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ON M–INJECTIVE MODULES AND M–IDEALS

Kang-Joo Min*

Abstract. For a left R-module M, we identify certain submodules

of M that play a role analogous to that of ideals in the ring R. We
investigate some properties of M-ideals in the submodules of M and

also study Jacobson radicals of a submodule of M.

We assume throughout the paper that R is an associative ring with

identity and a left R-module is a unitary left R-module.

The module RX is called M-injective if each R-homomorphism

f : K → X defined on a submodule K of M can be extended to an

R-homomorphism f̂ : M → X with f = f̂ i, where i : K → M is the

natural inclusion mapping [1].

The category σ[M ] is defined to be the full subcategory of R-mod

that contains all modules RX such that X is isomorphic to a submod-

ule of an M-generated module[4].

Two-sided ideals of the ring R correspond to the annihilator of left

R-modules. Furthermore, for a left R-module X, we have

AnnR(X) = {r ∈ R | rx = 0 for all x ∈ X}

=
⋂

f∈HomR(R,X)

ker(f).

More generally, the annihilator of any class of modules is two-sided

ideal of R and this motivates the following definition.
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Definition 1. ([3]) Let M be any left R-module, and let C be

a class of modules in R-mod, and let Ω be the set of kernel of R-

homomorphisms from M into C. That is

Ω = {K ⊂ M | ∃ w ∈ C and f ∈ HomR(M,W )

with K = ker(f)}.

We define the annihilator of C in M to be annM (C) = ∩K∈ΩK.

In [1]. what we have called the annihilator of C in M is called the

reject of C in M , and is denoted by RejM (C).

Definition 2. ([2]) The submodule N of M is called an M-ideal

if there is a class C of modules in σ[M ] such that N = AnnM (C).

Note that although the definition of an M-ideal is given relative

to the subcategory σ[M ], it is easy to check that N is an M-ideal if

and only if N = AnnM (C) for some class C in R-mod. A subfunctor

ρ of the identity of R-mod is called a radical if ρ(X/ρ(X)) = O, for

all modules RX. For a class C of R-modules, the radical of R-mod

cogenerated by C is defined by setting radC(X) = AnnX(C) for al

module RX.

Proposition 1. ([3]) The following conditions are equivalent for

a submodule N ⊂ M .

(1) N is an M-ideal;

(2) there exists a radical ρ of R-mod such that N = ρ(M);

(3) g(N) = O for all g ∈ HomR(M,M/N);

(4) N = AnnM (M/N).

Proof. (1) ⇒ (2): Assume that N = AnnM (M/N) for the class C

of modules in σ[M ]. Then N = radC(M) for the radical ρ = radC

cogenerated by the class C.
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(2) ⇒ (3): Assume that ρ is a radical of R-mod, with N = ρ(M).

Since ρ is a radical, we have ρ(M/N) = ρ(M/ρ(M)) = O. If g ∈

HomR(M,M/N), then g(N) = g(ρ(M)) ⊆ ρ(M/N) = O.

(3) ⇒ (4): It is always true that AnnM (M/N) ⊆ N . Condition (3)

implies that N ⊆ ∩f :M→M/Nker(f), so we have equality in this case.

(4) ⇒ (1): This follows from the definition of M-ideal. �

Let N ⊂ K be submodules of M . It is not true that if N is an

M-ideal, then N is a K-ideal.

Proposition 2. Let N ⊂ K be submodules of M . If N is an

M-ideal and K/N is M-injective, then N is a K-ideal.

Proof. Let g : K → K/N be a homomorphism. Since K/N is

M-injective, there exists ḡ : M → K/N such that ḡ ◦ i = g where

i : K → M is an inclusion homomorphism. Since N is an M-ideal,

ḡ(N) = O.

g(N) = ḡi(N) = ḡ(N) = O.

Then N is a K-ideal. �

Proposition 3. Let N ⊂ K be submodules of M . If K is a direct

summand of M and N is a M-ideal, then N is a K-ideal.

Proof. Let f : K → K/N be a homomorphism. There exists g :

M → K/N such that g ◦ i = g where i : K → M is the inclusion

homomorphism. Since g(N) = O and f(N) = O, N is a K-ideal. �

Corollary 4. Let R be a semisimple ring and M be an R-module.

Let N ⊆ K be submodules of M . If N is a M-ideal, then N is a K-

ideal.

Proposition 5. Let f : M → X be an epimorphism of R-modules.

If N is a M-ideal, then f(N) is a X-ideal.
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Proof. There exists a radical ρ of R-mod such that N = ρ(M).

f(N) = f(ρ(M)) = ρ(f(M)) = ρ(X).

Then f(N) is a X-ideal. �

Proposition 6. Let N ⊂ K be submodules of M . N is a M-ideal

and K/N is a M/N -ideal. If for f ∈ HomR(M,M/K), there exists

f̄ ∈ HomR(M,M/N) such that π ◦ f̄ = f where π is the natural

homomorphism of M/N onto M/K, then K is an M-ideal.

Proof. Let π : M/N → M/K be the natural homomorphism.

Let f ∈ HomR(M,M/K). By the assumption, there exists f̄ ∈

HomR(M,M/N) such that π◦f̄ = f . Since N is a M-ideal, f̄(N) = O.

Since K/N is a M/N -ideal, πf̄(K) = O. This implies that f(K) = O.

Thus K is an M-ideal. �

Proposition 7. Let N ⊂ K be submodules of M . If N is a K-

ideal (in K) and for every f ∈ HomR(M,M/N), f(K) ⊆ K/N , then

N is an M-ideal.

Proof. If f ∈ HomR(M,M/N), then f |K : K → K/N . Since N is

a K-ideal (in K), f(N) = O. Thus N is an M-ideal. �

The next step is to define the product of two M-ideal. We give

the definition more generally, constructing a product N · X for any

submodule N of M and any module RX.

Definition 3. ([2]) Let N be a submodule of M . For each module

RX, we define N ·X = AnnX(C), where C is the class of modules RW

such that f(N) = O for all f ∈ HomR(M,W ).

It follows from definition that N · X = O if and only if f(N) = O

for all f ∈ HomR(M,X).
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Proposition 8. Let N ⊂ K be submodules of M and X be any R-

module. For any f ∈ HomR(M,X), f can be extended to f̄ : M → X.

Then N · X = O in K if and only if f(N) = O in M .

Proof. N ·X = O if and only if f(N) = O for all f ∈ HomR(M,X).

Assume that N · X = O in M . Let f ∈ HomR(K,X). Then there

exists f̄ : M → X such that f̄ is an extension of f . f̄(N) = O implies

f(N) = O. Thus N · X = O in K.

Conversely, assume that N · X = O in K. Let f ∈ HomR(K,X)

and i : K → M be an inclusion. f ◦ i = O implies f(N) = O and

N · X = O in M . �

Corollary 9. Let K be a direct summand of M and N ⊆ K be

a submodule of M . Then N · X = O in K if and only if N · X = O

in M .

Proof. Every homomorphism f : K → X can be extended to a

homomorphism f̄ : M → X. �

Proposition 10. Let N ⊂ K be submodules of M . If K is a

direct summand of M , then N ·X in K equals to N ·X in M for any

module X.

Proof. Let C be the class of modules RW such that f(N) = O for

all f ∈ HomR(M,W ). C is also the class of modules RW such that

f(N) = O for all f ∈ HomR(K,W ). Thus N · X = AnnX(C) in K

equals N · X = AnnX(C) in M . �

It is not true that N · X in K = N · X in M .

Definition 4. ([2]) The module RX is said to be M-prime if

HomR(M,X) 6= O, and AnnM (Y = AnnM (X) for all submodules

Y ⊆ X such that HomR(M,Y ) 6= O.
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Proposition 11. Let M be a nonzero M-prime module. If Hom

R(K,Y ) 6= O implies HomR(M,Y ) 6= O for any nonzero Y ≤ K ≤ M ,

then K is a K-prime module.

Proof. Let Y be a nonzero submodule of K such that HomR(K,Y )

6= O. HomR(M,Y ) 6= O by assumption. AnnK(Y ) = AnnM (M) = O

since M is M-prime. AnnK(Y ) ⊆ AnnM (Y ) ∩ K = O. This implies

that AnnK(Y ) = O and K is a K-prime module. �

Proposition 12. Let X be a M-prime module and K a submod-

ule of M . HomR(K,Y ) 6= O. Let Y be a submodule of X. Every ho-

momorphism f ∈ HomR(K,Y ) can be extended to f̄ ∈ HomR(M,Y ).

Then X is an K-prime module.

Proof. Let Y be a nonzero submodule of K such that HomR(K,Y )

6= O. AnnK(Y ) = K∩AnnM (Y ) = K∩AnnM (X) = AnnK(X). This

proves that X is a K-prime module. �

Corollary 13. Let X be a M-prime module and K is a direct

summand of M . HomR(K,X) 6= O. Then X is a K-prime module.

The Jacobian radical of the ring R is generally defined to be the

intersection of maximal left ideals of R. The definition is extended

to modules, by defining the Jacobson radical J(X) of a module RX

to be the intersection of all maximal submodules of X. Equivalently,

J(X) = AnnX(C), where C is the class of simple left R-modules.

Proposition 14. Let A be a submodule a module M . If A is

direct summand of M , then J(A) = J(M) ∩ A.

Proof. J(A) = AnnA(C) where C is the class of simple left R-

modules. AnnA(C) = A ∩ AnnM (C) = A ∩ J(M). �
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