JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 18, No. 1, April 2005

ON M-INJECTIVE MODULES AND M-IDEALS

Kang-Joo Min*

ABSTRACT. For a left R-module M, we identify certain submodules of M that play a role analogous to that of ideals in the ring R. We investigate some properties of M-ideals in the submodules of M and also study Jacobson radicals of a submodule of M.

We assume throughout the paper that R is an associative ring with identity and a left R-module is a unitary left R-module.

The module $_RX$ is called *M*-injective if each *R*-homomorphism $f: K \to X$ defined on a submodule *K* of *M* can be extended to an *R*-homomorphism $\hat{f}: M \to X$ with $f = \hat{f}i$, where $i: K \to M$ is the natural inclusion mapping [1].

The category $\sigma[M]$ is defined to be the full subcategory of *R*-mod that contains all modules $_RX$ such that *X* is isomorphic to a submodule of an *M*-generated module[4].

Two-sided ideals of the ring R correspond to the annihilator of left R-modules. Furthermore, for a left R-module X, we have

$$Ann_R(X) = \{r \in R \mid rx = 0 \text{ for all } x \in X\}$$
$$= \bigcap_{f \in \operatorname{Hom}_R(R,X)} \ker(f).$$

More generally, the annihilator of any class of modules is two-sided ideal of R and this motivates the following definition.

Received by the editors on March 07, 2005.

²⁰⁰⁰ Mathematics Subject Classifications: Primary 16D25.

Key words and phrases: M-ideal, M-injective module, M-prime module, radical.

K. MIN

DEFINITION 1. ([3]) Let M be any left R-module, and let C be a class of modules in R-mod, and let Ω be the set of kernel of Rhomomorphisms from M into C. That is

$$\Omega = \{ K \subset M \mid \exists w \in \mathcal{C} \text{ and } f \in Hom_R(M, W)$$
with $K = ker(f) \}.$

We define the annihilator of \mathcal{C} in M to be $ann_M(\mathcal{C}) = \bigcap_{K \in \Omega} K$.

In [1]. what we have called the annihilator of \mathcal{C} in M is called the reject of \mathcal{C} in M, and is denoted by $Rej_M(\mathcal{C})$.

DEFINITION 2. ([2]) The submodule N of M is called an M-ideal if there is a class C of modules in $\sigma[M]$ such that $N = Ann_M(\mathcal{C})$.

Note that although the definition of an *M*-ideal is given relative to the subcategory $\sigma[M]$, it is easy to check that *N* is an *M*-ideal if and only if $N = Ann_M(\mathcal{C})$ for some class \mathcal{C} in *R*-mod. A subfunctor ρ of the identity of *R*-mod is called a radical if $\rho(X/\rho(X)) = O$, for all modules $_RX$. For a class \mathcal{C} of *R*-modules, the radical of *R*-mod cogenerated by \mathcal{C} is defined by setting $rad_{\mathcal{C}}(X) = Ann_X(\mathcal{C})$ for al module $_RX$.

PROPOSITION 1. ([3]) The following conditions are equivalent for a submodule $N \subset M$.

(1) N is an M-ideal;

- (2) there exists a radical ρ of R-mod such that $N = \rho(M)$;
- (3) g(N) = O for all $g \in Hom_R(M, M/N)$;
- (4) $N = Ann_M(M/N)$.

Proof. (1) \Rightarrow (2): Assume that $N = Ann_M(M/N)$ for the class \mathcal{C} of modules in $\sigma[M]$. Then $N = rad_{\mathcal{C}}(M)$ for the radical $\rho = rad_{\mathcal{C}}$ cogenerated by the class \mathcal{C} .

(2) \Rightarrow (3): Assume that ρ is a radical of *R*-mod, with $N = \rho(M)$. Since ρ is a radical, we have $\rho(M/N) = \rho(M/\rho(M)) = O$. If $g \in$ Hom_{*R*}(*M*, *M*/*N*), then $g(N) = g(\rho(M)) \subseteq \rho(M/N) = O$.

(3) \Rightarrow (4): It is always true that $Ann_M(M/N) \subseteq N$. Condition (3) implies that $N \subseteq \bigcap_{f:M \to M/N} \ker(f)$, so we have equality in this case.

 $(4) \Rightarrow (1)$: This follows from the definition of *M*-ideal.

Let $N \subset K$ be submodules of M. It is not true that if N is an M-ideal, then N is a K-ideal.

PROPOSITION 2. Let $N \subset K$ be submodules of M. If N is an M-ideal and K/N is M-injective, then N is a K-ideal.

Proof. Let $g : K \to K/N$ be a homomorphism. Since K/N is *M*-injective, there exists $\bar{g} : M \to K/N$ such that $\bar{g} \circ i = g$ where $i : K \to M$ is an inclusion homomorphism. Since N is an *M*-ideal, $\bar{g}(N) = O$.

$$g(N) = \bar{g}i(N) = \bar{g}(N) = O.$$

Then N is a K-ideal.

PROPOSITION 3. Let $N \subset K$ be submodules of M. If K is a direct summand of M and N is a M-ideal, then N is a K-ideal.

Proof. Let $f: K \to K/N$ be a homomorphism. There exists $g: M \to K/N$ such that $g \circ i = g$ where $i: K \to M$ is the inclusion homomorphism. Since g(N) = O and f(N) = O, N is a K-ideal. \Box

COROLLARY 4. Let R be a semisimple ring and M be an R-module. Let $N \subseteq K$ be submodules of M. If N is a M-ideal, then N is a K-ideal.

PROPOSITION 5. Let $f: M \to X$ be an epimorphism of *R*-modules. If *N* is a *M*-ideal, then f(N) is a *X*-ideal.

K. MIN

Proof. There exists a radical ρ of *R*-mod such that $N = \rho(M)$.

$$f(N) = f(\rho(M)) = \rho(f(M)) = \rho(X).$$

Then f(N) is a X-ideal.

PROPOSITION 6. Let $N \subset K$ be submodules of M. N is a M-ideal and K/N is a M/N-ideal. If for $f \in \operatorname{Hom}_R(M, M/K)$, there exists $\overline{f} \in \operatorname{Hom}_R(M, M/N)$ such that $\pi \circ \overline{f} = f$ where π is the natural homomorphism of M/N onto M/K, then K is an M-ideal.

Proof. Let $\pi : M/N \to M/K$ be the natural homomorphism. Let $f \in \operatorname{Hom}_R(M, M/K)$. By the assumption, there exists $\overline{f} \in \operatorname{Hom}_R(M, M/N)$ such that $\pi \circ \overline{f} = f$. Since N is a M-ideal, $\overline{f}(N) = O$. Since K/N is a M/N-ideal, $\pi \overline{f}(K) = O$. This implies that f(K) = O. Thus K is an M-ideal.

PROPOSITION 7. Let $N \subset K$ be submodules of M. If N is a K-ideal (in K) and for every $f \in \operatorname{Hom}_R(M, M/N)$, $f(K) \subseteq K/N$, then N is an M-ideal.

Proof. If $f \in \text{Hom}_R(M, M/N)$, then $f|_K : K \to K/N$. Since N is a K-ideal (in K), f(N) = O. Thus N is an M-ideal.

The next step is to define the product of two M-ideal. We give the definition more generally, constructing a product $N \cdot X$ for any submodule N of M and any module $_RX$.

DEFINITION 3. ([2]) Let N be a submodule of M. For each module $_{R}X$, we define $N \cdot X = Ann_{X}(\mathcal{C})$, where \mathcal{C} is the class of modules $_{R}W$ such that f(N) = O for all $f \in Hom_{R}(M, W)$.

It follows from definition that $N \cdot X = O$ if and only if f(N) = O for all $f \in \operatorname{Hom}_R(M, X)$.

90

PROPOSITION 8. Let $N \subset K$ be submodules of M and X be any Rmodule. For any $f \in \operatorname{Hom}_R(M, X)$, f can be extended to $\overline{f} : M \to X$. Then $N \cdot X = O$ in K if and only if f(N) = O in M.

Proof. $N \cdot X = O$ if and only if f(N) = O for all $f \in \operatorname{Hom}_R(M, X)$. Assume that $N \cdot X = O$ in M. Let $f \in \operatorname{Hom}_R(K, X)$. Then there exists $\overline{f}: M \to X$ such that \overline{f} is an extension of f. $\overline{f}(N) = O$ implies f(N) = O. Thus $N \cdot X = O$ in K.

Conversely, assume that $N \cdot X = O$ in K. Let $f \in \text{Hom}_R(K, X)$ and $i : K \to M$ be an inclusion. $f \circ i = O$ implies f(N) = O and $N \cdot X = O$ in M.

COROLLARY 9. Let K be a direct summand of M and $N \subseteq K$ be a submodule of M. Then $N \cdot X = O$ in K if and only if $N \cdot X = O$ in M.

Proof. Every homomorphism $f : K \to X$ can be extended to a homomorphism $\overline{f} : M \to X$.

PROPOSITION 10. Let $N \subset K$ be submodules of M. If K is a direct summand of M, then $N \cdot X$ in K equals to $N \cdot X$ in M for any module X.

Proof. Let \mathcal{C} be the class of modules $_RW$ such that f(N) = O for all $f \in \operatorname{Hom}_R(M, W)$. \mathcal{C} is also the class of modules $_RW$ such that f(N) = O for all $f \in \operatorname{Hom}_R(K, W)$. Thus $N \cdot X = Ann_X(\mathcal{C})$ in Kequals $N \cdot X = Ann_X(\mathcal{C})$ in M. \Box

It is not true that $N \cdot X$ in $K = N \cdot X$ in M.

DEFINITION 4. ([2]) The module $_RX$ is said to be M-prime if $Hom_R(M, X) \neq O$, and $Ann_M(Y = Ann_M(X)$ for all submodules $Y \subseteq X$ such that $Hom_R(M, Y) \neq O$.

K. MIN

PROPOSITION 11. Let M be a nonzero M-prime module. If Hom $_{R}(K,Y) \neq O$ implies $\operatorname{Hom}_{R}(M,Y) \neq O$ for any nonzero $Y \leq K \leq M$, then K is a K-prime module.

Proof. Let Y be a nonzero submodule of K such that $\operatorname{Hom}_R(K, Y) \neq O$. $\operatorname{Hom}_R(M, Y) \neq O$ by assumption. $Ann_K(Y) = Ann_M(M) = O$ since M is M-prime. $Ann_K(Y) \subseteq Ann_M(Y) \cap K = O$. This implies that $Ann_K(Y) = O$ and K is a K-prime module. \Box

PROPOSITION 12. Let X be a M-prime module and K a submodule of M. $\operatorname{Hom}_R(K,Y) \neq O$. Let Y be a submodule of X. Every homomorphism $f \in \operatorname{Hom}_R(K,Y)$ can be extended to $\overline{f} \in \operatorname{Hom}_R(M,Y)$. Then X is an K-prime module.

Proof. Let Y be a nonzero submodule of K such that $\operatorname{Hom}_R(K, Y) \neq O$. $Ann_K(Y) = K \cap Ann_M(Y) = K \cap Ann_M(X) = Ann_K(X)$. This proves that X is a K-prime module.

COROLLARY 13. Let X be a M-prime module and K is a direct summand of M. $Hom_R(K, X) \neq O$. Then X is a K-prime module.

The Jacobian radical of the ring R is generally defined to be the intersection of maximal left ideals of R. The definition is extended to modules, by defining the Jacobson radical J(X) of a module $_RX$ to be the intersection of all maximal submodules of X. Equivalently, $J(X) = Ann_X(\mathcal{C})$, where \mathcal{C} is the class of simple left R-modules.

PROPOSITION 14. Let A be a submodule a module M. If A is direct summand of M, then $J(A) = J(M) \cap A$.

Proof. $J(A) = Ann_A(\mathcal{C})$ where \mathcal{C} is the class of simple left Rmodules. $Ann_A(\mathcal{C}) = A \cap Ann_M(\mathcal{C}) = A \cap J(M)$.

References

- Anderson, F.W., and Fuller, K.R, Rings and Categories of Modules, Graduate Texts in Mathematics Vol. 13, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
- [2] Beachy, J.A., M-injective module and prime M-ideals, Comm. Algebra 30 (2002), 4649-4676.
- [4] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.

*

DEPARTMENT OF MATHEMATICS CHUNGNAM NATIONAL UNIVERSITY DAEJEON 305–764, KOREA

E-mail: kjmin@math.cnu.ac.kr