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SYMMETRIC PROPERTIES OF CARLITZ’S TYPE
(p,9)-GENOCCHI POLYNOMIALS

A HYUN KIM

ABSTRACT. This paper defines Carlitz’s type (p, ¢)-Genocchi polynomials
and Carlitz’s type (h,p, q)-Genocchi polynomials, and explains fourteen
properties which can be complemented by Carlitz’s type (p, q)-Genocchi
polynomials and Carlitz’s type (h,p, q)-Genocchi polynomials, including
distribution relation, symmetric property, and property of complement.
Also, it explores alternating powers sums by proving symmetric property
related to Carlitz’s type (p, ¢)-Genocchi polynomials.
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1. Introduction

Many researchers have investigated Genocchi numbers G,, and Genocchi poly-
nomials G, (x). Until now, Genocchi numbers and Genocchi polynomials have
been studied in many field, such as analytic number theory, theory of modular
forms and quantum physics(see [1-7]).

This paper uses the following notations: N = {1,2,3,---} denotes the natural
numbers, Z, = {0,—1,—-2,-3,---} denotes the set of non-positive integers, Z
denotes the set of integers, R denotes the set of real numbers, and C denotes the
set of complex numbers.

g-number and (p, ¢)-number are defined by

no__ .n
and [n]pq = L
l—q P—q
It is obvious that (p,q)-number includes symmetric property, which is ¢-
number as p = 1. Especially, we have lim1 [n]p,q =71 when p = 1.
q—r
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We know that the classical Genocchi numbers G,, and polynomials G,,(z) are
defined by the following generating functions:

et+1 ZG f_ (It < )

and

=Y Gl (<),
n=0 :

Many mathematicians have studied g-Genocchi numbers and polynomials, an
extension of classical Genocchi numbers and polynomials. From now on, this
paper will introduce g-Genocchi, which has been studied by several researchers.

First, Kim defined g-extension of Genocchi numbers G,, ; and g-analogue of
Genocchi polynomials G, 4(x) in 2007, as follows(see [4]):

Galt) = 3 Gy = Pt S~
n=0 : n=0

and

ZG - tz n n+£ n—&-ac]qt7

where ¢ € C with |¢| < 1.

Also, he examined the properties of g-analogue of Genocchi polynomials such
as distribution relation. He gave some connection between g-extension of Euler
polynomials and g-extension of Genocchi numbers.

Seocond, Ryoo and Kang defined ¢-Genocchi numbers G;ng and polynomials
G) () with weak weight v in 2012, as follows(see [5]):

o0

Féa)(t) _ ZG(a)t _ atz n an [n]qt
n=0
and
x t ZG'E] tz n om n+z]q
where a € C .

They investigeted the properties of g-Genocchi polynomials Ggﬁ; (z) with weak
weight « such as property of complement. Furthermore, they compared between
g-Genocchi polynomials and ¢-Genocchi Zeta function.

Finally, Kang and Ryoo defined the twisted ¢g-Genocchi polynomials Gy, 4. ()
in 2014, as follows(see [2]):

ZGnqw tz nqnwne n+z]qt’

where r is a positive integer and w is r-th root of 1.
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They derived some properties of the twisted g-Genocchi polynomials such as
symmetric property.

Next, it will introduce definition of Hurwitz (p, ¢)-Euler Zeta function, which
is an extension of Hurwitz Euler Zeta function. For s € C with Re(s) > 0 and
x ¢ Zy, Hurwitz (p, q)-Euler Zeta function (, (s, ) defined by the following
generation function(see [6, 7]):

o0

(_1)nqn
Cp.q s,x) = [2 q P 1.1
( (2] nz:% Tl (1.1)

This paper modifies ¢-Genocchi numbers and polynomials, which is mentioned
above, and studies (p, ¢)-Genocchi numbers and polynomials that is extended by
g¢-Genocchi numbers and polynomials. To be specific, it defines Carlitz’s type
(p, ¢)-Genocchi numbers G, ,, , and polynomials G, , 4(z). Also, it gives some
general properties of Carlitz’s type (p, ¢)-Genocchi polynomials. At the end, it
examines symmetric properties of Carlitz’s type (p, ¢)-Genocchi polynomials.

2. Some properties of Carlitz’s type (p, ¢)-Genocchi numbers and
polynomials

In this section, we define Carlitz’s type (p, ¢)-Genocchi numbers G, , , and
polynomials G, , 4(z) and Carlitz’s type (h, p, ¢)-Genocchi polynomials Ggl’f,)),q ().

It derives some several properties.

Definition 2.1. For 0 < ¢ < p < 1, Carlitz’s type (p, ¢)-Genocchi numbers
G p,q and polynomials G, , ,(z) are defined as the following generating func-
tions

Fpql Z P oy [2]qt Z elmlpa? (2.1)
and n= m=0
Fyq(a,t) = Z pa(@)— = 2t 3 (~D)mgmelmtehat - (29)

n=0 m=0

respectively.

If we put p = 1 and let ¢ — 1 in equations (2.1) and (2.2), then Carlitz’s type
(p, g)-Genocchi numbers G, 4 reduce to the classical Genocchi numbers G,
and Carlitz’s type (p, ¢)-Genocchi polynomials G, , 4() reduce to the classical
Genocchi polynomials G, (x). In other words, they are:

hm Gnpq=Gn and hm Gnpq(x) = Gp(z).

qg—1

Definition 2.2. For 0 < ¢ < p < 1, Carlitz’s type (h, p, ¢)-Genocchi polynomials
G%}f,)),q(x) is defined as the following generating function

oo o0

tn 1 xT
DG g(@) = 21t Y (1) gt pH el
n=0 ’ k=0
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In particular, Carlitz’s type (h,p, ¢)-Genocchi polynomials are Carlitz’s type

h,p, q)-Genocchi numbers when xz = 0, that is, Gf(lh) = Gsﬁ) 0) denotes
Pyq Pyq
Carlitz’s type (h,p, ¢)-Genocchi numbers.
By using Definition 2.2, we get

ZG ,pq [Q]th( 1)mqmpmh [z+m],

m=0
- m._ m m tn
=2t > (-)™q hzx+mpqﬁ (2.3)
m=0 n=0
o0 o0 tn
Z Z m m mh [m—l—m]g;l—'
n=0m=0 n

Hence, we get the following theorem by comparing the coefficients of %l, and
then putting n = n + 1 on both sides of the above equation (2.3).

Theorem 2.3. For non-negative integer n, we obtain

G (@) <
R = 2 D (1) e alg

m=0

We find by utilizing Definition 2.2 that

oo

tn >
> Glt ) = Bt Yoy
n=0
n oo ntn
k ko kh( otk otk b
tZ( L) S g s g

k=0

WE (L) e

=0

. . (2.4)
_1)E R+ pr(n—t+h) L
X kZ:O( )"q p -
o0 1 n—1
=2 n(——
[ ]q,gg (p - Q>
1

n—
n—1 U, xl, x(n—1-1) 1 "
X : ( I )(_1) P 1+ gitipn—1=l+h I’

Therefore, we get the following theorem by comparing the coefficients of tn—",
and then putting n = n + 1 on both sides of the equation (2.4).

Theorem 2.4. For non-negative integer n, we have

G(h (.’17) 1 n n n 1

n+1,p,q _ 1\ xl x(n—=1)

Zetedl (o) X (3) 0t
=0
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Next, we get the following theorem by using equation (2.2) in the same way
as in equation (2.4).

Theorem 2.5. For non-negative integer n, we obtain
Gni1,p,4(@) 1 nzn n 1 xl —1 1
P> =2 -1 zl z(n—1) .
n+1 [ ]q p—q e l ( ) qp 1+ qH_lpn_I

If we compare the above Theorem 2.4 and Theorem 2.5, we can see that
Theorem 2.4 and Theorem 2.5 are the same results when h = 0.
By using Theorem 2.5, we obtain

Gn_‘_lpq(x) 1 " n 11 (n—1) 1
D, —[9 z : -1 z, x(n
n+1 [](I p—q l ( )q p 1+ql+1pn_l

=0

=2 1 "< n 1 1 lz, x(n—1) 1
= [2], v—q Z I (=1)'q¢"p 1+ gnE D pm(n—1)

=0

m—1 (25)
% (_1)aqa(l+1)pa(n—l)
a=0
m—1
[2]q Gy P g™ (m)
— n _1 a _a ) ? m
[Q]Qm [m]p,q (LEZ:O( ) q n+1

Consequently, we get the following theorem from the above equation (2.5).
This theorem is called distribution relation.

Theorem 2.6. (Distribution relation) For non-negative integer n and any pos-
itive odd integer m, we have

m—1
2 n o a a+x
Gn—&-l,p,q(x) = [ ]q [m]p,q Z(*l) q Gn+1,p"’%q"” < ) : (2'6)
a=0

2]gm m

Let us put A = 0 in Theorem 2.3, we have

el = pl, 3o e+
=2, ) (-1)™g" )] (7) g [mly glalyg o™ (2)
m=0 =0

G(”*l)

_ — (1 n—l_xl ~l+1,p,q
> (1t

Therefore, we get the following theorem from the above equation (2.7). It is
the connection between Carlitz’s type (p, ¢)-Genocchi polynomials G,, , 4(z) and

Carlitz’s type (h, p, ¢)-Genocchi polynomials Gg?z)),q(m).
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Theorem 2.7. For non-negative integer n, we have
(n—1)
Gni1,p,4(2) _zn: n [x]nfl zzGl+1,p,q
n+l £\l rad T

By using Theorem 2.5, we obtain
G(nJrl,pfl,q*1 (1 - 33)

n+1
1 n
- ()
1
l —(1 x)l —(1—z)(n—1)
x Z ( ) 14 ¢ @ Dp—GD (2.8)
1 \" " /n 1
[ na™(—1)"[2 1l$l z(n—-l) -~
(p_q) prar Y () ot

=0

Gni1,p,q(7)
— N 1n n sP»,4q .
p'q"(— )771+1

Hence, we get the following theorem from the above equation (2.8). This
theorem is called property of complement.

Theorem 2.8. (Property of complement) For non-negative integer n, we have
Gri1p-1g-1(1—2) =p"¢" (=1)"Gry1,p,q(2).

We can easily observe the following equation.

tz n+k n+k [n+kpq tz k]pq
tz Jeghelkln.at,

If we express the left-hand side of the above equation (2.9) as Carlitz’s type
(p, g)-Genocchi numbers Gy, 5, o and polynomials Gy, , ¢(2), then we have

L e tm
et Z Gmp,q(n Z U )

Z elp.qt (2.10)

(2.9)

g( )

Therefore, we get the following theorem by comparing the coefficients of %
on both sides of the above equation (2.10).
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Theorem 2.9. For m,n € N, we get
n n n—1
(_1) +1q Gm’Paq(n) + Gm,p,q _ Z(il)k k[k]mfl.

[2],m @l

k=0

The above theorem is explained as an alternating sums using Carlitz’s type
(p, g)-Genocchi numbers G, ;, , and polynomials Gy, p ().

3. Symmtric properties of the Carlitz’s type (p,¢)-Genocchi
polynomials

In section 3, this paper investigates the relation between Carlitz’s type (p, q)-
Genocchi polynomials Gy, p (x) and Hurwitz (p, ¢)-Euler Zeta function ¢, 4(s, z).
After that it derives symmetric property of Carlitz’s type (p, q)-Genocchi poly-
nomials Gy, p q(2).

By using equation (2.2), we get

' dk -~ m_m [m+x
TFP»q(‘Tvt) = 7[2]‘1 Z( ]_) q e[ +zlp,qt
dt o dt o
- m=0 =
o (3.1)
— [Q]qk Z (_1)mqm[m + x]:ﬁ;l
m=0
and
el GhnpqlT = Gropog(2) ———
dt ~ Pa\T) o — = DAY — k) -0 (3.2)

= Gk,p,q(l’)-

Thus, we get the following theorem by comparing the equations (3.1) and
(3.2), and then putting n = n + 1 on both sides.

Theorem 3.1. For non-negative integer k, we have

o0

Gy 1,p, (SL’) m,_m
ST = e Yo ()T m el
m=0
By using equation (1.1) and Theroem 3.1, we get
o
Cpg(—Fk, @) = [2] T, -k
& 2 el
=12, > ()" + ol (33
m=0
_ GkJrl,p,q(x).

k+1
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Therefore, we get the following theorem from the above equation (3.3). This
theorem is connection between Carlitz’s type (p, ¢)-Genocchi polynomials G, p 4(2)
and Hurwitz (p, ¢)-Euler Zeta function (, 4(s, z).

Theorem 3.2. For non-negative integer k, we have

Gk+1,p,q(l”)

Cpﬂ(_k’x) = k+ 1

wlz

By substituting wiz + for z and replacing p with p“2 and ¢ with ¢"2 in
Theorem 3.1, respectively, We derive

Grt1,pw2 g (wlx + w”)
n+1

= [2]gw> i( 1)kqak {k + w4 } (3.4)

k=0 W2 | puws g2

= Z(—l)kq“’?]€ [wak + wiwaz + wli]zyq
P4 k=0

For any non-negative integer k and positive odd integer wy, there exist unique
non-negative integer r such that k = wyr + 7 with 0 < 5 < w; — 1. Hence, this
can be written as

w1t
GnJrl)pwz)qwz (w1$+ -1 )

n+1
2w > : ; . an
N [[w]jnz Z (— 1) g2t [y (w7 + §) + wiwam + w1, , (3.5)

P wyrtj=0

w1 — 1 oo
w1r+J 7JJ2(’LU1'I’+])[

wa(wir + ) + wiwex + wli]z’q
pq j=0 r= 0

2wy 22 -
Let us put [Hq]l Z (—1)"¢"** on both sides of the above equation (3.5),
w1 gﬁl i=0
we obtain
[2](1“’1 wil( 1)Z wliGn+1’pw2’qw2 <'UJ1£L'—|— ’wlz)
—4)4q
[w1]g7q pr "
wo—1w;—1
o (3.6)
[ p,q p7q i=0 j=0

qu

(1) g T2 [y g (4 1) + wid + wag])
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From similar method of the equation (3.4), we get
Gn—&-l,pwl,q“’l (’U}Ql‘ + wu)

n+1

v (3.7)
— [2]q“’1 Z(_l)k wik

¢ [wik + wiwam + wagl)
[wilpg =5

After some calculations in the above equation (3.7) and then applies
2] w 1 o
[[111]2(1]31 doito (=1)7¢"27, we have

) Grt1,pv1,gm (ng + w”)
(~1)7q"
n+1

(3.8)
P =0 j=0

« Z r+z+y w1w2r+w1z+w21 [wlwg(r =+ x) +wii + w2j]Z

Consequently, we get the following theorem by comparing the results of the
equations (3.6) and (3.8).

Theorem 3.3. (Symmetric property) For non-negative integer n and any odd
positive intger w; and wsy, we have

wo—1

[Z]qwl [wQ]Z,q Z (—1)1qwllGn+1,p“’2»qw2 (wlx —+ 1>
=0

wi—1

j _waoj w .7
— 2y fwn), Y (~1)g G+( 2 )

7=0
By using Theroem 3.2 and Theroem 3.3, we get the following corollary.

Corollary 3.4. For any positive odd intger w; and ws, we have

we ! wii
E z w 7 1
qut w1 p q 1 gpwg,q/WQ (n,wlx —+ 72
w1 — 1
2]
= [2]qua [waly 4 E : g Gpur g <n war w1>

By taking w; = 1 and replacmg x with % in Theorem 3.3, we obtain

wp—1 .
[ x {2
[2] [w2]17’q ; (_1) q Gn+1,pw2,qW2 <w2 + w2>

(3.9)
= [2]qw2 Grt1,p,(T).
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Hence, we get the following corollary by calculating the above equation (3.9).

Corollary 3.5. For non-negative integer n and any positive odd integer wo, we
get

Gn+1,p>q(x) = (3-10)

Pl 2 v
B S 1) G (2.
q*2

w:
i=0 2

Proofs of Theorem 2.6 and Corollary 3.5 are different but the results are the
same. Thus, Corollary 3.5 can be called distribution relation.

If we put w3 = 1 and we = 3 in Theorem 3.3, then we get the following
corllary.

Corollary 3.6. For non-negative integer n, we obtain

z r+1 r+2
G198 (g) = 4Gnt1,p3,¢3 (3) + qun+1,p37q3 <3>

= 7GTL+17P7(I (Z‘) .
p.q

Next, by applying toalternating series, we can get different result of symmetric

property. By using Theorem 3.3, we have

wa—1 GnJrl’pwz g2 (wlér + M)

2]gus [wall, > (=1)'g"" w3
=0

n—+1

e ], 3 (1) (2] s
1=0

e ], 3 (1) (2] s

=0

-1 n
(=1)™g =™ [m +wiz + w]
W2 Jpws guwa

[M]8

0

3
I

e

n
(1m0 ]y g+ 5D g (210

m=0 [w2]p,q
wo—1 oo
= [2)quifwalpg Y (1) 2l Y (~1)"g">"
=0 m=0

n l
~ Z (7) qwli(n—l) [m + wlx];zw—zl’qwzpwzmlpwlwgml [i]lpw] o ( ELUI];D#I ) .
=0
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From Theorem 2.3, we get

wo—1 ) _G7L+1,pw2,qw2 <’LU1£E + wu)
n 1wt
[2]gwa [wQ]p,q ;:o (=1)'q"™ Nl
11)271

= 2o [wa], D (—1)Pq
1=0

n aW (w1) !
n wii(n— W W T n—l w2 ,q% 1 . w ,
« Z (1) 1i( l)p 1wal +1,p"2,q"2 [/L]iy"”l’qwl ([ l]pq> (3.11)

=0 n—1 +1 ’LUQ]pvq

n @
_ n l n—I_wiwaxl Gn—l+17pw27qw2
[21qw12<z)[wﬂm[wﬂwp T

« Z z wlz(n l+1)[ ]p“’l -

As a result of the above the equation (3.11), we obtain

(w1)

n 1, W1
[2]51“’1 [wQ]p,q ; (_1) q n+1
n
G141 pwe gz (W1T)
l 1 +1,pw2 qw2 (W1
2]gwr lz ( > w1 p gwalp ' p" t - p_ ] j_ 1 En i por,qur (W2)
(3.12)
and
wi—1 Gn+1 UL gL (wzz + %)
_1)igeed P !
[2} w2 [wl}p,q JZ:O( 1) q? nt1
n
G wi_qui (Wa)
I ! 14+1,pw1 qw1 (W2
2 gz lz: ( ) wo] p glwily g P — n [i I i 1 En lpwa qwa (W1).
(3.13)

Consequently, we get the following theorem from the equations (3.12) and
(3.13).

Theorem 3.7. For any positive odd integer w; and ws, we have

= n n 1, wiwszl Gn I+1,pw2,q"2 (wlx) &
q“’l wl P q w2 p.q P n—1 n 1 n,l,pwi,qwi (w2)

S n wwwG’ﬂle’waw
= s 30 (0l s Comtitaan 030) g

where &, 1 p.q(k) = Z].C*Ol(—1)iq(1+"’l)i[i]§)_’q is called as alternating series.

1=
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