
J. Appl. Math. & Informatics Vol. 39(2021), No. 1 - 2, pp. 1 - 11
https://doi.org/10.14317/jami.2021.001

SOME PROPERTIES OF DEGENERATE CARLITZ-TYPE
TWISTED q-EULER NUMBERS AND POLYNOMIALS†

CHEON SEOUNG RYOO

Abstract. In this paper, we define degenerate Carlitz-type twisted q-
Euler numbers and polynomials by generalizing the degenerate Euler num-
bers and polynomials, Carlitz’s type degenerate q-Euler numbers and poly-
nomials. We also give some interesting properties, explicit formulas, sym-
metric properties, a connection with degenerate Carlitz-type twisted q-
Euler numbers and polynomials.
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1. Introduction

Mathematicians have been working in the fields of the Euler numbers and
polynomials, Bernoulli numbers and polynomials, tangent numbers and polyno-
mials, and Stirling numbers(see [1-9, 10, 11, 13, 18, 19, 20]). In recent years, we
have been studied some properties and symmetry identiities of the degenerate
Carlitz-type (p, q)-Euler numbers and polynomials, degenerate q-poly-Bernoulli
numbers and polynomials, (p, q)-Hurwitz zeta function, degenerate Carlitz-type
q-Euler numbers and polynomials, (h, q)-Euler numbers and polynomials (see
[4, 5, 10, 12, 13, 14, 15, 16, 17]). In this paper we define a new form of de-
generate Carlitz-type twisted q-Euler numbers and polynomials and study some
theories of the degenerate Carlitz-type twisted q-Euler numbers and polynomi-
als. Throughout this paper, we always make use of the following notations: N
denotes the set of natural numbers, Z0 = N∪{0} denotes the set of nonnegative
integers, Z−

0 = {0,−1,−2,−3, . . .} denotes the set of nonpositive integers, and
C denotes the set of complex numbers.
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We recall that the degenerate Euler numbers En(µ) and Euler polynomials
En(z, µ), which are defined by generating functions like (1), and (2)(see [2, 3, 4])

2

(1 + µt)
1
µ + 1

=

∞∑
n=0

En(µ)
tn

n!
, (1)

and
2

(1 + µt)
1
µ + 1

(1 + µt)
z
µ =

∞∑
n=0

En(z, µ)
tn

n!
, (2)

respectively.
We remind that well-known Stirling numbers of the first kind S1(n, j) and

the second kind S2(n, j) are defined by this(see [2, 3, 20])

(z)n =

n∑
j=0

S1(n, j)z
j and zn =

n∑
j=0

S2(n, j)(z)j ,

respectively. Here (z)j = z(z−1) · · · (z− j+1). The generalized falling factorial
(z|µ)m with increment µ is defined by

(z|µ)m =

m−1∏
j=0

(z − µj)

for positive integer n, with (z|µ)0 = 1; as we know,

(z|µ)m =

m∑
j=0

S1(m, j)µ
m−jzj .

(z|µ)m = µm(µ−1z|1)m for µ ̸= 0. Clearly (z|0)m = zm. The binomial theorem
is this for a variable z,

(1 + µt)z/µ =

∞∑
n=0

(z|µ)n
tn

n!
.

For z ∈ C, the q-number is defined by

[z]q =
1− qz

1− q
, (q ̸= 1).

By using q-number, we define define a new form of degenerate Carlitz-type
twisted q-Euler numbers and polynomials, which generalized the previously
known numbers and polynomials, including the degenerate Euler numbers and
polynomials, degenerate Carlitz-type twisted q-Euler numbers and polynomi-
als(see [2, 3, 8, 13]. Here we first recall the Carlitz’s type twisted q-Euler num-
bers and polynomials(see [17]). Let ζ be rth root of 1 and ζ ̸= 1(see [11, 16]).
Definition 1.1. The Carlitz’s type twisted q-Euler polynomials En,q,ζ(z) are
defined by means of the generating function

∞∑
n=0

En,q,ζ(z)
tn

n!
= [2]q

∞∑
m=0

(−1)mqmζme[m+z]qt.
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and their values at z = 0 are called the Carlitz’s type q-Euler numbers and
denoted En,q,ζ .

In the following section, we define a new form of degenerate Carlitz-type
twisted q-Euler numbers En,q,ζ(µ) and polynomials En,q,ζ(z, µ). After that we
will investigate some their properties and identities. In Sect. 2, a new form
of degenerate Carlitz-type twisted q-Euler numbers En,q,ζ(µ) and polynomials
En,q,ζ(z, µ) are defined. We derive some of their relevant properties and symmet-
ric identities. In Sect. 3, first, we derive the symmetric properties for degenerate
Carlitz-type twisted q-Euler numbers En,q,ζ(µ) and polynomials En,q,ζ(z, µ).

2. Degenerate Carlitz-type twisted q-Euler numbers and
polynomials

In this section, we construct a new form of degenerate Carlitz-type twisted
q-Euler numbers En,q,ζ(µ) and polynomials En,q,ζ(z, µ) and provide some of their
relevant identities and properties. Firstly, we construct the degenerate Carlitz-
type twisted q-Euler numbers and polynomials as follows:

Definition 2.1. For 0 < q < 1, the degenerate Carlitz-type twisted q-Euler
numbers En,q,ζ(µ) and polynomials En,q,ζ(z, µ) are defined by means of the gen-
erating functions

∞∑
n=0

En,q,ζ(µ)
tn

n!
= [2]q

∞∑
m=0

(−1)mqmζm(1 + µt)

[m]q
µ , (1)

and
∞∑

n=0

En,q,ζ(z, µ)
tn

n!
= [2]q

∞∑
m=0

(−1)mqmζm(1 + µt)

[m+ z]q
µ , (2)

respectively.

The degenerate Carlitz-type twisted q-Euler numbers En,q,ζ(µ) can be deter-
mined explicitly. A few of them are

E0,q,ζ(µ) =
[2]q

1 + ζq
,

E1,q,ζ(µ) =
[2]q

(1− q)(1 + ζq)
− [2]q

(1− q)(1 + ζq2)
,

E2,q,ζ(µ) = − [2]qµ

(1− q)(1 + ζq)
+

[2]q
(1− q)2(1 + ζq)

+
[2]qµ

(1− q)(1 + ζq2)

− 2[2]q
(1− q)2(1 + ζq2)

+
[2]q

(1− q)2(1 + ζq3)
.

Putting ζ = 1, we have
lim
q→1

En,q,ζ(z, µ) = En(z, µ), lim
q→1

En,q,ζ(µ) = En(µ).
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Since

(1 + µt)

[z + w]q
µ = e

[z + w]q
µ

log(1+µt)

=

∞∑
n=0

(
[z + w]q

µ

)n
(log(1 + µt))n

n!

=

∞∑
n=0

(
n∑

m=0

S1(n,m)µn−m[z + w]mq

)
tn

n!
,

(3)

we have
∞∑

n=0

En,q,ζ(z, µ)
tn

n!

= [2]q

∞∑
m=0

(−1)mqmζm(1 + µt)

[m+ z]q
µ

= [2]q

∞∑
m=0

(−1)mqmζm
∞∑

n=0

n∑
l=0

S1(n, l)µ
n−l

∑l
j=0

(
l
j

)
(−1)jq(z+m)j

(1− q)l
tn

n!

=

∞∑
n=0

[2]q

n∑
l=0

l∑
j=0

S1(n, l)µ
n−l
(
l
j

)
(−1)jqzj

(1− q)l
1

1 + ζqj+1

 tn

n!
.

(4)

Comparing coefficients tn/n! in the above equation, we get the following theorem.

Theorem 2.2. For n ∈ Z0, we have

En,q,ζ(z, µ) = [2]q

n∑
l=0

l∑
j=0

S1(n, l)µ
n−l
(
l
j

)
(−1)jqzj

(1− q)l
1

1 + ζqj+1

= [2]q

∞∑
m=0

n∑
l=0

S1(n, l)µ
n−l(−1)mqmζm[z +m]lq.

By replacing t by eµt − 1

µ
in (2), we have

En,q,ζ(z) =

∞∑
n=0

En,q,ζ(z, µ)
(
eµt − 1

µ

)n
1

n!

=

∞∑
n=0

En,q,ζ(z, µ)µ−n
∞∑

m=n

S2(m,n)µ
m t

m

m!

=

∞∑
m=0

(
m∑

n=0

En,q,ζ(z, µ)µm−nS2(m,n)

)
tm

m!
.

(5)

Thus, by (5), we have the following theorem.
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Theorem 2.3. For n ∈ Z0, we have

En,q,ζ(z) =

m∑
n=0

En,q,ζ(z, µ)µm−nS2(m,n).

By replacing t by log(1 + µt)1/µ in Definition 1.1 and Definition 2.1, we have

∞∑
n=0

En,q,ζ(z)
(
log(1 + µt)1/µ

)n 1

n!
= [2]q

∞∑
m=0

(−1)mqmζm(1 + µt)

[m+ z]q
µ

=

∞∑
m=0

Em,q,ζ(z, µ)
tm

m!
,

(6)

and
∞∑

n=0

En,q,ζ(z)
(
log(1 + µt)1/µ

)n 1

n!

=

∞∑
m=0

(
m∑

n=0

En,q,ζ(z)µ
m−nS1(m,n)

)
tm

m!
.

(7)

Therefore, by (6) and (7), we have the following theorem.

Theorem 2.4. For m ∈ Z0, we have

Em,q,ζ(z, µ) =

m∑
k=0

Ek,q,ζ(z)µ
m−kS1(m, k)

We introduce the q-analogue of the generalized falling factorial (z|µ)m with
increment µ. The q-generalized falling factorial ([z]q|µ)m with increment µ is
defined by

([z]q|µ)m =

m−1∏
j=0

([z]q − µj)

for positive integer m, with the convention ([z]q|µ)0 = 1.
By (1) and (2), we get

− [2]q(−1)nqnζn
∞∑
l=0

(−1)lqlζl(1 + µt)

[l + n]q
µ

+ [2]q

∞∑
l=0

(−1)lqlζl(1 + µt)

[l + n]q
µ

= [2]q

n−1∑
l=0

(−1)lqlζl(1 + µt)

[l]q
µ .

(8)

Hence, by (8), we also have
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(−1)n+1qnζn
∞∑

m=0

Em,q,ζ(n, µ)
tm

m!
+

∞∑
m=0

Em,q,ζ(µ)
tm

m!

=

∞∑
m=0

(
[2]q

n−1∑
l=0

(−1)lqlζl([l]q|µ)m

)
tm

m!
.

(9)

Comparing coefficients tm/m! on both sides of (9), we get the following the-
orem.

Theorem 2.5. For n ∈ Z0, we have
n−1∑
l=0

(−1)lqlζl([l]q|µ)m =
(−1)n+1qnζnEm,q,ζ(n, µ) + Em,q,ζ(µ)

[2]q
.

We observe that

(1 + µt)

[z + y]q
µ = (1 + µt)

[z]q
µ (1 + µt)

qz[y]q
µ

=

∞∑
m=0

([z]q|µ)m
tm

m!
elog(1+µt)

qz[y]q
µ

=

∞∑
m=0

([z]q|µ)m
tm

m!

∞∑
l=0

(
qz[y]q
µ

)l
log(1 + µt)l

l!

=

∞∑
m=0

([z]q|µ)m
tm

m!

∞∑
l=0

(
qz[y]q
µ

)l ∞∑
k=l

S1(k, l)µ
k t

k

k!

=

∞∑
n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
([z]q|µ)n−kµ

k−lqzl[y]lqS1(k, l)

)
tn

n!
.

(10)

By (2), we get
∞∑

n=0

En,q,ζ(z, µ)
tn

n!

= [2]q

∞∑
m=0

(−1)mqmζm(1 + µt)

[m+ z]q
µ

= [2]q

∞∑
m=0

(−1)mqmζm
∞∑

n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
([z]q|µ)n−kµ

k−lqzl[m]lqS1(k, l)

)
tn

n!

=

∞∑
n=0

(
n∑

k=0

k∑
l=0

(
n

k

)
([z]q|µ)n−kµ

k−lqzlS1(k, l)El,q,ζ

)
tn

n!
.
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Comparing coefficients tn/n! in the above equation, we obtain the result as
follows:

Theorem 2.6. For n ∈ Z0, we have

En,q,ζ(z, µ) =
n∑

k=0

k∑
l=0

(
n

k

)
([z]q|µ)n−kµ

k−lqzlS1(k, l)El,q,ζ .

3. Symmetric properties about degenerate Carlitz-type twisted
q-Euler numbers and polynomials

In this section, we are going to have the main results of degenerate Carlitz-
type twisted q-Euler numbers En,q,ζ(µ) and polynomials En,q,ζ(z, µ). We also es-
tablish some interesting symmetric identities for degenerate Carlitz-type twisted
q-Euler numbers En,q,ζ(µ) and polynomials En,q,ζ(z, µ). Let a and b be odd pos-
itive integers. Observe that [zy]q = [z]qy [y]q for any z, y ∈ C.
By substitute az + ai

b for z in Definition 2.1, replace q by qb, replace ζ by ζb,
and replace µ by µ

[b]q
, respectively, we derive

∞∑
n=0

(
[2]qa [b]

n
q

b−1∑
i=0

(−1)iqaiζaiEn,qb,ζb

(
az +

ai

b
,
µ

[b]q

))
tn

n!

= [2]qa
b−1∑
i=0

(−1)iqaiζai
∞∑

n=0

En,qb,ζb

(
az +

ai

b
,
µ

[b]q

)
([b]qt)

n

n!

= [2]qa
b−1∑
i=0

(−1)iqaiζai[2]qb

∞∑
n=0

(−1)nqbnζbn
(
1 +

µ

[b]q
[b]qt

) [az + ai
b + n]qb
µ

[b]q

= [2]qa
b−1∑
i=0

(−1)iqaiζai[2]qb

∞∑
n=0

(−1)nqbnζbn (1 + µt)

[abz + ai+ nb]q
µ .

Since for any non-negative integer n and odd positive integer a, there exist
unique non-negative integer r such that n = ar + j with 0 ≤ j ≤ a− 1. Hence,
this can be written as

[2]qa [2]qb

b−1∑
i=0

(−1)iqaiζai
∞∑

n=0

(−1)nqbnζbn (1 + µt)

[abz + ai+ nb]q
µ .

= [2]qa [2]qb

b−1∑
i=0

(−1)iqaiζai
∞∑

ar+j=0
0≤j≤a−1

(−1)ar+jqb(ar+j)ζb(ar+j)

× (1 + µt)

[abz + ai+ (ar + j)b]q
µ .
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= [2]qa [2]qb

b−1∑
i=0

(−1)iqaiζai
a−1∑
j=0

∞∑
r=0

(−1)ar(−1)jqbarqbjζbarζbj

× (1 + µt)

[abz + ai+ abr + bj]q
µ

= [2]qa [2]qb

b−1∑
i=0

a−1∑
j=0

∞∑
r=0

(−1)i(−1)r(−1)jqaiqbarqbjζaiζbarζbj

× (1 + µt)

[abz + ai+ abr + bj]q
µ .

It follows from the above equation that
∞∑

n=0

(
[2]qb [b]

n
q

b−1∑
i=0

(−1)iqaiζaiEn,qb,ζb

(
az +

ai

b
,
µ

[b]q

))
tn

n!

= [2]qa [2]qb

b−1∑
i=0

a−1∑
j=0

∞∑
r=0

(−1)i(−1)r(−1)jqaiqbarqbjζaiζbarζbj

× (1 + µt)

[abz + ai+ abr + bj]q
µ .

(11)

From a similar method, we can obtain that
∞∑

n=0

(
[2]qb [a]

n
q

a−1∑
i=0

(−1)iqbiζbiEn,qa,ζa

(
bz +

bi

a
,
µ

[a]q

))
tn

n!

= [2]qa [2]qb

a−1∑
i=0

b−1∑
j=0

∞∑
r=0

(−1)i(−1)r(−1)jqbiqarqajζbiζbarζaj

× (1 + µt)

[abz + bi+ abr + aj]q
µ .

(12)

Thus, we have the following theorem from (11) and (12).

Theorem 3.1. Let a and b be odd positive integers. Then one has

[2]qa [b]
n
q

b−1∑
i=0

(−1)iqaiζaiEn,qb,ζb

(
az +

ai

b
,
µ

[b]q

)

= [2]qb [a]
n
q

a−1∑
j=0

(−1)jqbjζbjEn,qa,ζa

(
bz +

bi

a
,
µ

[a]q

)
.

It follows that we show some special cases of Theorem 3.1. Setting b = 1 in
Theorem 3.1, we have the multiplication theorem for the degenerate Carlitz-type
twisted q-Euler polynomials En,q,ζ(z, µ).
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Corollary 3.2. Let a be odd positive integer. Then one has

En,q,ζ(z, µ) =
[2]q
[2]qa

[a]nq

a−1∑
j=0

(−1)jqjζjEn,qa,ζa

(
z + i

a
,
µ

[a]q

)
. (13)

Let x = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.3. Let a and b be odd positive integers. Then it has

[2]qa [b]
n
q

b−1∑
i=0

(−1)iqaiζaiEn,qb,ζb

(
ai

b
,
µ

[b]q

)

= [2]qb [a]
n
q

a−1∑
j=0

(−1)jqbjζbjEn,qa,ζa

(
bj

a
,
µ

[a]q

)
.

By Theorem 2.4 and Corollary 3.3, we have the below theorem.

Theorem 3.4. Let a and b be odd positive integers. Then
n∑

l=0

S1(n, l)µ
n−l[b]lq[2]qa

b−1∑
i=0

(−1)iqaiζaiEl,qb,ζb

(a
b
i
)

=

n∑
l=0

S1(n, l)µ
n−l[a]lq[2]qb

a−1∑
j=0

(−1)jqbjζbjEl,qa,ζa

(
b

a
j

)
.

In particular, the case a = 3 in Corollary 3.2 gives the triplication formula
for degenerate Carlitz-type twisted q-Euler polynomials

En,q3,ζ3

(
z

3
,
µ

[3]q

)
+ q2ζ2En,q3,ζ3

(
z + 2

3
,
µ

[3]q

)
=

[2]q3

[2]q[3]nq
En,q,ζ(z, µ) + qζEn,q3,ζ3

(
z + 1

3
,
µ

[3]q

)
.

(14)

Setting p = 1 in (13) and (14) leads to the familiar multiplication theorem for
the degenerate Carlitz-type twisted q-Euler polynomials

En,q,ζ(z, µ) =
[2]q[a]

n
q

[2]qa

a−1∑
j=0

(−1)jqjζjEn,qa,ζa

(
z + i

a
,
µ

[a]q

)
, (15)

and the triplication formula for degenerate Carlitz-type twisted q-Euler polyno-
mials

En,q3,ζ3

(
z

3
,
µ

[3]q

)
+ q2ζ2En,q3,ζ3

(
z + 2

3
,
µ

[3]q

)
=

[2]q3

[2]q[3]nq
En,q,ζ(z, µ) + qζEn,q3,ζ3

(
z + 1

3
,
µ

[3]q

)
.

(16)
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Letting q → 1 in (15) and (16) leads to the familiar multiplication theorem for
the degenerate twisted Euler polynomials

En,ζ(z, µ) = an
a−1∑
j=0

(−1)jζjEn,ζa

(
z + i

a
,
µ

a

)
, (17)

and the triplication formula for degenerate twisted Euler polynomials

En,ζ3

(z
3
,
µ

3

)
+ ζ2En,ζ3

(
z + 2

3
,
µ

3

)
=

1

3n
En,ζ(z, µ) + ζEn,ζ3

(
z + 1

3
,
µ

3

)
.

(18)

Letting ζ = 1 in (17) and (18) leads to the familiar multiplication theorem for
the degenerate Euler polynomials

En(z, µ) = an
a−1∑
j=0

(−1)jEn
(
z + i

a
,
µ

a

)
, (19)

and the triplication formula for degenerate Euler polynomials

En
(z
3
,
µ

3

)
+ En

(
z + 2

3
,
µ

3

)
=

1

3n
En(z, µ) + En

(
z + 1

3
,
µ

3

)
. (20)

Letting µ → 0 in (19) and (20) leads to the familiar multiplication theorem for
the Euler polynomials

En(z) = an
a−1∑
j=0

(−1)jEn

(
z + i

a

)
.

and the triplication formula for Euler polynomials

En(z) = 3nEn

(z
3

)
− 3nEn

(
z + 1

3

)
+ 3nEn

(
z + 2

3

)
.
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