• 제목/요약/키워드: Prime submodule

검색결과 38건 처리시간 0.032초

STRONGLY IRREDUCIBLE SUBMODULES

  • ATANI, SHAHABADDIN EBRAHIMI
    • 대한수학회보
    • /
    • 제42권1호
    • /
    • pp.121-131
    • /
    • 2005
  • This paper is motivated by the results in [6]. We study some properties of strongly irreducible submodules of a module. In fact, our objective is to investigate strongly irreducible modules and to examine in particular when sub modules of a module are strongly irreducible. For example, we show that prime submodules of a multiplication module are strongly irreducible, and a characterization is given of a multiplication module over a Noetherian ring which contain a non-prime strongly irreducible submodule.

ON THE PRIME SPECTRUM OF A MODULE OVER A COMMUTATIVE NOETHERIAN RING

  • Ansari-Toroghy, H.;Sarmazdeh-Ovlyaee, R.
    • 호남수학학술지
    • /
    • 제29권3호
    • /
    • pp.351-366
    • /
    • 2007
  • Let R be a commutative ring and let M be an R-module. Let X = Spec(M) be the prime spectrum of M with Zariski topology. Our main purpose in this paper is to specify the topological dimensions of X, where X is a Noetherian topological space, and compare them with those of topological dimensions of $Supp_{R}$(M). Also we will give a characterization for the irreducibility of X and we obtain some related results.

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • 대한수학회논문집
    • /
    • 제19권2호
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • 대한수학회보
    • /
    • 제20권1호
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

CHARACTERIZATION OF PRIME SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A VALUATION DOMAIN

  • Mirzaei, Fatemeh;Nekooei, Reza
    • 대한수학회지
    • /
    • 제54권1호
    • /
    • pp.59-68
    • /
    • 2017
  • Let $F=R^{(n)}$ be a free R-module of finite rank $n{\geq}2$. In this paper, we characterize the prime submodules of F with at most n generators when R is a $Pr{\ddot{u}}fer$ domain. We also introduce the notion of prime matrix and we show that when R is a valuation domain, every finitely generated prime submodule of F with at least n generators is the row space of a prime matrix.

ON THE 2-ABSORBING SUBMODULES AND ZERO-DIVISOR GRAPH OF EQUIVALENCE CLASSES OF ZERO DIVISORS

  • Shiroyeh Payrovi;Yasaman Sadatrasul
    • 대한수학회논문집
    • /
    • 제38권1호
    • /
    • pp.39-46
    • /
    • 2023
  • Let R be a commutative ring, M be a Noetherian R-module, and N a 2-absorbing submodule of M such that r(N :R M) = 𝖕 is a prime ideal of R. The main result of the paper states that if N = Q1 ∩ ⋯ ∩ Qn with r(Qi :R M) = 𝖕i, for i = 1, . . . , n, is a minimal primary decomposition of N, then the following statements are true. (i) 𝖕 = 𝖕k for some 1 ≤ k ≤ n. (ii) For each j = 1, . . . , n there exists mj ∈ M such that 𝖕j = (N :R mj). (iii) For each i, j = 1, . . . , n either 𝖕i ⊆ 𝖕j or 𝖕j ⊆ 𝖕i. Let ΓE(M) denote the zero-divisor graph of equivalence classes of zero divisors of M. It is shown that {Q1∩ ⋯ ∩Qn-1, Q1∩ ⋯ ∩Qn-2, . . . , Q1} is an independent subset of V (ΓE(M)), whenever the zero submodule of M is a 2-absorbing submodule and Q1 ∩ ⋯ ∩ Qn = 0 is its minimal primary decomposition. Furthermore, it is proved that ΓE(M)[(0 :R M)], the induced subgraph of ΓE(M) by (0 :R M), is complete.

ON FUZZY PRIME SUBMODULES OF FUZZY MULTIPLICATION MODULES

  • Lee, Dong-Soo;Park, Chul-Hwan
    • East Asian mathematical journal
    • /
    • 제27권1호
    • /
    • pp.75-82
    • /
    • 2011
  • In this paper, we will introduce the concept of fuzzy mulitplication module. We will define a new operation called a product on th family of all fuzzy submodules of a fuzzy mulitplication module. We will define a fuzzy subset of the idealization ring R+M and find some relations with the product of fuzzy submodules and product of fuzzy ideals of the idealization ring R+M. Some properties of weakly fuzzy prime submoduels and fuzzy prime submodules which are de ned by T.K.Mukherjee M.K.Sen and D.Roy will be introduced. We will investigate some properties of fuzzy prime submodules of a fuzzy multiplication module.

ON M-INJECTIVE MODULES AND M-IDEALS

  • Min, Kang-Joo
    • 충청수학회지
    • /
    • 제18권1호
    • /
    • pp.87-93
    • /
    • 2005
  • For a left R-module M, we identify certain submodules of M that play a role analogous to that of ideals in the ring R. We investigate some properties of M-ideals in the submodules of M and also study Jacobson radicals of a submodule of M.

  • PDF

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

A GENERALIZATION OF MULTIPLICATION MODULES

  • Perez, Jaime Castro;Montes, Jose Rios;Sanchez, Gustavo Tapia
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.83-102
    • /
    • 2019
  • For $M{\in}R-Mod$, $N{\subseteq}M$ and $L{\in}{\sigma}[M]$ we consider the product $N_ML={\sum}_{f{\in}Hom_R(M,L)}\;f(N)$. A module $N{\in}{\sigma}[M]$ is called an M-multiplication module if for every submodule L of N, there exists a submodule I of M such that $L=I_MN$. We extend some important results given for multiplication modules to M-multiplication modules. As applications we obtain some new results when M is a semiprime Goldie module. In particular we prove that M is a semiprime Goldie module with an essential socle and $N{\in}{\sigma}[M]$ is an M-multiplication module, then N is cyclic, distributive and semisimple module. To prove these results we have had to develop new methods.