ON M-INJECTIVE MODULES AND M-IDEALS

Kang-Joo Min*

Abstract

For a left R-module M, we identify certain submodules of M that play a role analogous to that of ideals in the ring R . We investigate some properties of M-ideals in the submodules of M and also study Jacobson radicals of a submodule of M.

We assume throughout the paper that R is an associative ring with identity and a left R-module is a unitary left R-module.

The module ${ }_{R} X$ is called M-injective if each R-homomorphism $f: K \rightarrow X$ defined on a submodule K of M can be extended to an R-homomorphism $\hat{f}: M \rightarrow X$ with $f=\hat{f} i$, where $i: K \rightarrow M$ is the natural inclusion mapping [1].

The category $\sigma[M]$ is defined to be the full subcategory of R-mod that contains all modules ${ }_{R} X$ such that X is isomorphic to a submodule of an M-generated module[4].

Two-sided ideals of the ring R correspond to the annihilator of left R-modules. Furthermore, for a left R-module X, we have

$$
\begin{aligned}
\operatorname{Ann}_{R}(X) & =\{r \in R \mid r x=0 \text { for all } x \in X\} \\
& =\bigcap_{f \in \operatorname{Hom}_{R}(R, X)} \operatorname{ker}(f) .
\end{aligned}
$$

More generally, the annihilator of any class of modules is two-sided ideal of R and this motivates the following definition.

Received by the editors on March 07, 2005.
2000 Mathematics Subject Classifications: Primary 16D25.
Key words and phrases: M-ideal, M-injective module, M-prime module, radical.

Definition 1. ([3]) Let M be any left R-module, and let \mathcal{C} be a class of modules in R-mod, and let Ω be the set of kernel of R homomorphisms from M into \mathcal{C}. That is

$$
\begin{aligned}
& \Omega=\left\{K \subset M \mid \exists w \in \mathcal{C} \text { and } f \in \operatorname{Hom}_{R}(M, W)\right. \\
& \quad \text { with } K=\operatorname{ker}(f)\} .
\end{aligned}
$$

We define the annihilator of \mathcal{C} in M to be $\operatorname{ann}_{M}(\mathcal{C})=\cap_{K \in \Omega} K$.
In [1]. what we have called the annihilator of \mathcal{C} in M is called the reject of \mathcal{C} in M, and is denoted by $\operatorname{Rej}_{M}(\mathcal{C})$.

Definition 2. ([2]) The submodule N of M is called an M-ideal if there is a class \mathcal{C} of modules in $\sigma[M]$ such that $N=A n n_{M}(\mathcal{C})$.

Note that although the definition of an M-ideal is given relative to the subcategory $\sigma[M]$, it is easy to check that N is an M-ideal if and only if $N=A n n_{M}(\mathcal{C})$ for some class \mathcal{C} in R-mod. A subfunctor ρ of the identity of R-mod is called a radical if $\rho(X / \rho(X))=O$, for all modules ${ }_{R} X$. For a class \mathcal{C} of R-modules, the radical of R-mod cogenerated by \mathcal{C} is defined by setting $\operatorname{rad}_{\mathcal{C}}(X)=\operatorname{Ann}_{X}(\mathcal{C})$ for al module ${ }_{R} X$.

Proposition 1. ([3]) The following conditions are equivalent for a submodule $N \subset M$.
(1) N is an M-ideal;
(2) there exists a radical ρ of $R-\bmod$ such that $N=\rho(M)$;
(3) $g(N)=O$ for all $g \in \operatorname{Hom}_{R}(M, M / N)$;
(4) $N=A n n_{M}(M / N)$.

Proof. (1) $\Rightarrow(2)$: Assume that $N=\operatorname{Ann}_{M}(M / N)$ for the class \mathcal{C} of modules in $\sigma[M]$. Then $N=\operatorname{rad}_{\mathcal{C}}(M)$ for the radical $\rho=\operatorname{rad}_{\mathcal{C}}$ cogenerated by the class \mathcal{C}.
$(2) \Rightarrow(3)$: Assume that ρ is a radical of R-mod, with $N=\rho(M)$. Since ρ is a radical, we have $\rho(M / N)=\rho(M / \rho(M))=O$. If $g \in$ $\operatorname{Hom}_{R}(M, M / N)$, then $g(N)=g(\rho(M)) \subseteq \rho(M / N)=O$.
$(3) \Rightarrow(4)$: It is always true that $A n n_{M}(M / N) \subseteq N$. Condition (3) implies that $N \subseteq \cap_{f: M \rightarrow M / N} \operatorname{ker}(f)$, so we have equality in this case. $(4) \Rightarrow(1)$: This follows from the definition of M-ideal.

Let $N \subset K$ be submodules of M. It is not true that if N is an M-ideal, then N is a K-ideal.

Proposition 2. Let $N \subset K$ be submodules of M. If N is an M-ideal and K / N is M-injective, then N is a K-ideal.

Proof. Let $g: K \rightarrow K / N$ be a homomorphism. Since K / N is M-injective, there exists $\bar{g}: M \rightarrow K / N$ such that $\bar{g} \circ i=g$ where $i: K \rightarrow M$ is an inclusion homomorphism. Since N is an M-ideal, $\bar{g}(N)=O$.

$$
g(N)=\bar{g} i(N)=\bar{g}(N)=O
$$

Then N is a K-ideal.
Proposition 3. Let $N \subset K$ be submodules of M. If K is a direct summand of M and N is a M-ideal, then N is a K-ideal.

Proof. Let $f: K \rightarrow K / N$ be a homomorphism. There exists g : $M \rightarrow K / N$ such that $g \circ i=g$ where $i: K \rightarrow M$ is the inclusion homomorphism. Since $g(N)=O$ and $f(N)=O, N$ is a K-ideal.

Corollary 4. Let R be a semisimple ring and M be an R-module. Let $N \subseteq K$ be submodules of M. If N is a M-ideal, then N is a K ideal.

Proposition 5. Let $f: M \rightarrow X$ be an epimorphism of R-modules. If N is a M-ideal, then $f(N)$ is a X-ideal.

Proof. There exists a radical ρ of R-mod such that $N=\rho(M)$.

$$
f(N)=f(\rho(M))=\rho(f(M))=\rho(X) .
$$

Then $f(N)$ is a X-ideal.
Proposition 6. Let $N \subset K$ be submodules of M. N is a M-ideal and K / N is a M / N-ideal. If for $f \in \operatorname{Hom}_{R}(M, M / K)$, there exists $\bar{f} \in \operatorname{Hom}_{R}(M, M / N)$ such that $\pi \circ \bar{f}=f$ where π is the natural homomorphism of M / N onto M / K, then K is an M-ideal.

Proof. Let $\pi: M / N \rightarrow M / K$ be the natural homomorphism. Let $f \in \operatorname{Hom}_{R}(M, M / K)$. By the assumption, there exists $\bar{f} \in$ $\operatorname{Hom}_{R}(M, M / N)$ such that $\pi \circ \bar{f}=f$. Since N is a M-ideal, $\bar{f}(N)=O$. Since K / N is a M / N-ideal, $\pi \bar{f}(K)=O$. This implies that $f(K)=O$. Thus K is an M-ideal.

Proposition 7. Let $N \subset K$ be submodules of M. If N is a K ideal (in K) and for every $f \in \operatorname{Hom}_{R}(M, M / N), f(K) \subseteq K / N$, then N is an M-ideal.

Proof. If $f \in \operatorname{Hom}_{R}(M, M / N)$, then $\left.f\right|_{K}: K \rightarrow K / N$. Since N is a K-ideal (in K), $f(N)=O$. Thus N is an M-ideal.

The next step is to define the product of two M-ideal. We give the definition more generally, constructing a product $N \cdot X$ for any submodule N of M and any module ${ }_{R} X$.

Definition 3. ([2]) Let N be a submodule of M. For each module ${ }_{R} X$, we define $N \cdot X=A n n_{X}(\mathcal{C})$, where \mathcal{C} is the class of modules ${ }_{R} W$ such that $f(N)=O$ for all $f \in \operatorname{Hom}_{R}(M, W)$.

It follows from definition that $N \cdot X=O$ if and only if $f(N)=O$ for all $f \in \operatorname{Hom}_{R}(M, X)$.

Proposition 8. Let $N \subset K$ be submodules of M and X be any R module. For any $f \in \operatorname{Hom}_{R}(M, X), f$ can be extended to $\bar{f}: M \rightarrow X$. Then $N \cdot X=O$ in K if and only if $f(N)=O$ in M.

Proof. $N \cdot X=O$ if and only if $f(N)=O$ for all $f \in \operatorname{Hom}_{R}(M, X)$. Assume that $N \cdot X=O$ in M. Let $f \in \operatorname{Hom}_{R}(K, X)$. Then there exists $\bar{f}: M \rightarrow X$ such that \bar{f} is an extension of $f . \bar{f}(N)=O$ implies $f(N)=O$. Thus $N \cdot X=O$ in K.

Conversely, assume that $N \cdot X=O$ in K. Let $f \in \operatorname{Hom}_{R}(K, X)$ and $i: K \rightarrow M$ be an inclusion. $f \circ i=O$ implies $f(N)=O$ and $N \cdot X=O$ in M.

Corollary 9. Let K be a direct summand of M and $N \subseteq K$ be a submodule of M. Then $N \cdot X=O$ in K if and only if $N \cdot X=O$ in M.

Proof. Every homomorphism $f: K \rightarrow X$ can be extended to a homomorphism $\bar{f}: M \rightarrow X$.

Proposition 10. Let $N \subset K$ be submodules of M. If K is a direct summand of M, then $N \cdot X$ in K equals to $N \cdot X$ in M for any module X.

Proof. Let \mathcal{C} be the class of modules ${ }_{R} W$ such that $f(N)=O$ for all $f \in \operatorname{Hom}_{R}(M, W)$. \mathcal{C} is also the class of modules ${ }_{R} W$ such that $f(N)=O$ for all $f \in \operatorname{Hom}_{R}(K, W)$. Thus $N \cdot X=A n n_{X}(\mathcal{C})$ in K equals $N \cdot X=A n n_{X}(\mathcal{C})$ in M.

It is not true that $N \cdot X$ in $K=N \cdot X$ in M.
Definition 4. ([2]) The module ${ }_{R} X$ is said to be M-prime if $\operatorname{Hom}_{R}(M, X) \neq O$, and $\operatorname{Ann}_{M}\left(Y=\operatorname{Ann}_{M}(X)\right.$ for all submodules $Y \subseteq X$ such that $\operatorname{Hom}_{R}(M, Y) \neq O$.

Proposition 11. Let M be a nonzero M-prime module. If Hom ${ }_{R}(K, Y) \neq O$ implies $\operatorname{Hom}_{R}(M, Y) \neq O$ for any nonzero $Y \leq K \leq M$, then K is a K-prime module.

Proof. Let Y be a nonzero submodule of K such that $\operatorname{Hom}_{R}(K, Y)$ $\neq O \operatorname{Hom}_{R}(M, Y) \neq O$ by assumption. $A n n_{K}(Y)=A n n_{M}(M)=O$ since M is M-prime. $A n n_{K}(Y) \subseteq A n n_{M}(Y) \cap K=O$. This implies that $A n n_{K}(Y)=O$ and K is a K-prime module.

Proposition 12. Let X be a M-prime module and K a submodule of $M . \operatorname{Hom}_{R}(K, Y) \neq O$. Let Y be a submodule of X. Every homomorphism $f \in \operatorname{Hom}_{R}(K, Y)$ can be extended to $\bar{f} \in \operatorname{Hom}_{R}(M, Y)$. Then X is an K-prime module.

Proof. Let Y be a nonzero submodule of K such that $\operatorname{Hom}_{R}(K, Y)$ $\neq O . \operatorname{Ann}_{K}(Y)=K \cap A n n_{M}(Y)=K \cap A n n_{M}(X)=A n n_{K}(X)$. This proves that X is a K-prime module.

Corollary 13. Let X be a M-prime module and K is a direct summand of $M . \operatorname{Hom}_{R}(K, X) \neq O$. Then X is a K-prime module.

The Jacobian radical of the ring R is generally defined to be the intersection of maximal left ideals of R. The definition is extended to modules, by defining the Jacobson radical $J(X)$ of a module ${ }_{R} X$ to be the intersection of all maximal submodules of X. Equivalently, $J(X)=A n n_{X}(\mathcal{C})$, where \mathcal{C} is the class of simple left R-modules.

Proposition 14. Let A be a submodule a module M. If A is direct summand of M, then $J(A)=J(M) \cap A$.

Proof. $J(A)=A n n_{A}(\mathcal{C})$ where \mathcal{C} is the class of simple left R modules. $A n n_{A}(\mathcal{C})=A \cap A n n_{M}(\mathcal{C})=A \cap J(M)$.

References

[1] Anderson, F.W., and Fuller, K.R, Rings and Categories of Modules, Graduate Texts in Mathematics Vol. 13, Springer-Verlag, Berlin-Heidelberg-New York, 1992.
[2] Beachy, J.A.,, M-injective module and prime M-ideals, Comm. Algebra 30 (2002), 4649-4676.
[3] Bican, L., Jambor, P., Kepka, T., and Nĕmee P., Generation of preradicals, Czechoslovak Math. J. 27 (1977), 155-166.
[4] Wisbauer, R., Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.
*
Department of Mathematics
Chungnam National University
Daejeon 305-764, Korea
E-mail: kjmin@math.cnu.ac.kr

