2}}, q^{w_{2}}}+p^{w_{2}\left(m+w_{1} x\right)}[i]_{p^{w_{1}, q^{w_{1}}}} \frac{\left[w_{1}\right]_{p, q}}{\left[w_{2}\right]_{p, q}}\right)^{n} \\
& =[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i}[2]_{q^{w_{2}}} \sum_{m=0}^{\infty}(-1)^{m} q^{w_{2} m} \\
& \quad \times \sum_{l=0}^{n}\binom{n}{l} q^{w_{1} i(n-l)}\left[m+w_{1} x\right]_{p^{w_{2}, ~}, q^{w_{2}}}^{n-l} p^{w_{2} m l} p^{w_{1} w_{2} x l}[i]_{p^{w_{1}, q^{w_{1}}}}^{l}\left(\frac{\left[w_{1}\right]_{p, q}}{\left[w_{2}\right]_{p, q}}\right)^{l}
\end{aligned}
$$

From Theorem 2.3, we get

$$
\begin{align*}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \frac{G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)}{n+1}} \\
& =[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \\
& \left.\quad \times \sum_{l=0}^{n}\binom{n}{l} q^{w_{1} i(n-l)} p^{w_{1} w_{2} x l} \frac{G_{n-l+1, p^{w_{2}, q^{w_{2}}}\left(w_{1} x\right)}^{n-l+1}}{l l}\right]_{p^{w_{1}, q^{w_{1}}}}^{l}\left(\frac{\left[w_{1}\right]_{p, q}}{\left[w_{2}\right]_{p, q}}\right)^{l} \tag{3.11}\\
& =[2]_{q^{w_{1}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{1}\right]_{p, q}^{l}\left[w_{2}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} \frac{G_{n-l+1, p^{w_{2}}, q^{w_{2}}}^{(l)}\left(w_{1} x\right)}{n-l+1} \\
& \quad \times \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i(n-l+1)}[i]_{p^{w_{1}}, q^{w_{1}}}^{l}
\end{align*}
$$

As a result of the above the equation (3.11), we obtain

$$
\begin{align*}
& {[2]_{q^{w_{1}}}\left[w_{2}\right]_{p, q}^{n} \sum_{i=0}^{w_{2}-1}(-1)^{i} q^{w_{1} i} \frac{G_{n+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x+\frac{w_{1} i}{w_{2}}\right)}{n+1}} \\
& =[2]_{q^{w_{1}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{1}\right]_{p, q}^{l}\left[w_{2}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} \frac{G_{n-l+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x\right)}{n-l+1} \mathcal{E}_{n, l, p^{w_{1}, q^{w_{1}}}}\left(w_{2}\right) \tag{3.12}
\end{align*}
$$

and

$$
\begin{align*}
& {[2]_{q^{w_{2}}}\left[w_{1}\right]_{p, q}^{n} \sum_{j=0}^{w_{1}-1}(-1)^{j} q^{w_{2} j} \frac{G_{n+1, p^{w_{1}}, q^{w_{1}}}\left(w_{2} x+\frac{w_{2} j}{w_{1}}\right)}{n+1}} \\
& =[2]_{q^{w_{2}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{2}\right]_{p, q}^{l}\left[w_{1}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} \frac{G_{n-l+1, p^{w_{1}}, q^{w_{1}}}\left(w_{2} x\right)}{n-l+1} \mathcal{E}_{n, l, p^{w_{2}, q^{w_{2}}}}\left(w_{1}\right) . \tag{3.13}
\end{align*}
$$

Consequently, we get the following theorem from the equations (3.12) and (3.13).

Theorem 3.7. For any positive odd integer w_{1} and w_{2}, we have

$$
\begin{aligned}
& {[2]_{q^{w_{1}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{1}\right]_{p, q}^{l}\left[w_{2}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} \frac{G_{n-l+1, p^{w_{2}}, q^{w_{2}}}\left(w_{1} x\right)}{n-l+1} \mathcal{E}_{n, l, p^{w_{1}}, q^{w_{1}}}\left(w_{2}\right)} \\
& =[2]_{q^{w_{2}}} \sum_{l=0}^{n}\binom{n}{l}\left[w_{2}\right]_{p, q}^{l}\left[w_{1}\right]_{p, q}^{n-l} p^{w_{1} w_{2} x l} \frac{G_{n-l+1, p^{w_{1}}, q^{w_{1}}}\left(w_{2} x\right)}{n-l+1} \mathcal{E}_{n, l, p^{w_{2}, q^{w_{2}}}}\left(w_{1}\right),
\end{aligned}
$$

where $\mathcal{E}_{n, l, p, q}(k)=\sum_{i=0}^{k-1}(-1)^{i} q^{(1+n-l) i}[i]_{p, q}^{l}$ is called as alternating series.

References

1. Y. He, Symmetric identities for Carlitz's q-Bernoulli numbers and polynomials, Advances in Difference Equations (2013).
2. J.Y. Kang, C.S. Ryoo, Symmetric identities for Carlitz's type twisted q-Genocchi polynomials using twisted q-Genocchi Zeta function, Applied Mathematical Sciences 8 (2014), 4405-4412.
3. T. Kim, A note on the q-Genocchi numbers and polynomials, Journal of Inequalities and Applications (2007), 8 pages.
4. T. Kim, On the q-extension of Euler and Genocchi numbers, J. Math. Anal. Appl. 326 (2007), 1458-1465.
5. C.S. Ryoo, J.Y. Kang, A note on the q-Genocchi numbers and polynomials with weak weight α, Applied Mathematical Sciences 6 (2012), 731-738.
6. C.S. Ryoo, (p, q)-analogue of Euler Zeta function, J. Appl. Math. \& Informatics 35 (2017), 113-120.
7. C.S. Ryoo, Some symmetric identities for (p, q)-Euler Zeta function, J. Computational Analysis and Applications 27 (2019), 361-366.

A Hyun Kim

Department of Mathematics, Hannam University, Daejeon 34430, Korea.
e-mail: kahkah9205@gmail.com

[^0]: Received June 28, 2018. Revised February 22, 2019. Accepted March 25, 2019.
 (C) 2019 KSCAM.

