# CHARACTERIZATION OF PRIME SUBMODULES OF A FREE MODULE OF FINITE RANK OVER A VALUATION DOMAIN 

Fatemeh Mirzaei and Reza Nekooei


#### Abstract

Let $F=R^{(n)}$ be a free $R$-module of finite rank $n \geq 2$. In this paper, we characterize the prime submodules of $F$ with at most $n$ generators when $R$ is a Prüfer domain. We also introduce the notion of prime matrix and we show that when $R$ is a valuation domain, every finitely generated prime submodule of $F$ with at least $n$ generators is the row space of a prime matrix.


## 0. Introduction

Prime submodules of a module over a commutative ring have been studied in $[1,7,8,9,10]$ and prime submodules of a finitely generated free module over a PID have been studied in [5]. The authors in [5], have described prime submodules of a free module of finite rank $n(n \geq 2)$ and with at most $n$ generators over a UFD. They have characterized the prime submodules of a free module of finite rank over a PID. In [9] we have extended some results obtained in [4] to a Dedekind domain. In this paper we extend these results to a Prüfer domain. Moreover, we define the notion of prime matrix and show that when $R$ is a valuation domain, every finitely generated prime submodule of a free $R$-module of finite rank $n(n \geq 2)$, with at least $n$ generators is the row space of a prime matrix.

Throughout this paper all rings are assumed to be commutative with identity and $F$ denotes a free $R$-module of finite rank $n(n \geq 2)$. We use the notation $R^{(n)}$ for $\underbrace{R \oplus \cdots \oplus R}$. Let $M$ be a unitary $R$-module. A proper submodule $N$ $n$-times of $M$ is called $P$-prime if $r m \in N$ for some $r \in R$ and $m \in M$ implies $m \in N$ or $r \in P=(N: M)$, where $(N: M)=\{r \in R \mid r M \subseteq N\}$.

Let $R$ be a commutative domain and $K$ be the quotient field of $R$. Then $R$ is a valuation domain if for every $x \in K$, either $x \in R$ or $x^{-1} \in R$. Equivalently, the set of all ideals of $R$ is totally ordered by inclusion. Let $R$ be a commutative

[^0]domain and $I$ be an ideal of $R$. Let $I^{-1}=\left(R:_{K} I\right)=\{r \in K \mid r I \subseteq R\}$. Then $I$ is invertible if $I I^{-1}=R$. An integral domain $R$ is a Prüfer domain if each non-zero finitely generated ideal of $R$ is invertible. It can be shown that an integral domain $R$ is a Prüfer domain if and only if $R_{P}$ is a valuation domain for every maximal ideal $P$ of $R$ (see [4]).

## 1. Prime submodules of $F=\boldsymbol{R}^{(n)}$

Let $X_{i}=\left(x_{i 1}, \ldots, x_{i n}\right) \in F=R^{(n)}$ for some $x_{i j} \in R, 1 \leq i \leq m, 1 \leq j \leq n$. We put

$$
B_{m \times n}=\left[X_{1} \ldots X_{m}\right]=\left(\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 n} \\
x_{21} & x_{22} & \ldots & x_{2 n} \\
& \ddots & & \\
x_{m 1} & x_{m 2} & \ldots & x_{m n}
\end{array}\right) \in M_{m \times n}(R)
$$

Thus the $j$ th row of the matrix $\left[X_{1} \ldots X_{m}\right.$ ] consists of the components of $X_{j}$ in $F$. We use $N=\langle B\rangle$ to denote a non-zero submodule of $F$ generated by the rows of $B$. Also $B\left(j_{1}, \ldots, j_{k}\right) \in M_{m \times k}(R)$ will denote a submatrix of $B$ consisting of the columns $j_{1}, \ldots, j_{k} \in\{1, \ldots, n\}$ of $B$.
Lemma 1.1. Let $R$ be a domain. Let $B \in M_{n \times n}(R), \operatorname{det} B \neq 0$ and $B^{\prime}=\left(b_{i j}^{\prime}\right)$ be the adjoint matrix of $B$. Then $\left(x_{1}, \ldots, x_{n}\right) \in\langle B\rangle$ for some $x_{i} \in R(1 \leq i \leq$ $n)$ if and only if $\sum_{i=1}^{n} x_{i} b_{i j}^{\prime} \in\langle\operatorname{det} B\rangle$ for every $j, 1 \leq j \leq n$.

Proof.

$$
\begin{aligned}
\left(x_{1}, \ldots, x_{n}\right) \in\langle B\rangle & \Longleftrightarrow\left(x_{1}, \ldots, x_{n}\right)=\left(r_{1}, \ldots, r_{n}\right) B ; \exists r_{i} \in R \\
& \Longleftrightarrow\left(x_{1}, \ldots, x_{n}\right) B^{\prime}=\left(r_{1}, \ldots, r_{n}\right)(\operatorname{det} B) I_{n} \\
& \Longleftrightarrow \sum_{i=1}^{n} x_{i} b_{i j}^{\prime}=(\operatorname{det} B) r_{j} ; \forall j(j=1, \ldots, n) \\
& \Longleftrightarrow \sum_{i=1}^{n} x_{i} b_{i j}^{\prime} \in\langle\operatorname{det} B\rangle ; \forall j(j=1, \ldots, n)
\end{aligned}
$$

Proposition 1.2. Let $R$ be an integral domain and $F=R^{(n)}(n \geq 2)$. Let $B=\left[X_{1} \ldots X_{m}\right]$ for some $X_{i} \in F(1 \leq i \leq m, m<n)$ and rank $B=m$. If the ideal $J$ of $R$ generated by determinants of all $m \times m$ submatrices of $B$ is $R$, then $N=\langle B\rangle$ is a prime submodule of $F$.
Proof. Assume that $J=R$. It follows that

$$
1=\sum_{i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}} r_{i_{1} \ldots i_{m}} \operatorname{det} B\left(i_{1}, \ldots, i_{m}\right)
$$

for some $r_{i_{1}, \ldots, i_{m}} \in R$ and $1 \leq i_{j} \leq n, 1 \leq j \leq m$. Put

$$
M=\left\{X \in F \mid \operatorname{det} \beta\left(i_{1}, \ldots, i_{m+1}\right)=0 \text { for every } i_{1}, \ldots, i_{m+1} \in\{1, \ldots, n\}\right\}
$$

where $\beta=\left[X X_{1} \cdots X_{m}\right]$. Since $X_{i} \in M(1 \leq i \leq m)$, then $N \subseteq M$. Now suppose that $X \in M$. Then by [9, Lemma 1.5], we have $\left(\operatorname{det} B\left(i_{1}, \ldots, i_{m}\right)\right) X \in$ $N$ for every $i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}$. So

$$
X=\sum_{i_{1}, \ldots, i_{m} \in\{1, \ldots, n\}}\left(r_{i_{1} \cdots i_{m}} \operatorname{det} B\left(i_{1}, \ldots, i_{m}\right)\right) X \in N
$$

Thus $N=M$ and $N$ is a prime submodule of $F$ [9, Corollary 1.9].
Proposition 1.3. Suppose $R$ is a domain and $F=R^{(n)}(n \geq 2)$. Let $B \in$ $M_{n \times n}(R)$ and rank $B=n$. If there exist a maximal ideal $P$ of $R$ and a positive integer $\alpha$ such that $\langle\operatorname{det} B\rangle=P^{\alpha}$ and the ideal $J^{\prime}$ of $R$ generated by entries of $B^{\prime}$ is $P^{\alpha-1}$, where $B^{\prime}$ is the adjoint matrix of $B$, then $N=\langle B\rangle$ is a prime submodule of $F$.

Proof. Suppose there exist a maximal ideal $P$ of $R$ and a positive integer $\alpha$ such that $\langle\operatorname{det} B\rangle=P^{\alpha}$ and $J^{\prime}=P^{\alpha-1}$. Let $B^{\prime}=\left(b_{i j}^{\prime}\right)$ and $r\left(x_{1}, \ldots, x_{n}\right) \in N$ for some $r, x_{i} \in R(1 \leq i \leq n)$. Thus by Lemma 1.1, $r \sum_{i=1}^{n} x_{i} b_{i j}^{\prime} \in\langle\operatorname{det} B\rangle, 1 \leq$ $j \leq n$. If $\sum_{i=1}^{n} x_{i} b_{i j}^{\prime} \in\langle\operatorname{det} B\rangle$ for every $1 \leq j \leq n$, then by Lemma 1.1, $\left(x_{1}, \ldots, x_{n}\right) \in N$. Now let $\sum_{i=1}^{n} x_{i} b_{i j}^{\prime} \notin\langle\operatorname{det} B\rangle$ for some $1 \leq j \leq n$. Since $\langle\operatorname{det} B\rangle$ is $P$-primary, $r \in P$. But $b_{i j}^{\prime} \in P^{\alpha-1}, 1 \leq i, j \leq n$. So $r b_{i j}^{\prime} \in\langle\operatorname{det} B\rangle$, $1 \leq i, j \leq n$. It follows that $(0, \ldots, 0, r, 0, \ldots, 0) \in N$, with $r$ as the $i$ th component $(1 \leq i \leq n)$. Thus $r F \subseteq N$ and so $N$ is a prime submodule of $F$.

## 2. Characterization of finitely generated prime submodules of $\boldsymbol{F}=\boldsymbol{R}^{(n)}$ over a valuation domain $\boldsymbol{R}$

In this section we characterize the finitely generated prime submodules of $F=R^{(n)}(n \geq 2)$, when $R$ is a valuation domain.
Theorem 2.1. Let $R$ be a valuation domain and $F=R^{(n)}(n \geq 2)$. Let $B=\left[X_{1} \cdots X_{m}\right] \in M_{m \times n}(R)$ for some $X_{i} \in F(1 \leq i \leq m, m<n)$ and rank $B=m$. Then $N=\langle B\rangle$ is a prime submodule of $F$ if and only if the determinant of one of the $m \times m$ submatrices of $B$ is a unit.

Proof. Let $N$ be a prime submodule of $F$ and $J$ be the ideal of $R$ generated by determinants of all $m \times m$ submatrices of $B$. Since $R$ is a valuation domain, there exists a $m \times m$ submatrix $A=B\left(j_{1}, \ldots, j_{m}\right)$ of $B$ for some $j_{1}<j_{2}<$ $\cdots<j_{m}$ of $\{1, \ldots, n\}$ such that $J=\langle\operatorname{det} A\rangle$.

By [5, Lemma 2.2], $\operatorname{det} A \neq 0$. Let $A^{\prime}=\left(a_{i j}^{\prime}\right)$ be the adjoint matrix of $A$. For the moment, fix $1 \leq i \leq m$. Consider the element $\left(x_{1}, \ldots, x_{n}\right)=$ $\left(a_{i 1}^{\prime}, \ldots, a_{i m}^{\prime}\right) B \in N$. Since $A^{\prime} A=(\operatorname{det} A) I_{m}$, then $x_{j_{i}}=\operatorname{det} A$ and $x_{j_{k}}=$ $0(1 \leq k \leq m, k \neq i)$. Also, if $C_{j}=B\left(j_{1}, \ldots, j_{i-1}, j, j_{i+1}, \ldots, j_{m}\right)$, then $x_{j}= \pm \operatorname{det} C_{j}$ and so $x_{j} \in\langle\operatorname{det} A\rangle$ for all $j \in\{1, \ldots, n\} \backslash\left\{j_{1}, \ldots, j_{m}\right\}$. Hence $\left(\frac{x_{1}}{\operatorname{det} A}, \ldots, \frac{x_{n}}{\operatorname{det} A}\right) \in F$. Note that $\operatorname{det} A\left(\frac{x_{1}}{\operatorname{det} A}, \ldots, \frac{x_{n}}{\operatorname{det} A}\right) \in N$. Since $N$ is prime, $(\operatorname{det} A) F \subseteq N$ or $\left(\frac{x_{1}}{\operatorname{det} A}, \ldots, \frac{x_{n}}{\operatorname{det} A}\right) \in N$. If $(\operatorname{det} A) F \subseteq N$, then for
$j_{0} \in\{1, \ldots, n\} \backslash\left\{j_{1}, \ldots, j_{m}\right\}$, we have $(0, \ldots, 0, \operatorname{det} A, 0, \ldots, 0) \in N$ with $\operatorname{det} A$ as the $j_{0}$ th component. Hence there are $r_{j} \in R(1 \leq j \leq m)$ such that $(0, \ldots, 0, \operatorname{det} A, 0, \ldots, 0)=\left(r_{1}, \ldots, r_{m}\right) A$.

It follows that $r_{j} \operatorname{det} A=0(1 \leq j \leq m)$ and hence $r_{j}=0(1 \leq j \leq m)$. Thus $\operatorname{det} A=0$, which is a contradiction. So $\left(\frac{x_{1}}{\operatorname{det} A}, \ldots, \frac{x_{n}}{\operatorname{det} A}\right) \in N$, i.e., there are $s_{j} \in R(1 \leq j \leq m)$ such that $\left(\frac{x_{1}}{\operatorname{det} A}, \ldots, \frac{x_{n}}{\operatorname{det} A}\right)=\left(s_{1}, \ldots, s_{m}\right) B$. We conclude that $\left(a_{i 1}^{\prime}, \ldots, a_{i m}^{\prime}\right) B=\left(x_{1}, \ldots, x_{n}\right)=(\operatorname{det} A)\left(s_{1}, \ldots, s_{m}\right) B$, so that $\left(a_{i 1}^{\prime}, \ldots, a_{i m}^{\prime}\right) A=(\operatorname{det} A)\left(s_{1}, \ldots, s_{m}\right) A$. Thus $a_{i j}^{\prime} \operatorname{det} A=s_{j}(\operatorname{det} A)^{2}$ and hence $a_{i j}^{\prime}=s_{j} \operatorname{det} A(1 \leq j \leq m)$. Thus $\operatorname{det} A^{\prime}=(\operatorname{det} A)^{m} s$ for some $0 \neq s \in R$. But $\operatorname{det} A^{\prime}=(\operatorname{det} A)^{m-1}$. It follows that $\operatorname{det} A$ is a unit. Conversely, let the determinant of one of the $m \times m$ submatrices of $B$ be a unit. Then the ideal $J$ of $R$ generated by determinants of all $m \times m$ submatrices of $B$ is $R$. So, by Proposition 1.2, $N$ is prime.

Proposition 2.2. Let $R$ be a Prüfer domain and $F=R^{(n)}(n \geq 2)$. Let $l \geq n$ be a positive integer and $\Psi \subseteq F$ be a finite subset of $F$ with $|\Psi|=l$. If $N=\langle\Psi\rangle$ is a prime submodule of $F$, then $P=(N: F)$ is a finitely generated ideal of $R$.
Proof. For $N=P^{(n)}$, the assertion is clear. Now suppose that $N \neq P^{(n)}$. Then by [9, Theorem 1.6], there exist a positive integer $k<n$ and a matrix $B=\left[X_{1} \ldots X_{k}\right] \in M_{k \times n}(R), X_{i} \in \Psi, 1 \leq i \leq k$ such that determinant of one of its $k \times k$ submatrices is not in $P$.

Without loss of generality, we can assume that $d=\operatorname{det} B(1, \ldots, k) \notin P$. Put

$$
N=\left\{X \in F \mid \operatorname{det} \beta\left(i_{1}, \ldots, i_{k+1}\right) \in P \text { for every } i_{1}, \ldots, i_{k+1} \in\{1, \ldots, n\}\right\}
$$

where $\beta=\left[X X_{1} \ldots X_{k}\right]$. By [9, Lemma 1.5], $d X_{t}=\sum_{i=1}^{k} r_{t i} X_{i}+Y_{t}$ for some $r_{t i} \in R(k+1 \leq t \leq l, 1 \leq i \leq k)$ and $Y_{t}=\left(0, \ldots, 0, y_{t k+1}, \ldots, y_{t n}\right) \in P^{(n)}$.

Let $M$ be the submodule of $F$ generated by the set $\left\{X_{i}, Y_{j} ; 1 \leq i \leq\right.$ $k, k+1 \leq j \leq l\}$. Then $d N \subseteq M$. Now fix $p \in P$. Then $d(0, \ldots, p)=$ $\sum_{i=1}^{k} r_{i} X_{i}+\sum_{j=k+1}^{l} l_{j} Y_{j}$ for some $r_{i}, l_{j} \in R(1 \leq i \leq k, k+1 \leq j \leq l)$. Thus $\left(r_{1}, \ldots, r_{k}\right) B(1, \ldots, k)=(0, \ldots, 0)$. It follows that $r_{i} \operatorname{det} B(1, \ldots, k)=0$ and hence $r_{i}=0(1 \leq i \leq k)$. Let $I$ be the ideal of $R$ generated by the set $\left\{y_{i n} \in P, k+1 \leq i \leq l\right\}$. Then $d P \subseteq I$. Since $R_{P}$ is a valuation domain, $P R_{P}=I R_{P}=\left\langle\frac{y_{t n}}{1}\right\rangle_{P}$ for some $k+1 \leq t \leq l$. So $s_{i} y_{\text {in }} \in\left\langle y_{t n}\right\rangle$ for some $s_{i} \in R-P, k+1 \leq i \leq l$. Let $s=\prod_{i=k+1}^{l} s_{i}$, then $s d P \subseteq s I \subseteq\left\langle y_{t n}\right\rangle$. Thus $\frac{s d}{y_{t n}} \in\left(R:_{K} P\right)$. If $P$ is not finitely generated, it is not an invertible ideal and so by [3, Corollary 3.1.8], $\left(R:_{K} P\right)=\left(P:_{K} P\right)$. Hence $\frac{s d}{y_{t n}} \in\left(P:_{K} P\right)$. It follows that $s d P \subseteq P^{2}$. Now, since $R$ is a Prüfer domain, by [4, Theorem 4.23.3], $P=P[P+\langle s d\rangle]$. It follows that $P=P^{2}$ and hence $P R_{P}=P^{2} R_{P}$, which is a contradiction. Thus $P$ is finitely generated and by [4, Proposition 4.23.3], it is maximal.

Corollary 2.3. Suppose $R$ is a valuation domain and $F=R^{(n)}(n \geq 2)$. Let $l \geq n$ be a positive integer and $\Psi \subseteq F$ a finite subset of $F$ with $|\Psi|=l$. If
$N=\langle\Psi\rangle$ is a prime submodule of $F$ then $P=(N: F)$ is a finitely generated ideal of $R$ and $N=\langle B\rangle$ for some matrix $B \in M_{n \times n}(R)$.

Proof. By Proposition 2.2, $P$ is a finitely generated ideal of $R$. Since $R$ is a valuation domain, $P=\langle p\rangle$ for some $p \in R$. If $N=P^{(n)}$, then $N=\langle B\rangle$, where $B=p I_{n}$. Now let $P^{(n)} \subset N$. Then by the proof of Proposition 2.2 , there exist a positive integer $k<n$ and $X_{i} \in \Psi(1 \leq i \leq k), Y_{t}=\left(0, \ldots, 0, y_{t k+1}, \ldots, y_{t n}\right) \in$ $P^{(n)}(k+1 \leq t \leq l)$, such that $N=\left\langle\left\{X_{i}, Y_{t} \mid 1 \leq i \leq k, k+1 \leq t \leq l\right\}\right\rangle$. Let $X_{i}=(0, \ldots, p, \ldots, 0)$ with $p$ as $i$ th component, $k+1 \leq i \leq n$. We show that the submodule $M_{1}$ of $F$ generated by $\left\{Y_{t} \mid k+1 \leq t \leq l\right\}$ is equal to the submodule $M_{2}$ of $F$ generated by $\left\{X_{i} \mid k+1 \leq i \leq n\right\}$. Since $Y_{t} \in M_{2}$, $k+1 \leq t \leq n$, hence $M_{1} \subseteq M_{2}$. Now since $X_{i} \in N, k+1 \leq i \leq n$, we have $X_{i}=\sum_{j=1}^{k} r_{i j} X_{j}+\sum_{t=k+1}^{l} l_{i t} Y_{t}$ for some $r_{i j}, l_{i t} \in R, 1 \leq j \leq k, k+1 \leq t \leq l$, $k+1 \leq i \leq n$. By an argument similar to that in the proof of Proposition 2.2, $r_{i j}=0,1 \leq j \leq k, k+1 \leq i \leq n$. So $X_{i} \in M_{1}, k+1 \leq i \leq n$ and $M_{2} \subseteq M_{1}$. Now let $B=\left[X_{1} \ldots X_{n}\right]$, then $N=\langle B\rangle$.

Theorem 2.4. Suppose $R$ is a valuation domain with maximal ideal $m$ and $F=R^{(n)}(n \geq 2)$. Let $l \geq n$ be a positive integer and $\Psi \subseteq F$ a finite subset of $F$ with $|\Psi|=l$. Let $N=\langle\Psi\rangle$. Then $N$ is a prime submodule of $F$ if and only if there exist a matrix $B \in M_{n \times n}(R)$ and a positive integer $\alpha \leq n$ such that $N=\langle B\rangle, m^{\alpha}=\langle\operatorname{det} B\rangle$ and the ideal $J^{\prime}$ of $R$ generated by entries of $B^{\prime}$ is $m^{\alpha-1}$, where $B^{\prime}$ is the adjoint matrix of $B$.

Proof. Let $N=\langle\Psi\rangle$ be a prime submodule of $F$. By Corollary 2.3, $N=\langle B\rangle$ for some matrix $B \in M_{n \times n}(R)$ and $(N: F)$ is a finitely generated ideal of $R$. By [4, Theorem 4.23.3], $m=(N: F)$ is principal. Assume that $m=\langle p\rangle$ for some $p \in R$. By $\left[9\right.$, Lemma 1.1], $\langle\operatorname{det} B\rangle \subseteq m$. If $\langle\operatorname{det} B\rangle \subseteq m^{k}$ for every positive integer $k \geq 1$, then $\langle\operatorname{det} B\rangle \subseteq \bigcap_{k=1}^{\infty} m^{k}$. So by [4, Theorem 3.17.1] and [9, Corollary 1.3], $m=\bigcap_{k=1}^{\infty} m^{k}$. Hence $m^{2}=m$, which is a contradiction. Thus there exist a positive integer $\alpha$ and a unit $u \in R$ such that $\operatorname{det} B=u p^{\alpha}$. So $\langle\operatorname{det} B\rangle=m^{\alpha}$. Now since $p \in(N: F)$, by Lemma 1.1, $p b_{i j}^{\prime} \in\left\langle p^{\alpha}\right\rangle$ and hence $b_{i j}^{\prime} \in\left\langle p^{\alpha-1}\right\rangle$ for every $1 \leq i, j \leq n$. Thus $\operatorname{det} B^{\prime}=(\operatorname{det} B)^{n-1} \in\left\langle p^{n(\alpha-1)}\right\rangle$. Therefore $\left(u p^{\alpha}\right)^{n-1}=s p^{n(\alpha-1)}$ for some $s \in R$. Since $p$ is not a unit, $n(\alpha-1) \leq$ $\alpha(n-1)$ and so $\alpha \leq n$. Let $J^{\prime}$ be the ideal of $R$ generated by the entries of $B^{\prime}$. Then $J^{\prime}=\left\langle b_{i j}^{\prime}\right\rangle$ for some $1 \leq i, j \leq n$. Since $\left\langle p^{\alpha}\right\rangle \subseteq\left\langle b_{i j}^{\prime}\right\rangle \subseteq\left\langle p^{\alpha-1}\right\rangle$, hence $J^{\prime}$ is $m$-primary and since $m \neq m^{2}$, then $J^{\prime}=m^{t}$ for $t=\alpha$ or $\alpha-1$ [4, Theorem 3.17.3]. If $J^{\prime}=m^{\alpha}$, then $\operatorname{det} B^{\prime}=(\operatorname{det} B)^{n-1} \in\left\langle p^{\alpha n}\right\rangle$. Hence $p$ is a unit, which is a contradiction. So $J^{\prime}=m^{\alpha-1}$.

In the following we assume that $(R, m)$ is a valuation domain with principal maximal ideal $m$. We introduce the notion of prime matrix and show that every finitely generated prime submodule of $R^{(n)}(n \geq 2)$, with at least $n$ generators is the row space of a prime matrix. Note that, $R$ is not necessarily a PID.

Example. Take $Z \oplus Z=Z^{(2)}$ with lexicographic order. Let $K$ be a field and define the valuation $v: K[x, y] \rightarrow Z^{(2)}$ with $v(x)=(1,0) \leq v(y)=(0,1)$ and take the value of a polynomial as the minimal value among those of its monomials. Then by [4, Proposition 3.18.1], $v^{\prime}: K(x, y) \rightarrow Z^{(2)}$ with $v^{\prime}\left(\frac{f}{g}\right)=$ $v(f)-v(g) ; f, g \in K[x, y]$ is a valuation on $K(x, y)$. In this case, the maximal ideal consists of all the elements whose valuations are strictly greater than $(0,0)$. But the valuation of any such element is at least $(0,1)$ and therefore any element of value $(0,1)$ gives a generator of the maximal ideal. Also, since the value group is $Z^{(2)}$, the valuation ring is not a DVR.
Definition. Suppose $R$ is a valuation domain with principal maximal ideal $m$ and $m=\langle p\rangle$ for some $p \in R$. Let $J=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ be a subset of $\{1, \ldots, n\}$. A matrix $B=\left(b_{i j}\right) \in M_{n \times n}(R)$ is said to be a $p$-prime matrix if it satisfies the following conditions:
i) $B$ is upper triangular.
ii) For all $i, 1 \leq i \leq n, a_{i i}=p$, if $i \in J$ and $a_{i i}=1$, if $i \notin J$.
iii) For all $i, j \in\{1, \ldots, n\}, a_{i j}=0$ except possibly when $i \notin J$ and $j \in J$.

Sometimes we call $J$ the set of integers associated with $B$ and denote it by $J_{B}$. By (i) and (ii), it is clear that $\operatorname{det}(B)=p^{\alpha}$.
Lemma 2.5. Suppose $R$ is a valuation domain with principal maximal ideal $m=\langle p\rangle$ and $r_{i} \in R, 1 \leq i \leq n$. Let $J=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ be a subset of $\{1, \ldots, n\}$ and $J_{k}=\left\{0,1, \ldots, j_{k}\right\}-J, 1 \leq k \leq \alpha$. Then $\left(r_{1}, \ldots, r_{n}\right) \in\langle B\rangle$ for some $p$ prime matrix $B \in M_{n \times n}(R)$ with $J_{B}=J$ if and only if for every $k, 1 \leq k \leq \alpha$ the equation $\sum_{j \in J_{k}} r_{j} x_{j} \equiv r_{j_{k}}(\bmod p)$ has a solution.
Proof. Let $B=\left(b_{i j}\right)$ be a $p$-prime matrix with $J_{B}=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ and let $B^{\prime}=\left(b_{i j}^{\prime}\right)$. For all $1 \leq i, j \leq n$, it is easy to see that $b_{i i}^{\prime}=p^{\alpha-1}$ if $i \in J_{B}$, $b_{i i}^{\prime}=p^{\alpha}$ if $i \notin J_{B}$ and $b_{i j}^{\prime}=-p^{\alpha-1} b_{i j}$ if $i \neq j$. Hence by Lemma 1.1,

$$
\begin{aligned}
\left(r_{1}, \ldots, r_{n}\right) \in\langle B\rangle & \Longleftrightarrow p^{\alpha} \mid \sum_{j=1}^{n} r_{j} b_{j \ell}^{\prime}, \quad 1 \leq \ell \leq n \\
& \Longleftrightarrow p^{\alpha} \mid \sum_{j=0}^{\ell-1} r_{j}\left(-p^{\alpha-1} b_{j \ell}\right)+p^{\alpha-1} r_{\ell} \text { for every } \ell \in J_{B} \\
& \Longleftrightarrow p \mid \sum_{j \in J_{k}}-r_{j} b_{j j_{k}}+r_{j_{k}}, \quad 1 \leq k \leq \alpha \\
& \Longleftrightarrow \sum_{j \in J_{k}} r_{j} b_{j j_{k}} \equiv r_{j_{k}}(\bmod p) \text { for every } k, 1 \leq k \leq \alpha
\end{aligned}
$$

Lemma 2.6. Suppose $R$ is a valuation domain with principal maximal ideal $m=\langle p\rangle$ and $s$ and $n$ are positive integers such that $s<n$. Also, suppose that $A \in M_{n \times s}(R), Y \in M_{n \times 1}(R)$ and $X=\left(x_{1}, \ldots, x_{s}\right) \in R^{(s)}$. Let $C \in M_{n \times(s+1)}(R)$ be the augmented matrix $[A: Y]$. If $p$ does not divide the determinant of at least one $s \times s$ submatrix of $A$, then the system of equations
$A X \equiv Y(\bmod p)$ has a solution if and only if $p$ divides the determinants of all $(s+1) \times(s+1)$ submatrices of $C$.
Proof. Suppose $A X \equiv Y(\bmod p)$ has a solution and $C_{0}$ is an $(s+1) \times(s+1)$ submatrix of $C$. If $Y_{0}$ is the last column of $C_{0}$ and $A_{0}$ consists of all columns of $C_{0}$ except for $Y_{0}$, then $A_{0} X \equiv Y_{0}(\bmod p)$. So that $C_{0}^{\prime} A_{0} X \equiv C_{0}^{\prime} Y_{0}(\bmod p)$. The last equation of this system is $0 \equiv \operatorname{det}\left(C_{0}\right)(\bmod p)$. Hence $p \mid \operatorname{det}\left(C_{0}\right)$. Conversely, let $X_{1}, \ldots, X_{s} \in M_{n \times 1}(R)$ be the columns of $A$. Then $A^{t}=$ $\left[X_{1}^{t} \ldots X_{s}^{t}\right] \in M_{s \times n}(R)$ and $C^{t}=\left[X_{1}^{t} \ldots X_{s}^{t} Y^{t}\right] \in M_{(s+1) \times n}(R)$. Now let $p \nmid$ $\operatorname{det}\left(A^{t}\left(i_{1}, \ldots, i_{s}\right)\right)$. Then by $[9$, Lemma $1.5(\mathrm{ii})], \operatorname{det}\left(A^{t}\left(i_{1}, \ldots, i_{s}\right)\right) Y^{t} \in\langle p\rangle F+$ $\left\langle A^{t}\right\rangle$. Since $\operatorname{det}\left(A^{t}\left(i_{1}, \ldots, i_{s}\right)\right)$ is unit, $Y^{t} \in\langle p\rangle F+\left\langle A^{t}\right\rangle$ and so the system of equations $A X \equiv Y(\bmod p)$ has a solution.

Theorem 2.7. Suppose $R$ is a valuation domain with principal maximal ideal $m=\langle p\rangle$. Let $s, n$ and $\alpha$ be positive integers such that $s \leq n$ and $1 \leq \alpha \leq n$ and $A \in M_{s \times n}(R)$. Then $\langle A\rangle \subseteq\langle B\rangle$ for some $p$-prime matrix $B \in M_{n \times n}(R)$ with $\operatorname{det}(B)=p^{\alpha}$ if and only if $p$ divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of $A$.

Proof. Let $\langle A\rangle \subseteq\langle B\rangle$ for some $p$-prime matrix $B$ with $\operatorname{det}(B)=p^{\alpha}$. So there exists $C \in M_{s \times n}(R)$ such that $A=C B$. Let $A_{0}$ be an $(n-\alpha+1) \times(n-\alpha+1)$ submatrix of $A$. Thus there exists an $(n-\alpha+1) \times n$ submatrix $C_{0}$ of $C$ and an $n \times(n-\alpha+1)$ submatrix $B_{0}$ of $B$ such that $A_{0}=C_{0} B_{0}$. Suppose that $B_{1}$ is an $(n-\alpha+1) \times(n-\alpha+1)$ submatrix consisting of rows $i_{1}, \ldots, i_{n-\alpha+1}$ of $B_{0}$. Since $J_{B}$ has $\alpha$ elements, $i_{k} \in J_{B}$ for some $k, 1 \leq k \leq n-\alpha+1$.

It follows that the entries of the row $i_{k}$ of $B_{0}$ are 0 or $p$. Thus $p \mid \operatorname{det}\left(B_{1}\right)$. By the Binet-Cauchy formula $[6$, Theorem 1], $\operatorname{det}(A)$ may be expressed as a linear combination of the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of $B_{0}$, hence $p \mid \operatorname{det}\left(A_{0}\right)$. Conversely, assume that $p$ divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of $A$. By adding some zero rows to $A$ if necessary, we may suppose that $A \in M_{n \times n}(R)$. We use induction on $\alpha$. By assumption for $\alpha=1, p \mid \operatorname{det}(A)$. Let $k$ be the smallest integer such that $p$ divides the determinants of all $k \times k$ submatrices of $A_{k}$, where $A_{k} \in M_{n \times k}(R)$ consists of the first columns of $A$. If $A=\left(a_{i j}\right)$ then by Lemma 2.6, the system of equations

$$
\left\{\sum_{j=0}^{k-1} a_{i j} x_{j} \equiv a_{i k}(\bmod p) \mid 1 \leq i \leq n\right\}
$$

has a solution. Therefore by Lemma 2.5 , there exists a prime matrix $B$ with $J_{B}=\{k\}$ such that $\langle A\rangle \subseteq\langle B\rangle$. Now suppose that the assertion is true for some $\alpha, 1 \leq \alpha \leq n-1$. Assume that $p$ divides the determinants of all $(n-\alpha) \times(n-\alpha)$ submatrices of $A=\left(a_{i j}\right)$. Hence $p$ divides the determinants of all $(n-\alpha+$ $1) \times(n-\alpha+1)$ submatrices of $A$. Therefore by the induction hypothesis, there exists a prime matrix $B$ with $\operatorname{det}(B)=p^{\alpha}$ such that $\langle A\rangle \subseteq\langle B\rangle$. Let $J_{B}=\left\{j_{1}, \ldots, j_{\alpha}\right\}$ and $J_{k}=\left\{0,1, \ldots, j_{k}\right\}-J_{B}, 1 \leq k \leq \alpha$. Fix $k$ for the
moment. By Lemma 2.5, the system of equations

$$
\left\{\sum_{j \in J_{k}} a_{i j} x_{j} \equiv a_{i j_{k}}(\bmod p) \mid 1 \leq i \leq n\right\}
$$

has a solution, say $x_{j}=r_{j}$ for some $r_{j} \in R, j \in J_{k}$. Thus we have

$$
\begin{equation*}
\sum_{j \in J_{k}} a_{i j} r_{j} \equiv a_{i j_{k}}(\bmod p) \forall i, 1 \leq i \leq n \tag{1}
\end{equation*}
$$

Let $A_{0}$ be the $n \times(n-\alpha)$ submatrix obtained by deleting columns $j_{1}, \ldots, j_{\alpha}$ from $A$. Let $\ell$ be the smallest integer such that $p$ divides the determinants of all $\ell \times \ell$ submatrices of $A_{\ell} \in M_{n \times \ell}(R)$ consisting of the first $\ell$ columns of $A_{0}$. Assume that $j_{0}$ is the integer such that column $\ell$ of $A_{0}$ is column $j_{0}$ of $A$. Clearly $j_{0} \notin J_{B}$. Let $J_{0}=\left\{0, \ldots, j_{0}-1\right\}-J_{B}$. By Lemma 2.6, the system of equations

$$
\left\{\sum_{j \in J_{0}} a_{i j} x_{j} \equiv a_{i j_{0}}(\bmod p) \mid 1 \leq i \leq n\right\}
$$

has a solution, say $x_{j}=s_{j}$ for some $s_{j} \in R, j \in J_{0}$. Therefore we have

$$
\begin{equation*}
\sum_{j \in J_{0}} a_{i j} s_{j} \equiv a_{i j_{0}}(\bmod p) \forall i, 1 \leq i \leq n \tag{2}
\end{equation*}
$$

Put $J^{\prime}=\left\{j_{1}, \ldots, j_{\alpha}, j_{0}\right\}$ and let $J_{k}^{\prime}=\left\{0,1, \ldots, j_{k}\right\}-J^{\prime}$. If $j_{k}>j_{0}$, then combining (1) and (2) yields

$$
a_{i j_{k}} \equiv \sum_{j \in J_{k}^{\prime}} a_{i j} r_{j}+\left(\sum_{j \in J_{0}} a_{i j} s_{j}\right) r_{j_{0}}(\bmod p)
$$

for every $i, 1 \leq i \leq n$. Hence the system of equations

$$
\left\{\sum_{j \in J_{k}^{\prime}} a_{i j} x_{j} \equiv a_{i j_{k}}(\bmod p) \mid 1 \leq i \leq n\right\}
$$

has a solution. On the other hand, if $j_{k} \leq j_{0}$, then obviously the above system has a solution by (1). Since $k$ is arbitrary, by Lemma 2.5, there exists a prime matrix $B_{0}$ with $\operatorname{det}\left(B_{0}\right)=p^{\alpha+1}$ such that $\langle A\rangle \subseteq\left\langle B_{0}\right\rangle$ and $j_{B_{0}}=J^{\prime}$. Thus the assertion is true for $\alpha+1$ and hence by induction for every $\alpha, 1 \leq \alpha \leq n$.
Proposition 2.8. Suppose $R$ is a valuation domain with principal maximal ideal $m=\langle p\rangle$ and $n$ a positive integer. Let $A \in M_{n \times n}(R)$ and $1 \leq \alpha \leq n$, be the greatest integer such that $p^{\alpha} \mid \operatorname{det}(A)$ and $p^{\alpha-1}$ divides all entries of $A^{\prime}$. Then $p$ divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of A.

Proof. By [2, Lemma 4.4], there exist a diagonal matrix $C=\left(c_{i j}\right)$ and invertible matrices $D, E \in M_{n \times n}(R)$ such that $A E=D C$, so that $E^{\prime} A^{\prime}=C^{\prime} D^{\prime}$. By hypothesis $p^{\alpha-1}$ divides all entries of $A^{\prime}$ and hence those of $C^{\prime} D^{\prime}$. Let $C^{\prime}=$
$\left(c_{i j}^{\prime}\right)$. If $p^{2} \mid c_{j j}$ for some $j, 1 \leq j \leq n$, then $p^{\alpha-1} \nmid c_{j j}^{\prime}$. Hence $p$ divides all entries of row $j$ of $D^{\prime}$. Thus $p \mid \operatorname{det}\left(D^{\prime}\right)$, which contradicts the fact that $D$ is invertible. Since $p^{\alpha} \mid \operatorname{det}(C), p$ divides at least $\alpha$ entries of the diagonal of $C$, therefore we conclude that $p$ divides all the entries of at least one column of every $(n-\alpha+1) \times(n-\alpha+1)$ submatrix of $D C$. Thus $p$ divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrix of $D C$ and by the Binet-Cauchy formula it is easy to see that $p$ divides the determinants of all $(n-\alpha+1) \times(n-\alpha+1)$ submatrices of $A=(D C) E^{-1}$.

Theorem 2.9. Suppose $R$ is a valuation domain with maximal ideal $m$ and $F=R^{(n)}(n \geq 2)$. Let $N$ be a finitely generated submodule of $F$ with at least $n$ generators. Then $N$ is a prime submodule of $F$ if and only if $m$ is a principal ideal of $R$ and $N$ is the row space of a prime matrix.

Proof. Let $N$ be a prime submodule of $F$. Then, by Corollary 2.3 and Theorem $2.4,(N: F)=m$ is a principal ideal of $R$ and there exist a matrix $A \in M_{n \times n}(R)$ and a positive integer $\alpha \leq n$ such that $N=\langle A\rangle,\langle\operatorname{det} A\rangle=m^{\alpha}$ and the ideal $J^{\prime}$ of $R$ generated by entries of $A^{\prime}$ is $m^{\alpha-1}$. Let $m=\langle p\rangle$ for some $p \in R$. So by Proposition 2.8 and Theorem 2.7, $N \subseteq\langle B\rangle$ for some prime matrix $B$ with $\operatorname{det}(B)=p^{\alpha}$. Thus $A=C B$ for some $C \in M_{n \times n}(R)$ and therefore $u p^{\alpha}=\operatorname{det}(A)=\operatorname{det}(C) \operatorname{det}(B)=\operatorname{det}(C) p^{\alpha}$. Thus $\operatorname{det}(C)=u$ and so $C$ is invertible. Hence $C^{-1} B=A$. It follows that $\langle B\rangle \subseteq N=\langle A\rangle$. Therefore $N=\langle B\rangle$. Conversely, by Theorem 2.4, the row space of every prime matrix is a prime submodule.

## 3. Prime submodules of $F=R^{(n)}$ with at most $n$-generators over a Prüfer domain $\boldsymbol{R}$

In this section we characterize the prime submodules of $F=R^{(n)}(n \geq 2)$ with at most $n$-generators over a Prüfer domain.
Theorem 3.1. Suppose $R$ is a Prüfer domain and $F=R^{(n)}(n \geq 2)$. Let $B=\left[X_{1} \cdots X_{m}\right]$ for some $X_{i} \in F(1 \leq i \leq m, m<n)$ and rank $B=m$. Then $N=\langle B\rangle$ is a prime submodule of $F$ if and only if the ideal $J$ generated by the determinants of all $m \times m$ submatrices of $B$ is $R$.
Proof. Let $N$ be a prime submodule of $F$. Then by [9, Proposition 1.2], ( $N$ : $F)=\langle 0\rangle$. Suppose that $J \neq R$ and $P$ is a prime ideal of $R$ with $J \subset P$. Then by [5, Lemma 2.2], $P \neq 0$ and $N_{P}$ is a prime submodule of $F_{P}$ with $\left(N_{P}: F_{P}\right)=\langle 0\rangle$. Since $R$ is a Prüfer domain, $R_{P}$ is a valuation domain [4, Theorem 4.22.1]. Therefore by Theorem 2.1, $R_{P}=J_{P}$. It follows that $1=\frac{r}{s} \frac{\operatorname{det} B\left(j_{1}, \ldots, j_{m}\right)}{1}$ for some $1 \leq j_{1}<\cdots<j_{m}<n, r \in R$ and $s \in R \backslash P$. So $s=r \operatorname{det} B\left(j_{1}, \ldots, j_{m}\right) \in J \subset P$, which is a contradiction. Therefore $J=R$. The converse follows from Proposition 1.2.
Theorem 3.2. Suppose $R$ is a Prüfer domain and $F=R^{(n)}$. Let $B \in$ $M_{n \times n}(R)$ and rank $B=n$. Then $N=\langle B\rangle$ is prime in $F$ if and only if
there exist a maximal ideal $P$ of $R$ and a positive integer $\alpha \leq n$ such that $\langle\operatorname{det} B\rangle=P^{\alpha}$ and the ideal $J^{\prime}$ of $R$ generated by entries of $B^{\prime}$ is $P^{\alpha-1}$, where $B^{\prime}$ is the adjoint matrix of $B$.
Proof. Let $N$ be a prime submodule of $F$. By Proposition 2.2, $P=(N: F)=$ $\sqrt{\langle\operatorname{det} B\rangle}$ is a finitely generated ideal of $R$ and so by [4, Theorem 4.23.3], is maximal. Since $R$ is a Prüfer domain, $R_{P}$ is a valuation domain. Since $N_{P}$ is a $P_{P}$-prime submodule of $F_{P}$, by Theorem 2.4, $\left\langle\frac{\operatorname{det} B}{1}\right\rangle_{P}=P_{P}^{\alpha}$ and $J_{P}^{\prime}=P_{P}^{\alpha-1}$ for some positive integer $\alpha \leq n$.

Let $\phi: R \rightarrow R_{P}$ be the natural homomorphism. Since $\langle\operatorname{det} B\rangle$ is $P$-primary, $\varphi^{-1}\left(\left\langle\frac{\operatorname{det} B}{1}\right\rangle_{P}\right)=\langle\operatorname{det} B\rangle$. So $\langle\operatorname{det} B\rangle=P^{\alpha}$. Now let $r \in \varphi^{-1}\left(J_{P}^{\prime}\right)$. Then $\frac{r}{1} \in J_{P}^{\prime}$ and hence $s r \in J^{\prime}$ for some $s \in R-P$. Since $P$ is a maximal ideal of $R, 1=s x+y^{\alpha}$ for some $x \in R$ and $y \in P$. So $r=s x r+y^{\alpha} r \in J^{\prime}$. Therefore $\varphi^{-1}\left(J_{P}^{\prime}\right)=J^{\prime}$. Thus $J^{\prime}=P^{\alpha-1}$.

## References

[1] M. Behboodi and M. Sabsevari, Modules satisfying the prime and maximal radical conditions, J. Commut. Algebra 6 (2014), no. 4, 505-524.
[2] I. Chiswell, Introduction to $\Lambda$-trees, World Scientific, 2001.
[3] M. Fontana, J. Huckaba, and I. Papick, Prüfer Domain, CRC Press, 1996.
[4] R. Gilmer, Multiplicative Ideal Theory, Vol. 90, Queen's University, 1992.
[5] S. Hedayat and R. Nekooei, Characterization of prime submodules of a finitely generated free module over a PID, Houston J. Math. 31 (2005), no. 1, 75-85.
[6] P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, Second edition, Academic press, San Diego, New York, 1985.
[7] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Paul. 33 (1984), no. 1, 61-69.
[8] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), no. 6, 1803-1817.
[9] F. Mirzaei and R. Nekooei, On prime submodules of a free module of finite rank over a commutative ring, Comm. Algebra, to appear.
[10] Y. Tiras, A. Harmanci, and P. F. Smith, A characterization of prime submodules, J. Algebra 212 (1999), no. 2, 743-752.

Fatemeh Mirzaei
Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran
E-mail address: mirzaee0269@yahoo.com
Reza Nekooei
Department of Pure Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman
Kerman, Iran
E-mail address: rnekooei@uk.ac.ir


[^0]:    Received October 1, 2015.
    2010 Mathematics Subject Classification. 13F05, 13C99.
    Key words and phrases. Dedekind domains, Prüfer domains, prime submodules.

