SOME PROPERTIES OF DEGENERATE CARLITZ-TYPE TWISTED q-EULER NUMBERS AND POLYNOMIALS ${ }^{\dagger}$

CHEON SEOUNG RYOO

Abstract

In this paper, we define degenerate Carlitz-type twisted q Euler numbers and polynomials by generalizing the degenerate Euler numbers and polynomials, Carlitz's type degenerate q-Euler numbers and polynomials. We also give some interesting properties, explicit formulas, symmetric properties, a connection with degenerate Carlitz-type twisted q Euler numbers and polynomials.

AMS Mathematics Subject Classification : 11B68, 11S40, 11S80. Key words and phrases : Degenerate Euler numbers and polynomials, degenerate q-Euler numbers and polynomials, degenerate Carlitz-type q Euler numbers and polynomials.

1. Introduction

Mathematicians have been working in the fields of the Euler numbers and polynomials, Bernoulli numbers and polynomials, tangent numbers and polynomials, and Stirling numbers(see $[1-9,10,11,13,18,19,20])$. In recent years, we have been studied some properties and symmetry identiities of the degenerate Carlitz-type (p, q)-Euler numbers and polynomials, degenerate q-poly-Bernoulli numbers and polynomials, (p, q)-Hurwitz zeta function, degenerate Carlitz-type q-Euler numbers and polynomials, (h, q)-Euler numbers and polynomials (see $[4,5,10,12,13,14,15,16,17])$. In this paper we define a new form of degenerate Carlitz-type twisted q-Euler numbers and polynomials and study some theories of the degenerate Carlitz-type twisted q-Euler numbers and polynomials. Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers, $\mathbb{Z}_{0}=\mathbb{N} \cup\{0\}$ denotes the set of nonnegative integers, $\mathbb{Z}_{0}^{-}=\{0,-1,-2,-3, \ldots\}$ denotes the set of nonpositive integers, and \mathbb{C} denotes the set of complex numbers.

[^0]We recall that the degenerate Euler numbers $\mathcal{E}_{n}(\mu)$ and Euler polynomials $\mathcal{E}_{n}(z, \mu)$, which are defined by generating functions like (1), and (2)(see [2, 3, 4])

$$
\begin{equation*}
\frac{2}{(1+\mu t)^{\frac{1}{\mu}}+1}=\sum_{n=0}^{\infty} \mathcal{E}_{n}(\mu) \frac{t^{n}}{n!} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{2}{(1+\mu t)^{\frac{1}{\mu}}+1}(1+\mu t)^{\frac{z}{\mu}}=\sum_{n=0}^{\infty} \mathcal{E}_{n}(z, \mu) \frac{t^{n}}{n!} \tag{2}
\end{equation*}
$$

respectively.
We remind that well-known Stirling numbers of the first kind $S_{1}(n, j)$ and the second kind $S_{2}(n, j)$ are defined by this(see [2, 3, 20])

$$
(z)_{n}=\sum_{j=0}^{n} S_{1}(n, j) z^{j} \text { and } z^{n}=\sum_{j=0}^{n} S_{2}(n, j)(z)_{j}
$$

respectively. Here $(z)_{j}=z(z-1) \cdots(z-j+1)$. The generalized falling factorial $(z \mid \mu)_{m}$ with increment μ is defined by

$$
(z \mid \mu)_{m}=\prod_{j=0}^{m-1}(z-\mu j)
$$

for positive integer n, with $(z \mid \mu)_{0}=1$; as we know,

$$
(z \mid \mu)_{m}=\sum_{j=0}^{m} S_{1}(m, j) \mu^{m-j} z^{j}
$$

$(z \mid \mu)_{m}=\mu^{m}\left(\mu^{-1} z \mid 1\right)_{m}$ for $\mu \neq 0$. Clearly $(z \mid 0)_{m}=z^{m}$. The binomial theorem is this for a variable z,

$$
(1+\mu t)^{z / \mu}=\sum_{n=0}^{\infty}(z \mid \mu)_{n} \frac{t^{n}}{n!}
$$

For $z \in \mathbb{C}$, the q-number is defined by

$$
[z]_{q}=\frac{1-q^{z}}{1-q},(q \neq 1)
$$

By using q-number, we define define a new form of degenerate Carlitz-type twisted q-Euler numbers and polynomials, which generalized the previously known numbers and polynomials, including the degenerate Euler numbers and polynomials, degenerate Carlitz-type twisted q-Euler numbers and polynomials(see $[2,3,8,13]$. Here we first recall the Carlitz's type twisted q-Euler numbers and polynomials(see [17]). Let ζ be r th root of 1 and $\zeta \neq 1$ (see [11, 16]).

Definition 1.1. The Carlitz's type twisted q-Euler polynomials $E_{n, q, \zeta}(z)$ are defined by means of the generating function

$$
\sum_{n=0}^{\infty} E_{n, q, \zeta}(z) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m} e^{[m+z]_{q} t}
$$

and their values at $z=0$ are called the Carlitz's type q-Euler numbers and denoted $E_{n, q, \zeta}$.

In the following section, we define a new form of degenerate Carlitz-type twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ and polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$. After that we will investigate some their properties and identities. In Sect. 2, a new form of degenerate Carlitz-type twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ and polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$ are defined. We derive some of their relevant properties and symmetric identities. In Sect. 3, first, we derive the symmetric properties for degenerate Carlitz-type twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ and polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$.

2. Degenerate Carlitz-type twisted q-Euler numbers and polynomials

In this section, we construct a new form of degenerate Carlitz-type twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ and polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$ and provide some of their relevant identities and properties. Firstly, we construct the degenerate Carlitztype twisted q-Euler numbers and polynomials as follows:
Definition 2.1. For $0<q<1$, the degenerate Carlitz-type twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ and polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$ are defined by means of the generating functions

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q, \zeta}(\mu) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m}(1+\mu t)^{\frac{[m]_{q}}{\mu}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=0}^{\infty} \mathcal{E}_{n, q, \zeta}(z, \mu) \frac{t^{n}}{n!}=[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m}(1+\mu t) \frac{[m+z]_{q}}{\mu} \tag{2}
\end{equation*}
$$

respectively.
The degenerate Carlitz-type twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ can be determined explicitly. A few of them are

$$
\begin{aligned}
\mathcal{E}_{0, q, \zeta}(\mu)= & \frac{[2]_{q}}{1+\zeta q} \\
\mathcal{E}_{1, q, \zeta}(\mu)= & \frac{[2]_{q}}{(1-q)(1+\zeta q)}-\frac{[2]_{q}}{(1-q)\left(1+\zeta q^{2}\right)} \\
\mathcal{E}_{2, q, \zeta}(\mu)=- & \frac{[2]_{q} \mu}{(1-q)(1+\zeta q)}+\frac{[2]_{q}}{(1-q)^{2}(1+\zeta q)}+\frac{[2]_{q} \mu}{(1-q)\left(1+\zeta q^{2}\right)} \\
& \quad-\frac{2[2]_{q}}{(1-q)^{2}\left(1+\zeta q^{2}\right)}+\frac{[2]_{q}}{(1-q)^{2}\left(1+\zeta q^{3}\right)}
\end{aligned}
$$

Putting $\zeta=1$, we have

$$
\lim _{q \rightarrow 1} \mathcal{E}_{n, q, \zeta}(z, \mu)=\mathcal{E}_{n}(z, \mu), \quad \lim _{q \rightarrow 1} \mathcal{E}_{n, q, \zeta}(\mu)=\mathcal{E}_{n}(\mu)
$$

Since

$$
\begin{align*}
(1+\mu t) \begin{aligned}
\frac{[z+w]_{q}}{\mu} & =e^{\frac{[z+w]_{q}}{\mu} \log (1+\mu t)} \\
& =\sum_{n=0}^{\infty}\left(\frac{[z+w]_{q}}{\mu}\right)^{n} \frac{(\log (1+\mu t))^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} S_{1}(n, m) \mu^{n-m}[z+w]_{q}^{m}\right) \frac{t^{n}}{n!}
\end{aligned}, .
\end{align*}
$$

we have

$$
\begin{align*}
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q, \zeta}(z, \mu) \frac{t^{n}}{n!} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m}(1+\mu t) \frac{[m+z]_{q}}{\mu} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m} \sum_{n=0}^{\infty} \sum_{l=0}^{n} S_{1}(n, l) \mu^{n-l} \frac{\sum_{j=0}^{l}\binom{l}{j}(-1)^{j} q^{(z+m) j}}{(1-q)^{l}} \frac{t^{n}}{n!} \tag{4}\\
& =\sum_{n=0}^{\infty}\left([2]_{q} \sum_{l=0}^{n} \sum_{j=0}^{l} \frac{S_{1}(n, l) \mu^{n-l}\binom{l}{j}(-1)^{j} q^{z j}}{(1-q)^{l}} \frac{1}{1+\zeta q^{j+1}}\right) \frac{t^{n}}{n!} .
\end{align*}
$$

Comparing coefficients $t^{n} / n!$ in the above equation, we get the following theorem.
Theorem 2.2. For $n \in \mathbb{Z}_{0}$, we have

$$
\begin{aligned}
\mathcal{E}_{n, q, \zeta}(z, \mu) & =[2]_{q} \sum_{l=0}^{n} \sum_{j=0}^{l} \frac{S_{1}(n, l) \mu^{n-l}\binom{l}{j}(-1)^{j} q^{z j}}{(1-q)^{l}} \frac{1}{1+\zeta q^{j+1}} \\
& =[2]_{q} \sum_{m=0}^{\infty} \sum_{l=0}^{n} S_{1}(n, l) \mu^{n-l}(-1)^{m} q^{m} \zeta^{m}[z+m]_{q}^{l}
\end{aligned}
$$

By replacing t by $\frac{e^{\mu t}-1}{\mu}$ in (2), we have

$$
\begin{align*}
E_{n, q, \zeta}(z) & =\sum_{n=0}^{\infty} \mathcal{E}_{n, q, \zeta}(z, \mu)\left(\frac{e^{\mu t}-1}{\mu}\right)^{n} \frac{1}{n!} \\
& =\sum_{n=0}^{\infty} \mathcal{E}_{n, q, \zeta}(z, \mu) \mu^{-n} \sum_{m=n}^{\infty} S_{2}(m, n) \mu^{m} \frac{t^{m}}{m!} \tag{5}\\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} \mathcal{E}_{n, q, \zeta}(z, \mu) \mu^{m-n} S_{2}(m, n)\right) \frac{t^{m}}{m!}
\end{align*}
$$

Thus, by (5), we have the following theorem.

Theorem 2.3. For $n \in \mathbb{Z}_{0}$, we have

$$
E_{n, q, \zeta}(z)=\sum_{n=0}^{m} \mathcal{E}_{n, q, \zeta}(z, \mu) \mu^{m-n} S_{2}(m, n) .
$$

By replacing t by $\log (1+\mu t)^{1 / \mu}$ in Definition 1.1 and Definition 2.1, we have

$$
\begin{align*}
\sum_{n=0}^{\infty} E_{n, q, \zeta}(z)\left(\log (1+\mu t)^{1 / \mu}\right)^{n} \frac{1}{n!} & =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m}(1+\mu t) \frac{[m+z]_{q}}{\mu} \tag{6}\\
& =\sum_{m=0}^{\infty} \mathcal{E}_{m, q, \zeta}(z, \mu) \frac{t^{m}}{m!}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=0}^{\infty} E_{n, q, \zeta}(z)\left(\log (1+\mu t)^{1 / \mu}\right)^{n} \frac{1}{n!} \tag{7}\\
& =\sum_{m=0}^{\infty}\left(\sum_{n=0}^{m} E_{n, q, \zeta}(z) \mu^{m-n} S_{1}(m, n)\right) \frac{t^{m}}{m!}
\end{align*}
$$

Therefore, by (6) and (7), we have the following theorem.
Theorem 2.4. For $m \in \mathbb{Z}_{0}$, we have

$$
\mathcal{E}_{m, q, \zeta}(z, \mu)=\sum_{k=0}^{m} E_{k, q, \zeta}(z) \mu^{m-k} S_{1}(m, k)
$$

We introduce the q-analogue of the generalized falling factorial $(z \mid \mu)_{m}$ with increment μ. The q-generalized falling factorial $\left([z]_{q} \mid \mu\right)_{m}$ with increment μ is defined by

$$
\left([z]_{q} \mid \mu\right)_{m}=\prod_{j=0}^{m-1}\left([z]_{q}-\mu j\right)
$$

for positive integer m, with the convention $\left([z]_{q} \mid \mu\right)_{0}=1$.
By (1) and (2), we get

$$
\begin{align*}
& -[2]_{q}(-1)^{n} q^{n} \zeta^{n} \sum_{l=0}^{\infty}(-1)^{l} q^{l} \zeta^{l}(1+\mu t) \frac{[l+n]_{q}}{\mu} \\
& +[2]_{q} \sum_{l=0}^{\infty}(-1)^{l} q^{l} \zeta^{l}(1+\mu t) \frac{[l+n]_{q}}{\mu} \tag{8}\\
& =[2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l} \zeta^{l}(1+\mu t) \frac{[l]_{q}}{\mu}
\end{align*}
$$

Hence, by (8), we also have

$$
\begin{align*}
& (-1)^{n+1} q^{n} \zeta^{n} \sum_{m=0}^{\infty} \mathcal{E}_{m, q, \zeta}(n, \mu) \frac{t^{m}}{m!}+\sum_{m=0}^{\infty} \mathcal{E}_{m, q, \zeta}(\mu) \frac{t^{m}}{m!} \\
& =\sum_{m=0}^{\infty}\left([2]_{q} \sum_{l=0}^{n-1}(-1)^{l} q^{l} \zeta^{l}\left([l]_{q} \mid \mu\right)_{m}\right) \frac{t^{m}}{m!} \tag{9}
\end{align*}
$$

Comparing coefficients t^{m} / m ! on both sides of (9), we get the following theorem.

Theorem 2.5. For $n \in \mathbb{Z}_{0}$, we have

$$
\sum_{l=0}^{n-1}(-1)^{l} q^{l} \zeta^{l}\left([l]_{q} \mid \mu\right)_{m}=\frac{(-1)^{n+1} q^{n} \zeta^{n} \mathcal{E}_{m, q, \zeta}(n, \mu)+\mathcal{E}_{m, q, \zeta}(\mu)}{[2]_{q}}
$$

We observe that

$$
\begin{align*}
(1+\mu t)^{\frac{[z+y]_{q}}{\mu}} & =(1+\mu t)^{\frac{[z]_{q}}{\mu}}(1+\mu t) \frac{q^{z}[y]_{q}}{\mu} \\
& =\sum_{m=0}^{\infty}\left([z]_{q} \mid \mu\right)_{m} \frac{t^{m}}{m!} e^{\log (1+\mu t)} \frac{q^{z}[y]_{q}}{\mu} \\
& =\sum_{m=0}^{\infty}\left([z]_{q} \mid \mu\right)_{m} \frac{t^{m}}{m!} \sum_{l=0}^{\infty}\left(\frac{q^{z}[y]_{q}}{\mu}\right)^{l} \frac{\log (1+\mu t)^{l}}{l!} \tag{10}\\
& =\sum_{m=0}^{\infty}\left([z]_{q} \mid \mu\right)_{m} \frac{t^{m}}{m!} \sum_{l=0}^{\infty}\left(\frac{q^{z}[y]_{q}}{\mu}\right)^{l} \sum_{k=l}^{\infty} S_{1}(k, l) \mu^{k} \frac{t^{k}}{k!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\left([z]_{q} \mid \mu\right)_{n-k} \mu^{k-l} q^{z l}[y]_{q}^{l} S_{1}(k, l)\right) \frac{t^{n}}{n!}
\end{align*}
$$

By (2), we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathcal{E}_{n, q, \zeta}(z, \mu) \frac{t^{n}}{n!} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m}(1+\mu t) \frac{[m+z]_{q}}{\mu} \\
& =[2]_{q} \sum_{m=0}^{\infty}(-1)^{m} q^{m} \zeta^{m} \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\left([z]_{q} \mid \mu\right)_{n-k} \mu^{k-l} q^{z l}[m]_{q}^{l} S_{1}(k, l)\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\left([z]_{q} \mid \mu\right)_{n-k} \mu^{k-l} q^{z l} S_{1}(k, l) E_{l, q, \zeta}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

Comparing coefficients t^{n} / n ! in the above equation, we obtain the result as follows:

Theorem 2.6. For $n \in \mathbb{Z}_{0}$, we have

$$
\mathcal{E}_{n, q, \zeta}(z, \mu)=\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\left([z]_{q} \mid \mu\right)_{n-k} \mu^{k-l} q^{z l} S_{1}(k, l) E_{l, q, \zeta}
$$

3. Symmetric properties about degenerate Carlitz-type twisted q-Euler numbers and polynomials

In this section, we are going to have the main results of degenerate Carlitztype twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ and polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$. We also establish some interesting symmetric identities for degenerate Carlitz-type twisted q-Euler numbers $\mathcal{E}_{n, q, \zeta}(\mu)$ and polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$. Let a and b be odd positive integers. Observe that $[z y]_{q}=[z]_{q^{y}}[y]_{q}$ for any $z, y \in \mathbb{C}$.
By substitute $a z+\frac{a i}{b}$ for z in Definition 2.1, replace q by q^{b}, replace ζ by ζ^{b}, and replace μ by $\frac{\mu}{[b]_{q}}$, respectively, we derive

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left([2]_{q^{a}}[b]_{q}^{n} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \mathcal{E}_{n, q^{b}, \zeta^{b}}\left(a z+\frac{a i}{b}, \frac{\mu}{[b]_{q}}\right)\right) \frac{t^{n}}{n!} \\
& =[2]_{q^{a}} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \sum_{n=0}^{\infty} \mathcal{E}_{n, q^{b}, \zeta^{b}}\left(a z+\frac{a i}{b}, \frac{\mu}{[b]_{q}}\right) \frac{\left([b]_{q} t\right)^{n}}{n!} \\
& =[2]_{q^{a}} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i}[2]_{q^{b}} \sum_{n=0}^{\infty}(-1)^{n} q^{b n} \zeta^{b n}\left(1+\frac{\mu}{[b]_{q}}[b]_{q} t\right)^{\frac{\left[a z+\frac{a i}{b}+n\right]_{q^{b}}}{\frac{\mu}{[b]_{q}}}} \\
& =[2]_{q^{a}} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i}[2]_{q^{b}} \sum_{n=0}^{\infty}(-1)^{n} q^{b n} \zeta^{b n}(1+\mu t) \frac{[a b z+a i+n b]_{q}}{\mu}
\end{aligned}
$$

Since for any non-negative integer n and odd positive integer a, there exist unique non-negative integer r such that $n=a r+j$ with $0 \leq j \leq a-1$. Hence, this can be written as

$$
\begin{gathered}
{[2]_{q^{a}}[2]_{q^{b}} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \sum_{n=0}^{\infty}(-1)^{n} q^{b n} \zeta^{b n}(1+\mu t) \frac{[a b z+a i+n b]_{q}}{\mu}} \\
=[2]_{q^{a}}[2]_{q^{b}} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \sum_{\substack{a r+j=0 \\
0 \leq j \leq a-1}}^{\infty}(-1)^{a r+j} q^{b(a r+j)} \zeta^{b(a r+j)} \\
\times(1+\mu t) \frac{[a b z+a i+(a r+j) b]_{q}}{\mu}
\end{gathered}
$$

$$
\begin{gathered}
=[2]_{q^{a}}[2]_{q^{b}} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \sum_{j=0}^{a-1} \sum_{r=0}^{\infty}(-1)^{a r}(-1)^{j} q^{b a r} q^{b j} \zeta^{b a r} \zeta^{b j} \\
\times(1+\mu t) \frac{[a b z+a i+a b r+b j]_{q}}{\mu} \\
=[2]_{q^{a}}[2]_{q^{b}} \sum_{i=0}^{b-1} \sum_{j=0}^{a-1} \sum_{r=0}^{\infty}(-1)^{i}(-1)^{r}(-1)^{j} q^{a i} q^{b a r} q^{b j} \zeta^{a i} \zeta^{b a r} \zeta^{b j} \\
\times(1+\mu t)
\end{gathered}
$$

It follows from the above equation that

$$
\begin{gather*}
\sum_{n=0}^{\infty}\left([2]_{q^{b}}[b]_{q}^{n} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \mathcal{E}_{n, q^{b}, \zeta^{b}}\left(a z+\frac{a i}{b}, \frac{\mu}{[b]_{q}}\right)\right) \frac{t^{n}}{n!} \\
=[2]_{q^{a}}[2]_{q^{b}} \sum_{i=0}^{b-1} \sum_{j=0}^{a-1} \sum_{r=0}^{\infty}(-1)^{i}(-1)^{r}(-1)^{j} q^{a i} q^{b a r} q^{b j} \zeta^{a i} \zeta^{b a r} \zeta^{b j} \tag{11}\\
\times(1+\mu t) \frac{[a b z+a i+a b r+b j]_{q}}{\mu}
\end{gather*}
$$

From a similar method, we can obtain that

$$
\begin{gather*}
\sum_{n=0}^{\infty}\left([2]_{q^{b}}[a]_{q}^{n} \sum_{i=0}^{a-1}(-1)^{i} q^{b i} \zeta^{b i} \mathcal{E}_{n, q^{a}, \zeta^{a}}\left(b z+\frac{b i}{a}, \frac{\mu}{[a]_{q}}\right)\right) \frac{t^{n}}{n!} \\
=[2]_{q^{a}}[2]_{q^{b}} \sum_{i=0}^{a-1} \sum_{j=0}^{b-1} \sum_{r=0}^{\infty}(-1)^{i}(-1)^{r}(-1)^{j} q^{b i} q^{a r} q^{a j} \zeta^{b i} \zeta^{b a r} \zeta^{a j} \tag{12}\\
\times(1+\mu t) \\
\frac{[a b z+b i+a b r+a j]_{q}}{\mu}
\end{gather*}
$$

Thus, we have the following theorem from (11) and (12).
Theorem 3.1. Let a and b be odd positive integers. Then one has

$$
\begin{aligned}
& {[2]_{q^{a}}[b]_{q}^{n} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \mathcal{E}_{n, q^{b}, \zeta^{b}}\left(a z+\frac{a i}{b}, \frac{\mu}{[b]_{q}}\right)} \\
& =[2]_{q^{b}}[a]_{q}^{n} \sum_{j=0}^{a-1}(-1)^{j} q^{b j} \zeta^{b j} \mathcal{E}_{n, q^{a}, \zeta^{a}}\left(b z+\frac{b i}{a}, \frac{\mu}{[a]_{q}}\right) .
\end{aligned}
$$

It follows that we show some special cases of Theorem 3.1. Setting $b=1$ in Theorem 3.1, we have the multiplication theorem for the degenerate Carlitz-type twisted q-Euler polynomials $\mathcal{E}_{n, q, \zeta}(z, \mu)$.

Corollary 3.2. Let a be odd positive integer. Then one has

$$
\begin{equation*}
\mathcal{E}_{n, q, \zeta}(z, \mu)=\frac{[2]_{q}}{[2]_{q^{a}}}[a]_{q}^{n} \sum_{j=0}^{a-1}(-1)^{j} q^{j} \zeta^{j} \mathcal{E}_{n, q^{a}, \zeta^{a}}\left(\frac{z+i}{a}, \frac{\mu}{[a]_{q}}\right) . \tag{13}
\end{equation*}
$$

Let $x=0$ in Theorem 3.1, we have the following corollary.
Corollary 3.3. Let a and b be odd positive integers. Then it has

$$
\begin{aligned}
& {[2]_{q^{a}}[b]_{q}^{n} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} \mathcal{E}_{n, q^{b}, \zeta^{b}}\left(\frac{a i}{b}, \frac{\mu}{[b]_{q}}\right)} \\
& \quad=[2]_{q^{b}}[a]_{q}^{n} \sum_{j=0}^{a-1}(-1)^{j} q^{b j} \zeta^{b j} \mathcal{E}_{n, q^{a}, \zeta^{a}}\left(\frac{b j}{a}, \frac{\mu}{[a]_{q}}\right) .
\end{aligned}
$$

By Theorem 2.4 and Corollary 3.3, we have the below theorem.
Theorem 3.4. Let a and b be odd positive integers. Then

$$
\begin{aligned}
& \sum_{l=0}^{n} S_{1}(n, l) \mu^{n-l}[b]_{q}^{l}[2]_{q^{a}} \sum_{i=0}^{b-1}(-1)^{i} q^{a i} \zeta^{a i} E_{l, q^{b}, \zeta^{b}}\left(\frac{a}{b} i\right) \\
& =\sum_{l=0}^{n} S_{1}(n, l) \mu^{n-l}[a]_{q}^{l}[2]_{q^{b}} \sum_{j=0}^{a-1}(-1)^{j} q^{b j} \zeta^{b j} E_{l, q^{a}, \zeta^{a}}\left(\frac{b}{a} j\right) .
\end{aligned}
$$

In particular, the case $a=3$ in Corollary 3.2 gives the triplication formula for degenerate Carlitz-type twisted q-Euler polynomials

$$
\begin{align*}
& \mathcal{E}_{n, q^{3}, \zeta^{3}}\left(\frac{z}{3}, \frac{\mu}{[3]_{q}}\right)+q^{2} \zeta^{2} \mathcal{E}_{n, q^{3}, \zeta^{3}}\left(\frac{z+2}{3}, \frac{\mu}{[3]_{q}}\right) \\
& =\frac{[2]_{q^{3}}}{[2]_{q}[3]_{q}^{n}} \mathcal{E}_{n, q, \zeta}(z, \mu)+q \zeta \mathcal{E}_{n, q^{3}, \zeta^{3}}\left(\frac{z+1}{3}, \frac{\mu}{[3]_{q}}\right) . \tag{14}
\end{align*}
$$

Setting $p=1$ in (13) and (14) leads to the familiar multiplication theorem for the degenerate Carlitz-type twisted q-Euler polynomials

$$
\begin{equation*}
\mathcal{E}_{n, q, \zeta}(z, \mu)=\frac{[2]_{q}[a]_{q}^{n}}{[2]_{q^{a}}} \sum_{j=0}^{a-1}(-1)^{j} q^{j} \zeta^{j} \mathcal{E}_{n, q^{a}, \zeta^{a}}\left(\frac{z+i}{a}, \frac{\mu}{[a]_{q}}\right) \tag{15}
\end{equation*}
$$

and the triplication formula for degenerate Carlitz-type twisted q-Euler polynomials

$$
\begin{align*}
& \mathcal{E}_{n, q^{3}, \zeta^{3}}\left(\frac{z}{3}, \frac{\mu}{[3]_{q}}\right)+q^{2} \zeta^{2} \mathcal{E}_{n, q^{3}, \zeta^{3}}\left(\frac{z+2}{3}, \frac{\mu}{[3]_{q}}\right) \\
& =\frac{[2]_{q^{3}}}{[2]_{q}[3]_{q}^{n}} \mathcal{E}_{n, q, \zeta}(z, \mu)+q \zeta \mathcal{E}_{n, q^{3}, \zeta^{3}}\left(\frac{z+1}{3}, \frac{\mu}{[3]_{q}}\right) . \tag{16}
\end{align*}
$$

Letting $q \rightarrow 1$ in (15) and (16) leads to the familiar multiplication theorem for the degenerate twisted Euler polynomials

$$
\begin{equation*}
\mathcal{E}_{n, \zeta}(z, \mu)=a^{n} \sum_{j=0}^{a-1}(-1)^{j} \zeta^{j} \mathcal{E}_{n, \zeta^{a}}\left(\frac{z+i}{a}, \frac{\mu}{a}\right) \tag{17}
\end{equation*}
$$

and the triplication formula for degenerate twisted Euler polynomials

$$
\begin{align*}
& \mathcal{E}_{n, \zeta^{3}}\left(\frac{z}{3}, \frac{\mu}{3}\right)+\zeta^{2} \mathcal{E}_{n, \zeta^{3}}\left(\frac{z+2}{3}, \frac{\mu}{3}\right) \\
& =\frac{1}{3^{n}} \mathcal{E}_{n, \zeta}(z, \mu)+\zeta \mathcal{E}_{n, \zeta^{3}}\left(\frac{z+1}{3}, \frac{\mu}{3}\right) . \tag{18}
\end{align*}
$$

Letting $\zeta=1$ in (17) and (18) leads to the familiar multiplication theorem for the degenerate Euler polynomials

$$
\begin{equation*}
\mathcal{E}_{n}(z, \mu)=a^{n} \sum_{j=0}^{a-1}(-1)^{j} \mathcal{E}_{n}\left(\frac{z+i}{a}, \frac{\mu}{a}\right) \tag{19}
\end{equation*}
$$

and the triplication formula for degenerate Euler polynomials

$$
\begin{equation*}
\mathcal{E}_{n}\left(\frac{z}{3}, \frac{\mu}{3}\right)+\mathcal{E}_{n}\left(\frac{z+2}{3}, \frac{\mu}{3}\right)=\frac{1}{3^{n}} \mathcal{E}_{n}(z, \mu)+\mathcal{E}_{n}\left(\frac{z+1}{3}, \frac{\mu}{3}\right) \tag{20}
\end{equation*}
$$

Letting $\mu \rightarrow 0$ in (19) and (20) leads to the familiar multiplication theorem for the Euler polynomials

$$
E_{n}(z)=a^{n} \sum_{j=0}^{a-1}(-1)^{j} E_{n}\left(\frac{z+i}{a}\right)
$$

and the triplication formula for Euler polynomials

$$
E_{n}(z)=3^{n} E_{n}\left(\frac{z}{3}\right)-3^{n} E_{n}\left(\frac{z+1}{3}\right)+3^{n} E_{n}\left(\frac{z+2}{3}\right)
$$

References

1. R.P. Agarwal and C.S. Ryoo, Differential equations associated with generalized Truesdell polynomials and distribution of their zeros, J. Appl. \& Pure Math. 1 (2019), 11-24.
2. F.T. Howard, Degenerate weighted Stirling numbers, Discrete Mathematics 57 (1985), 4558.
3. F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Mathematics 162 (1996), 175-185.
4. K.W. Hwang, C.S. Ryoo, Some symmetric identities for degenerate Carlitz-type (p, q)-Euler numbers and polynomials, Symmetry 11 (2019), doi:10.3390/sym11060830.
5. N.S. Jung, C.S. Ryoo, Symmetric identities for degenerate q-poly-Bernoulli numbers and polynomials, J. Appl. Math. \& Informatics 36 (2018), 29-38.
6. J.Y. Kang, A study on q-special numbers and polynomials with q-exponential distribution, J. Appl. Math. \& Informatics 36 (2018), 541-553.
7. M.S. Kim, On p-adic Euler L-function of two variables, J. Appl. Math. \& Informatics 36 (2018), 369-379.
8. F. Qi, D.V. Dolgy, T. Kim, C.S. Ryoo, On the partially degenerate Bernoulli polynomials of the first kind, Global Journal of Pure and Applied Mathematics 11 (2015), 2407-2412.
9. C.S. Ryoo, On degenerate Carlitz-type (h, q)-tangent numbers and polynomials, Journal of Algebra and Applied Mathematics 16 (2018), 119-130.
10. C.S. Ryoo, Some identities for (p, q)-Hurwitz zeta function, J. Appl. Math. \& Informatics 37 (2019), 97-103.
11. C.S. Ryoo, Differential equations associated with twisted (h, q)-tangent polynomials, J. Appl. Math. \& Informatics 36 (2018), 205-212.
12. C.S. Ryoo, Symmetric identities for degenerate Carlitz-type q-Euler numbers and polynomial, J. Appl. Math. \& Informatics 37 (2019), 97-103.
13. C.S. Ryoo, Some properties of the (h, q)-Euler numbers and polynomials and computation of their zeros, J. Appl. \& Pure Math. 1 (2019), 1-10.
14. C.S. Ryoo, Some symmetric identities for (p, q)-Euler zeta function, Journal of Computational Analysis and Applications 27 (2019), 361-366.
15. C.S. Ryoo, Symmetric identities for the second kind q-Bernoulli polynomials, Journal of Computational Analysis and Applications 28 (2020), 654-659.
16. C.S. Ryoo, Symmetric identities for Dirichlet-type multiple twisted (h, q)-l-function and higher-order generalized twisted (h, q)-Euler polynomials, Journal of Computational Analysis and Applications 28 (2020), 537-542.
17. C.S. Ryoo, Symmetric identities for degenerate Carlitz-type q-Euler numbers and polynomial, J. Appl. Math. \& Informatics 37 (2019), 97-103.
18. C.S. Ryoo, On the Carlitz's type twisted (p, q)-Euler polynomials and twisted (p, q)-Euler zeta function, Journal of Computational Analysis and Applications 29 (2021), 582-587.
19. C.S. Ryoo, Some properties of the (h, p, q)-Euler numbers and polynomials and computation of their zeros, J. Appl. \& Pure Math. 1 (2019), 1-10.
20. P.T. Young, Degenerate Bernoulli polynomials, generalized factorial sums, and their applications, Journal of Number Theory 128 (2008), 738-758.

Cheon Seoung Ryoo received Ph.D. degree from Kyushu University. His research interests focus on the numerical verification method, scientific computing, p-adic functional analysis, and analytic number theory. More recently, he has been working with differential equations, dynamical systems, quantum calculus, and special functions.

Department of Mathematics, Hannam University, Daejeon, 306-791, Korea.
e-mail: ryoocs@hnu.kr

[^0]: Received October 28, 2020. Revised December 16, 2020. Accepted December 17, 2020.
 ${ }^{\dagger}$ This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2017R1A2B4006092).
 © 2021 KSCAM .

