Browse > Article
http://dx.doi.org/10.4134/BKMS.b180122

A GENERALIZATION OF MULTIPLICATION MODULES  

Perez, Jaime Castro (Escuela de Ingenieria y Ciencias Instituto Tecnologico y de Estudios Superiores de Monterrey)
Montes, Jose Rios (Instituto de Matematicas Universidad Nacional Autonoma de Mexico)
Sanchez, Gustavo Tapia (Instituto de Ingenieria y Tecnologia Universidad Autonoma de Ciudad Juarez)
Publication Information
Bulletin of the Korean Mathematical Society / v.56, no.1, 2019 , pp. 83-102 More about this Journal
Abstract
For $M{\in}R-Mod$, $N{\subseteq}M$ and $L{\in}{\sigma}[M]$ we consider the product $N_ML={\sum}_{f{\in}Hom_R(M,L)}\;f(N)$. A module $N{\in}{\sigma}[M]$ is called an M-multiplication module if for every submodule L of N, there exists a submodule I of M such that $L=I_MN$. We extend some important results given for multiplication modules to M-multiplication modules. As applications we obtain some new results when M is a semiprime Goldie module. In particular we prove that M is a semiprime Goldie module with an essential socle and $N{\in}{\sigma}[M]$ is an M-multiplication module, then N is cyclic, distributive and semisimple module. To prove these results we have had to develop new methods.
Keywords
multiplication modules; prime modules; semiprime modules; Goldie modules;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. G. Naoum, On the ring of endomorphisms of a finitely generated multiplication module, Period. Math. Hungar. 21 (1990), no. 3, 249-255.   DOI
2 F. Raggi, J. Rios, H. Rincon, R. Fernandez-Alonso, and C. Signoret, The lattice structure of preradicals, Comm. Algebra 30 (2002), no. 3, 1533-1544.   DOI
3 P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel) 50 (1988), no. 3, 223-235.   DOI
4 B. Stenstrom, Rings of Quotients, Graduate Texts in Mathematics, New York, Springer-Verlag, 1975.
5 A. A. Tuganbaev, Multiplication modules, J. Math. Sci. (N. Y.) 123 (2004), no. 2, 3839-3905.   DOI
6 N. Vanaja, All finitely generated M-subgenerated modules are extending, Comm. Algebra 24 (1996), no. 2, 543-572.   DOI
7 R. Wisbauer, Foundations of Module and Ring Theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
8 J. Castro and J. Rios, Krull dimension and classical Krull dimension of modules, Comm. Algebra 42 (2014), no. 7, 3183-3204.   DOI
9 Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779.   DOI
10 D. D. Anderson, Some remarks on multiplication ideals, Math. Japon. 25 (1980), no. 4, 463-469.
11 D. D. Anderson, Some remarks on multiplication ideals. II, Comm. Algebra 28 (2000), no. 5, 2577-2583.   DOI
12 A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178.   DOI
13 J. A. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (2002), no. 10, 4649-4676.   DOI
14 L. Bican, P. Jambor, T. Kepka, and P. Nemec, Prime and coprime modules, Fund. Math. 107 (1980), no. 1, 33-45.   DOI
15 J. Castro, M. Medina, and J. Rios, Modules with ascending chain condition on annihilators and Goldie modules, Comm. Algebra 45 (2017), no. 6, 2334-2349.   DOI
16 J. Castro, M. Medina, J. Rios, and A. Zaldivar, On semiprime Goldie modules, Comm. Algebra 44 (2016), no. 11, 4749-4768.   DOI
17 J. Castro, M. Medina, J. Rios, and A. Zaldivar, On the structure of Goldie modules, Comm. Algebra 46 (2018), no. 7, 3112-3126.   DOI
18 J. Castro and J. Rios, Prime submodules and local Gabriel correspondence in ${\sigma}$], Comm. Algebra 40 (2012), no. 1, 213-232.   DOI
19 J. Castro and J. Rios, FBN modules, Comm. Algebra 40 (2012), no. 12, 4604-4616.   DOI