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STRONGLY IRREDUCIBLE SUBMODULES

SHAHABADDIN EBRAHIMI ATANI

ABSTRACT. This paper is motivated by the results in [6]. We study
some properties of strongly irreducible submodules of a module. In
fact, our objective is to investigate strongly irreducible modules and
to examine in particular when submodules of a module are strongly
irreducible. For example, we show that prime submodules of a mul-
tiplication module are strongly irreducible, and a characterization
is given of a multiplication module over a Noetherian ring which
contain a non-prime strongly irreducible submodule.

1. Introduction

Throughout this paper all rings will be commutative with identity and
all modules will be unitary. If R is a ring and N is a submodule of an
R-module M, the ideal {r € R: M C N} will be denoted by (N : M).
Then (0 : M) is the annihilator of M, Ann(M). An R-module M is
called a multiplication module if for each submodule N of Ml, N =IM
for some ideal I of R. In this case we can take I = (N : M). An R-
submodule N of M is said to be irreducible if NV is not the intersection of
two submodules of M that properly contain it. An ideal of R which is a
strongly irreducible (irreducible) module is called a strongly irreducible
(irreducible) ideal.

A proper submodule N of a module M over a ring R is said to
be prime submodule (primary submodule) if for each r € R the R-
endomorphism of M /N produced by multiplication by r is either injec-
tive or zero (either injective or nilpotent), so (0 : M/N) = P (nilrad(M/
N) = P’) is a prime ideal of R, and N is said to be P-prime submodule
(P’-primary submodule). So N is prime (N is primary) in M if and
only if whenever rm € N, for some r € R, m € M, then either m € N
or rM C N (either m € N or r°M C N for some s), so every prime
submodule of M is primary.
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Let M be an R-module. We say that r € R is a zero-divisor for M
if there is a non-zero m € M such that rm = 0, and otherwise that r is
M-regular. The set of zero-divisors of M is written Zr(M). Elements
of R that are not zero-divisors are called regular. A regular ideal of R
is one that contains a regular element. A submodule N of M is said to
be regular if it possesses a N-regular element. A ring R is said to be
arithmetical if for all ideals, I,J, and K of R, we have (I + J)N K =
(INK)+ (JNK). This property is equivalent to the condition that for
all ideals I, J, and K of R, we have (INJ)+ K = (I + K)Nn (J + K).
We use “C” for strict inclusion.

2. Strongly irreducible modules

DEFINITION 2.1. A submodule N of an R-module M is said to be
strongly irreducible if for submodules N1 and Ny of M, the inclusion
N1 N Ny C N implies that either Ny C N or Ny C N.

In this section we list some basic properties concerning strongly irre-
ducible modules.

LemMA 2.2. Let R be aring, M an R-module, and N an R-submodule
of M. Set (N : M) =1. Then:

(1) Zr(M/N) is a prime ideal of R if and only if Zp,[(M/N) is a
prime ideal of R/I.

(2) Zr(R/I) is a prime ideal of R if and only if Zp,(R/I) is a prime
ideal of R/I.

Proof. (1) Assume that Zg(M/N) is a prime ideal of R and let
r+1,s+1¢€ Zp/;(M/N)=J. Then there are elements m,n € M — N
such that (r+I)(m+N)=rm+N =N and (s+[)(n+N) =sn+N =
N, so s,7 € Zr(M/N), and hence there exists £ € M — N such that
(r—s)k € N. It follows that (r+1)—(s+1I) € J. Clearly, if (t+1) € R/I
and (r+1) € J, then (r+I)(t+1I) = (t+I)(r+1I) € J. Therefore, J is
an ideal of R/I. Assume that (ry + I)(re + I) € J for some r1,72 € R.
Then there exists a € M — N such that rirea € N, so rire € Zr(M/N),
and hence either 1 € Zr(M/N) or ro € Zr(M/N) since Zr(M/N) is
prime. Therefore it follows that either (r1 +1I) € J or (ro + 1) € J, so
J is a prime ideal of R/I. The other direction is clear.

(2) This proof is similar to that of case (1) and we omit it. O
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LEMMA 2.3. Let M be a module over a commutative ring R, and let
m,n € M. Then RmN Rn = (Rm : Rn)n = (Rn : Rm)m. Moreover, if
N is a submodule of M such that N C Rm, then N = (N : Rm)m.

Proof. Clearly, (Rm : Rn)n C Rm N Rn. For the other direction, if
X € RmN Rn, then X = rm = sn for some r,s € R. It is clear that
r € (Bn : Rm), and hence X € (Rn : Rm)m. Similarly, Rm N Rn =
(Rm : Rn)n.

For the last statement, assume that N is a submodule of A such that
N C Rm. Then it is clear that (N : Rm)m C N, and if a € N C Rm,
then a = tm for some t € R, so t € (N : Rm), and hence a =tm € (N :
Rm)m, as required. O

LEMMA 2.4. Let R be aring, M an R-module, and N an R-submodule
of M. Then:

(1) If N is strongly irreducible, then N is irreducible. In particular,
if M is Noetherian, then N is a primary submodule of M.

(2) To show that N is strongly irreducible, it suffices to show that if
Rn and Rm are cyclic submodules of M such that Rm N Rn C N, then
eitherme& N orn € N.

(3) If N is strongly irreducible and if K is a submodule of M contained
in N, then N/K is strongly irreducible in M/K.

Proof. (1) Assume that N is strongly irreducible and let N7 and No
be submodules of M such that Ny M Ny = N. Then Ny NNy C N, so
either Ny € N or No € N, and it then follows that either N = N;
or N = Ny, so N is irreducible. Finally, if M is Noetherian, then [13,
Proposition 4.13] show that irreducible is primary.

(2) Let Ny and Ny be submodules of M such that Ny N Ny C N.
Assume that N1 ¢ N, so there exists ny € N; such that n; ¢ N. Then
for all @ € Na it holds RnyNRny C NyNNy C N, song € N, as required.

(3) Let Ny and Ny be submodules of M such that (N;/K)N(N2/K) C
N/K. Then (N1 + K)N(N2+ K) C N+ K = N, so either Ny C N or
Ny € N since N is strongly irreducible, and hence either N1 /K C N/K
or Na/K C N/K, as required. O

REMARK 1. Let R be a commutative ring, M an R-module, and S
a multiplicatively closed set in R. If B is a submodule of Mg, define
BN M = ¢ Y(B) where ¢ : M — Mg is the natural homomorphism.
Clearly, BN M is a submodule of M.

LeMMA 2.5. Let R be a commutative ring, M an R-module, and N
an R-submodule of M. If S is a multiplicatively closed set in R and if
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N is primary submodule of M such that Rad((N : M)) NS = 0, then
NgnNnM=N.

Proof. Clearlyy, N € Ns N M. Let m € NgN M. Then there are
elements n € N and s € S such that m/1 = n/s. There exists t € S such
that stm = tn € N. It follows that m € N since st ¢ Rad((N : M)), as
required. 1

LEMMA 2.6. Let R be a commutative ring, M an R-module, and N
an R-submodule of M. If S is a multiplicatively closed set in R and if
Ng is strongly irreducible, then Ng N M is strongly irreducible.

Proof. Assume that Ng is strongly irreducible and let H and G be
submodules of M such that HNG € NgNM. Then GgN Hg C Ng. For
ifa;/s1 = az/s2 € GsNHg (where a1 € G,ay € H and s1, 52 € S), then
a1soty = ags1t; € HNG € NgNM for some t; € S. Therefore, there are
elements n € N and s € S such that (a1s2t1)/1 = (a2s1t1)/1 = n/s, so
there exists t2 € S such that a;sstites = tan, and hence ta(aisat1ss1 —
sin) = 0. Thus a1/s17 = n/(sat1s18) € Ng. It follows that either
Gg € Ng or Hg € Ng, so either H C NgNM or G C Ngs N M, as
required. O

ProprosITION 2.7. Let R be a commutative ring, M an R-module,
and N an R-submodule of M. If S is a multiplicatively closed set in
R and if N is strongly irreducible primary submodule of M such that
Rad((N : M))NS =0, then Ng is strongly irreducible.

Proof. Assume that N is strongly irreducible primary submodule of
M and let H and G be submodule of Ng such that H NG C Ng. Then
(HNM)N(GNM) C NsNM = N by lemma 2.4. So either HNM C N
or GNM C N since N is strongly irreducible. Therefore it follows that
either G = (GN M)s C Ns or H=(HN M)g C Ng, and hence Ng is
strongly irreducible. O

ProprosITION 2.8. Let R be a commutative ring, M an R-module,
and N an R-submodule of M. If N is P-primary and Np is strongly
irreducible, then N is strongly irreducible.

Proof. By lemma 2.5, Np N M is strongly irreducible. Now the
assertion follows from lemma 2.4. O

3. Multiplication modules

Let R be a commutative ring with non-zero identity. Then R is
a cyclic multiplication R-module. Thus strongly irreducible ideals are
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strongly irreducible submodules of the cyclic multiplication R-module
R.

THEOREM 3.1. Let R be a ring, and M a multiplication R-module.
If N is a prime submodule of M, then N is strongly irreducible.

Proof. Assume that N is a prime and let N7 and N, be submodules
of M such that NyN Ny C N but Ny € N and No € N. We can write
Ny = I1M and Ny = I3 M for some ideals I1 and I of R, so there are
r1 € I, 72 € Iz and my,my € M such that rym; ¢ N and romg ¢ N.
It follows that rirom; € Ny NNy € N, so roM C N since N is prime.
Thus romy € N, a contradiction, as required. O

PROPOSITION 3.2. Let R be a ring, and M a finitely generated mul-
tiplication R-module. Then:

(1) A submodule N of M is strongly irreducible if and only if there
exists a strongly irreducible ideal I of R such that N = IM .

(2) A submodule N of M is irreducible if and only if there exists a
irreducible ideal I of R such that N = IM.

Proof. (1) Suppose first that N is a strongly irreducible submodule
of M. There exists an ideal I of R such that N = IM. Let I; and I, be
ideals of R such that Iy NIy C I. It follows from [5, Corollary 1.6] that

(I, + AoanM)M 0 (I + AnnM)M = (I; N [,)M C N,

and hence either (I; + AnnM)M C N or (I + AnnM)M C N. As
AnnM C (N : M) = I we get (by [12, p. 231 Corollry]) either I; C
I + AnnM C T or Iy C Iy + AnnM C I, so it follows that I is strongly
irreducible. Conversely, assume that I is strongly irreducible and let
N; and N3 be submodules of M such that Ny N Ny C N. There are
ideals J; and J2 of R such that Ny = J1M, Ny = JoM, so ((J; +
AnnM) N (Jo + AnnM))M = Ny NNy € IM = N, and hence either
Ji=J1+AnaM C I or Jy = Jy + AnnM C I. Tt follows that N is
strongly irreducible.

(2) This proof is similar to that of case (1) and we omit it. O

PROPOSITION 3.3. Let R be a ring, and M a finitely generated mul-
tiplication R-module. Then a primary submodule of M over a UFD is
strongly irreducible.

Proof. Assume that N is a P-primary submodule of M and let N =
IM for some ideal I of R. There exists a principal primary ideal Ip
of Rp such that Np = IpMp since Rp is DVR. It then follows from
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[6, Lemma 2.2 (10)] and proposition 3.2 that Np is strongly irreducible,
and hence N is strongly irreducible by Proposition 2.8. O

REMARK 2. Why is the hypothesis “M is a multiplication mod-
ule” needed?

(1) Let R be a local Dedekind domain with maximal ideal P = Rp.
The module E = E(R/P), the injective hull of R/P, is pure-injective
and secondary (see [3], Theorem 1.1). Set A, = (0 :g P") (n > 1).
Then every nonzero proper submodule L of E is of the form L = A,, for
some m and F is Artinian module with a strictly increasing sequence of
submodules A; C As..., where they are not prime in E (see [4], p. 324),
but they are strongly irreducible (so primary).

The mapping f : E — E defined by z — p"z (n > 1) is a module
surjective homomorphism with Ker(f) = A,, so E/A, = E. Similarly,
the mapping g : E — P"E (n > 1) by z — p"z is a surjective homo-
morphism with Ker(g) = A,, and hence E = E/A, = P"E. Thus F is
not multiplication (compare with theorem 3.1).

(2) Suppose that R is a field. Then any R-module M is torsion-free
(vector space) and every proper submodule of M is prime (so primary).
But M is not multiplication. Let {x1, 2, z3, 4,25, 26} be a R-basis of
an R-module M (so it is Noetherian and Artinian). Set N; = Rz; +
Rzy + Rx3, Ny = Rz + Rxs and N = Rzy + Rzg. Then Ny NN C N
but N € N and Ny € N, so N is not strongly irreducible (compare
with Proposition 3.3 and theorem 3.1).

(3) A submodule N of M is said to be a maximal submodule of
M if (i) M # N and (ii) there is no proper submodule of M strictly
containing N. It is well known that every non-zero finitely generated R-
module possesses a maxmal submodule. If N is a maximal submodule
of M, then N is prime in M (since M/N is a simple R-module and
(N : M) is a maximal ideal of R). Therefore it follows that every
non-zero finitely generated multiplication R-module possesses a strongly
irreducible submodule by Proposition 3.1 (4). In particular, every non-
zero cyclic R-module possesses a strongly irreducible submodule.

(4) Let M be a module over a ring R. If the zero submodule of M is
irreducible, then the zero submodule of M is strongly irreducible.

PROPOSITION 3.4. Let R be an arithmetical ring, M a finitely gen-
erated multiplication R-module, and N an R-submodule of M. Then:

(1) N is strongly irreducible if and only if N is irreducible.

(2) N is strongly irreducible if and only if the set of zero-divisors of
M/N is a prime ideal of R.

(3) If N is a primary submodule of M, then N is irreducible.
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Proof. (1) By Lemma 2.4, it is enough to show that if /V is irreducible,
then N is strongly irreducible. Let N1 and No be submodules of M such
that NyN N, C N,so N = (NlﬁNg)—FN = (N1+N)ﬂ(N2+N) since
M is distributive by [10, Theorem 5]. It then follows that either Ny C N
or No C N, as required.

(2) Assume that N is strongly irreducible and let P be the set of zero-
divisors of M/N. P is not empty since 0 € P. To prove P is an ideal
of R, assume that r1, 79 € P. Then there are elements m; and mg of M
such that rymy,romg € N and my,ma2 ¢ N. If Rm; 0 Rmg # 0, then
tiymy = tamg # 0 for some t1,t3 € R, so (r1 —r2)(tym1) € N, and hence
r1—ro € P. If Rmy N Rmgy = 0, then we have N = (Rmy N Rma)+ N =
(N+Rm1)N(N+Rmsy) since M is distributive. It then follows that either
Rmy € N or Rmy C N since N is irreducible, so either (r; —79)m; € N
or (r1 —rg)mg € N. Thus r; —ry € P. Clearly, if r € R and m € P,
then rr; = rir € P. Therefore, P is an ideal of R. It remains only to
show that P is prime. Assume that rs € P for some r,s € R. There
exists m € M — N such that rsm € N. If sm € N, then s(m + N) =0,
sos € P. If sm ¢ N, then sm # 0 and r(sm+N) = 0, and hence r € P,
so P is prime. For the other direction, assume the set of zero-divisors
of M/N is a prime ideal of R. There exists an ideal I of R such that
N = IM where I = Ann(M/N). It is easy to see that M/N is a faithful
multiplication R/I-module. Now the assertion follows from Lemma 2.2,
Proposition 3.2, [5, Lemma 4.3] and [6, Lemma 2.2(3)].

(3) Assume that N is a primary submodule of M and let N = IM
for some ideal I of R. Then I = Ann(M/N) is a primary ideal of
R by [9, sec 2.8 Proposition 18]. Let N; and N; be submodules of
M such that N = N; N N;. There are ideals I; and Is of R such
that Ny = LM and Ny = IbM, so (I1 N I;)M = IM by [5, Corollary
1.6] (since Ann(M) C I,Iy and I). It then follows from [12, p. 231
Corollary| that I = Iy NIy, so either I = I; or I = I, since I is irreducible
by [7, Theorem 6], and hence either N = N; or N = Ny, as required. [

LEMMA 3.5. Let (R, P) be a quasi-local ring, M a cyclic R-module,
and N a strongly irreducible P-primary submodule of M. Assume that
N C (N :PM)M. Then:

(1) (N : PM)M is a cyclic module.

(2) N=(N:PM)PM.

(3) For each submodule K of M either K C N or (N : PM)M C K.

Proof. (1) Since N C (N : PM)M, there exists x € (N : PM)M —N.
We cliam that (N : PM)M = Rx. If (N : PM)M # Rz, then let
y € (N: PM)M — Rz. Then Rx N Ry = (Rz : Ry)y by Lemma 2.3.
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(Rz : Ry)y C N. For if ry € (Rz : Ry)y with r € (Rxz : Ry), then there
are elements m € M and s € (N : PM) such that y = sm (since M is
cyclic), and hence ry = srm € N since r € (Rz : Ry) C P. However, N
is srongly irreducible, so Rz N Ry € N implies that either Rz C N or
Ry C N, hence y € N. It follows that (N : PM)M = Rx U N, so either
Rz C N or N C Rz, and hence (N : PM)M = Rz, a contradiction, as
required.

(2) There exists an ideal I = (N : M) of R such that N = IM since M
is multiplication, so N C (N : PM)M = Rz, and hence N = (N : Rz)x
by Lemma 2.3. P = (N : Rz). Otherwise, there are elements r € P and
s € R such that rsz ¢ N since R is quasi-local with maximal ideal P.
Since M is cyclic and z € (N : PM)M, z = tm for some m € M and

€ (N : PM), so rsz = t(rsm) € N, and this is a contradiction. Thus
N = Pz = (N : PM)PM.

(3) Let K be a submodule of M. It may clearly be assumed that
K ¢ N, so it remains to show that (N : PM)M C K; that is, z € K. If
z ¢ K, thenlet a € K, so z ¢ Ra. Therefore, RzNRa = (Ra : Rx)x (by
Lemma 2.3) C Pz = N. It follows that either Rz C N or Ra C N since
N is strongly irreducible, so a € N, and hence K C N, a contradiction,
as required. O

PROPOSITION 3.6. Let R be a Noetherian ring, M a multiplication R-
module, and N a strongly irreducible R-submodule of M. Let Rad((N :
M)) = P, and assume that I = (N : M) # P. Then:

(1) (Np : PpMp)Mp is a cyclic Rp-submodule of Mp.

(2) Np = (Np: PpPMp)PpMp.

(3) For each submodule K of M either K C N or (Np : PpMp)Mp C
Kp.

Proof. By Lemma 2.4, N is a strongly irreducible P-primary sub-
module of M (since every multiplication module over a Noetherian ring
is Noetherian). Also, Np is strongly irreducible by Proposition 2.7, so
(1)—(3) follow from Lemma 3.5 (note that any multiplication module
over a quasi-local ring is cyclic by [2, Proposition 4]). a

PROPOSITION 3.7. Let (R, P) be a local ring, M a multiplication R-
module, and N a strongly irreducible P-primary submodule of M with
(N :M)# P. Then N =|J{K : K is a submodule of M and K C (N :
PMYM} and (N : PMYM = ({K : K is a submodule of M and N C
K}.

Proof. Set H = ({K : K is a submodule of M and N C K}. Clearly,
HC(N:PM)M. If K is a submodule of M such that N C K, then
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(N : PM)M C K by Lemma 3.5 (3), so (N : PM)M C H, and hence
H=(N:PM)M.

Set L = J{K : K is a submodule of M and K C (N : PM)M}.
Clearly, N C L. If K is a submodule of M such that K C (N : PM)M,
then (N : PM)M € K,so K C N,and hence L C N. Thus L = N, as
required. O

THEOREM 3.8. Let M be a multiplication module over a Noetherian
ring R. A submodule N of M is a non-prime strongly irreducible module
if and only if there exist submodules H and G of M such that N C H C
G and:

(1) G is prime;

(2) N is (G : M)-primary (set P = (G : M));

(3) for all submodules K of M either K C N or Hp C Kp. Also
if this holds, then Hp = (Np :p, Gp)Mp. In particular, a finitely
generated multiplication module over a Noetherian ring R contains a
non-prime strongly irreducible submodule if and only if there exists a
submodule N of M satisfying these conditions.

Proof. Since every multiplication module over a Northerian ring is
Noetherian, so N is primary by Lemma 2.4, hence N is P-primary
(where P = Rad(N : M)). Moreover, G = PM is a prime submodule of
M by [5, Corollary 2.11], so N # G, and hence N C H = (N : PM)M.
Now the assertion follows from Propositions 3.6 and 3.7.

For the converse, assume that N is P-primary. By Proposition 2.7,
it suffices to show that Np is strongly irreducible, so it may be assumed
that R is local with maximal ideal P. Let K and L be submodules of
M such that KNLCN. F KZNand LEZ N,then NC H = (N:
PM)M C KN L, and this is a contradiction, as required.

Finally, since G = PM ¢ N,so G C H = (N : PM)M by Proposi-
tion 3.6, and hence PM = (N : PM)M. O

LEMMA 3.9. Let R be a Noetherian ring, M a finitely generated
multiplication R-module, and N a strongly irreducible R-submodule of
M. Let Rad((N : M)) = P, and assume that I = (N : M) # P and
ht(P) > 0. Then:

(1) N is a strongly irreducible R/Ann(M )-submodule of M,

Rad((N :g/ann(ar) M)) = P/Ann(M), I/Ann(M) # P/Ann(M)

and ht(P/Ann(M)) > 0.
(2) If I is a regular ideal of R, then I/Ann(M) is a regular ideal of
R/Ann(M).
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Proof. (1) Clearly, M is multiplication as an R/Ann(M )-module.
Also, N is a strongly irreducible R/Ann({M )-submodule of M by [6,
Lemma 2.2 (8)] and Proposition 3.2. It is clear that N satisfies the
stated conditions.

(2) If r is a regular element of I and sI = 0, then s = 0, so Ann(J) = 0.
By the [11, Lemma 2.6], we get

Amnpy(I)={m e M : Im =0} = Anng(I).M =0.

If (t+ Ann(M))(I/Ann(M)) = 0, then tI C Ann(M), so I(rM) = 0.
By the above consideration, we have M = 0, and hence Anng/ann(ar)
(I/Ann(M)) = 0, as required. O

ProprosITION 3.10. Let R be a Noetherian ring, M a finitely gener-
ated multiplication R-module, and N a strongly irreducible R-submodule
of M. Let Rad((N : M)) = P, and assume that I = (N : M) # P and
ht(P) > 0. Then Np is a regular module.

Proof. By Lemma 3.9, it may be assumed that M is a faithful
finitely generated multiplication R-module. Also, by Proposition 3.2,
I is strongly irreducible, so by hypothesis, Ip is a regular ideal of Rp.
We claim that there is an element x € Ip such that s = 0 for all
0 # s € Mp. Otherewise, for each x € Ip, there exists 0 # s € Mp such
that zs = 0, so Ip € Z(Mp) = Z(Rp) (by [5], Lemma 4.3), and this
is a contradiction since Ip contains a regular element. Thus there is an
element x € Rp such that xt = 0 for all 0 # ¢t € Np, and hence Np is
regular module. ]

THEOREM 3.11. Let R be a Noetherian ring, M a finitely generated
multiplication R-module, and N a non-prime R-submodule of M with
ht((N : M) =1) > 0. Then N is strongly irreducible if and ony if N
is primary, Rp is a DVR, where P = Rad(I), and I = P" for some
integer n > 1.

Proof. (<=) As N is primary, we conclude that I is a primary ideal of
R. Since Rp is a DVR, Ip is strongly irreducible (because the ideals of
Rp are linearly ordered), and since I is P-primary, this implies that I
is strongly irreducible by [6, Lemma 2.2(6)]. It follows from proposition
3.2 that N is strongly irreducible.

(=) Since over a Noetherian ring, every multiplication module is
Noetherian, we conclude that N is primary by Lemma 2.4 (1). As N
is strongly irreducible, it follows from Proposition 3.2 that I is strongly
irreducible. Now the ideal [ satisfies the stated conditions of [6, Theorem
3.4], as required. a
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