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CHARACTERIZATION OF PRIME SUBMODULES OF

A FREE MODULE OF FINITE RANK OVER

A VALUATION DOMAIN

Fatemeh Mirzaei and Reza Nekooei

Abstract. Let F = R(n) be a free R-module of finite rank n ≥ 2. In
this paper, we characterize the prime submodules of F with at most n

generators when R is a Prüfer domain. We also introduce the notion
of prime matrix and we show that when R is a valuation domain, every
finitely generated prime submodule of F with at least n generators is the
row space of a prime matrix.

0. Introduction

Prime submodules of a module over a commutative ring have been studied
in [1, 7, 8, 9, 10] and prime submodules of a finitely generated free module
over a PID have been studied in [5]. The authors in [5], have described prime
submodules of a free module of finite rank n (n ≥ 2) and with at most n

generators over a UFD. They have characterized the prime submodules of a
free module of finite rank over a PID. In [9] we have extended some results
obtained in [4] to a Dedekind domain. In this paper we extend these results
to a Prüfer domain. Moreover, we define the notion of prime matrix and show
that when R is a valuation domain, every finitely generated prime submodule
of a free R-module of finite rank n (n ≥ 2), with at least n generators is the
row space of a prime matrix.

Throughout this paper all rings are assumed to be commutative with identity
and F denotes a free R-module of finite rank n (n ≥ 2). We use the notation
R(n) for R⊕ · · · ⊕R

︸ ︷︷ ︸

n-times

. Let M be a unitary R-module. A proper submodule N

of M is called P -prime if rm ∈ N for some r ∈ R and m ∈ M implies m ∈ N

or r ∈ P = (N : M), where (N : M) = {r ∈ R | rM ⊆ N}.
Let R be a commutative domain and K be the quotient field of R. Then R is

a valuation domain if for every x ∈ K, either x ∈ R or x−1 ∈ R. Equivalently,
the set of all ideals of R is totally ordered by inclusion. Let R be a commutative
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domain and I be an ideal of R. Let I−1 = (R :K I) = {r ∈ K | rI ⊆ R}. Then
I is invertible if II−1 = R. An integral domain R is a Prüfer domain if each
non-zero finitely generated ideal of R is invertible. It can be shown that an
integral domain R is a Prüfer domain if and only if RP is a valuation domain
for every maximal ideal P of R (see [4]).

1. Prime submodules of F = R
(n)

Let Xi = (xi1, . . . , xin) ∈ F = R(n) for some xij ∈ R, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
We put

Bm×n = [X1 . . . Xm] =











x11 x12 . . . x1n

x21 x22 . . . x2n

. . .

xm1 xm2 . . . xmn











∈ Mm×n(R).

Thus the jth row of the matrix [X1 . . .Xm] consists of the components of Xj

in F . We use N = 〈B〉 to denote a non-zero submodule of F generated by
the rows of B. Also B(j1, . . . , jk) ∈ Mm×k(R) will denote a submatrix of B
consisting of the columns j1, . . . , jk ∈ {1, . . . , n} of B.

Lemma 1.1. Let R be a domain. Let B ∈ Mn×n(R), detB 6= 0 and B′ = (b′ij)
be the adjoint matrix of B. Then (x1, . . . , xn) ∈ 〈B〉 for some xi ∈ R (1 ≤ i ≤
n) if and only if

∑n
i=1 xib

′
ij ∈ 〈detB〉 for every j, 1 ≤ j ≤ n.

Proof.

(x1, . . . , xn) ∈ 〈B〉 ⇐⇒ (x1, . . . , xn) = (r1, . . . , rn)B; ∃ri ∈ R

⇐⇒ (x1, . . . , xn)B
′ = (r1, . . . , rn)(detB)In

⇐⇒

n
∑

i=1

xib
′
ij = (detB)rj ; ∀j(j = 1, . . . , n)

⇐⇒
n
∑

i=1

xib
′
ij ∈ 〈detB〉; ∀j(j = 1, . . . , n).

�

Proposition 1.2. Let R be an integral domain and F = R(n) (n ≥ 2). Let

B = [X1 . . .Xm] for some Xi ∈ F (1 ≤ i ≤ m,m < n) and rank B = m. If the

ideal J of R generated by determinants of all m × m submatrices of B is R,

then N = 〈B〉 is a prime submodule of F .

Proof. Assume that J = R. It follows that

1 =
∑

i1,...,im∈{1,...,n}

ri1...im detB(i1, . . . , im)

for some ri1,...,im ∈ R and 1 ≤ ij ≤ n, 1 ≤ j ≤ m. Put

M = {X ∈ F | detβ(i1, . . . , im+1) = 0 for every i1, . . . , im+1 ∈ {1, . . . , n}}
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where β = [XX1 · · ·Xm]. Since Xi ∈ M (1 ≤ i ≤ m), then N ⊆ M . Now
suppose that X ∈ M . Then by [9, Lemma 1.5], we have (detB(i1, . . . , im))X ∈
N for every i1, . . . , im ∈ {1, . . . , n}. So

X =
∑

i1,...,im∈{1,...,n}

(ri1···im detB(i1, . . . , im))X ∈ N.

Thus N = M and N is a prime submodule of F [9, Corollary 1.9]. �

Proposition 1.3. Suppose R is a domain and F = R(n) (n ≥ 2). Let B ∈
Mn×n(R) and rank B = n. If there exist a maximal ideal P of R and a positive

integer α such that 〈detB〉 = Pα and the ideal J ′ of R generated by entries

of B′ is Pα−1, where B′ is the adjoint matrix of B, then N = 〈B〉 is a prime

submodule of F .

Proof. Suppose there exist a maximal ideal P of R and a positive integer α such
that 〈detB〉 = Pα and J ′ = Pα−1. Let B′ = (b′ij) and r(x1, . . . , xn) ∈ N for

some r, xi ∈ R (1 ≤ i ≤ n). Thus by Lemma 1.1, r
∑n

i=1 xib
′
ij ∈ 〈detB〉, 1 ≤

j ≤ n. If
∑n

i=1 xib
′
ij ∈ 〈detB〉 for every 1 ≤ j ≤ n, then by Lemma 1.1,

(x1, . . . , xn) ∈ N . Now let
∑n

i=1 xib
′
ij 6∈ 〈detB〉 for some 1 ≤ j ≤ n. Since

〈detB〉 is P -primary, r ∈ P . But b′ij ∈ Pα−1, 1 ≤ i, j ≤ n. So rb′ij ∈ 〈detB〉,
1 ≤ i, j ≤ n. It follows that (0, . . . , 0, r, 0, . . . , 0) ∈ N , with r as the ith
component (1 ≤ i ≤ n). Thus rF ⊆ N and so N is a prime submodule of
F . �

2. Characterization of finitely generated prime submodules of

F = R
(n) over a valuation domain R

In this section we characterize the finitely generated prime submodules of
F = R(n) (n ≥ 2), when R is a valuation domain.

Theorem 2.1. Let R be a valuation domain and F = R(n) (n ≥ 2). Let

B = [X1 · · ·Xm] ∈ Mm×n(R) for some Xi ∈ F (1 ≤ i ≤ m,m < n) and

rank B = m. Then N = 〈B〉 is a prime submodule of F if and only if the

determinant of one of the m×m submatrices of B is a unit.

Proof. Let N be a prime submodule of F and J be the ideal of R generated by
determinants of all m ×m submatrices of B. Since R is a valuation domain,
there exists a m × m submatrix A = B(j1, . . . , jm) of B for some j1 < j2 <

· · · < jm of {1, . . . , n} such that J = 〈detA〉.
By [5, Lemma 2.2], detA 6= 0. Let A′ = (a′ij) be the adjoint matrix of

A. For the moment, fix 1 ≤ i ≤ m. Consider the element (x1, . . . , xn) =
(a′i1, . . . , a

′
im)B ∈ N . Since A′A = (detA)Im, then xji = detA and xjk =

0 (1 ≤ k ≤ m, k 6= i). Also, if Cj = B(j1, . . . , ji−1, j, ji+1, . . . , jm), then
xj = ± detCj and so xj ∈ 〈detA〉 for all j ∈ {1, . . . , n}\{j1, . . . , jm}. Hence
(

x1

detA , . . . , xn

detA

)

∈ F . Note that detA
(

x1

detA , . . . , xn

detA

)

∈ N . Since N is

prime, (detA)F ⊆ N or
(

x1

detA , . . . , xn

detA

)

∈ N . If (detA)F ⊆ N , then for
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j0 ∈ {1, . . . , n}\{j1, . . . , jm}, we have (0, . . . , 0, detA, 0, . . . , 0) ∈ N with detA
as the j0th component. Hence there are rj ∈ R (1 ≤ j ≤ m) such that
(0, . . . , 0, detA, 0, . . . , 0) = (r1, . . . , rm)A.

It follows that rj detA = 0(1 ≤ j ≤ m) and hence rj = 0(1 ≤ j ≤ m).
Thus detA = 0, which is a contradiction. So

(

x1

detA , . . . , xn

detA

)

∈ N , i.e., there

are sj ∈ R (1 ≤ j ≤ m) such that
(

x1

detA , . . . , xn

detA

)

= (s1, . . . , sm)B. We
conclude that (a′i1, . . . , a

′
im)B = (x1, . . . , xn) = (detA)(s1, . . . , sm)B, so that

(a′i1, . . . , a
′
im)A = (detA)(s1, . . . , sm)A. Thus a′ij detA = sj(detA)

2 and hence
a′ij = sj detA (1 ≤ j ≤ m). Thus detA′ = (detA)ms for some 0 6= s ∈ R.

But detA′ = (detA)m−1. It follows that detA is a unit. Conversely, let the
determinant of one of the m ×m submatrices of B be a unit. Then the ideal
J of R generated by determinants of all m×m submatrices of B is R. So, by
Proposition 1.2, N is prime. �

Proposition 2.2. Let R be a Prüfer domain and F = R(n) (n ≥ 2). Let l ≥ n

be a positive integer and Ψ ⊆ F be a finite subset of F with |Ψ| = l. If N = 〈Ψ〉
is a prime submodule of F , then P = (N : F ) is a finitely generated ideal of R.

Proof. For N = P (n), the assertion is clear. Now suppose that N 6= P (n).
Then by [9, Theorem 1.6], there exist a positive integer k < n and a matrix
B = [X1 . . .Xk] ∈ Mk×n(R), Xi ∈ Ψ, 1 ≤ i ≤ k such that determinant of one
of its k × k submatrices is not in P .

Without loss of generality, we can assume that d = detB(1, . . . , k) 6∈ P . Put

N = {X ∈ F | detβ(i1, . . . , ik+1) ∈ P for every i1, . . . , ik+1 ∈ {1, . . . , n}} ,

where β = [XX1 . . .Xk]. By [9, Lemma 1.5], dXt =
∑k

i=1 rtiXi + Yt for some

rti ∈ R (k + 1 ≤ t ≤ l, 1 ≤ i ≤ k) and Yt = (0, . . . , 0, ytk+1, . . . , ytn) ∈ P (n).
Let M be the submodule of F generated by the set {Xi, Yj ; 1 ≤ i ≤

k, k + 1 ≤ j ≤ l}. Then dN ⊆ M . Now fix p ∈ P . Then d(0, . . . , p) =
∑k

i=1 riXi +
∑l

j=k+1 ljYj for some ri, lj ∈ R (1 ≤ i ≤ k, k + 1 ≤ j ≤ l).

Thus (r1, . . . , rk)B(1, . . . , k) = (0, . . . , 0). It follows that ri detB(1, . . . , k) = 0
and hence ri = 0 (1 ≤ i ≤ k). Let I be the ideal of R generated by the set
{yin ∈ P, k + 1 ≤ i ≤ l}. Then dP ⊆ I. Since RP is a valuation domain,
PRP = IRP = 〈ytn

1 〉P for some k + 1 ≤ t ≤ l. So siyin ∈ 〈ytn〉 for some

si ∈ R − P , k + 1 ≤ i ≤ l. Let s =
∏l

i=k+1 si, then sdP ⊆ sI ⊆ 〈ytn〉. Thus
sd
ytn

∈ (R :K P ). If P is not finitely generated, it is not an invertible ideal

and so by [3, Corollary 3.1.8], (R :K P ) = (P :K P ). Hence sd
ytn

∈ (P :K P ).

It follows that sdP ⊆ P 2. Now, since R is a Prüfer domain, by [4, Theorem
4.23.3], P = P [P + 〈sd〉]. It follows that P = P 2 and hence PRP = P 2RP ,
which is a contradiction. Thus P is finitely generated and by [4, Proposition
4.23.3], it is maximal. �

Corollary 2.3. Suppose R is a valuation domain and F = R(n) (n ≥ 2). Let

l ≥ n be a positive integer and Ψ ⊆ F a finite subset of F with |Ψ| = l. If
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N = 〈Ψ〉 is a prime submodule of F then P = (N : F ) is a finitely generated

ideal of R and N = 〈B〉 for some matrix B ∈ Mn×n(R).

Proof. By Proposition 2.2, P is a finitely generated ideal of R. Since R is a
valuation domain, P = 〈p〉 for some p ∈ R. If N = P (n), then N = 〈B〉, where
B = pIn. Now let P (n) ⊂ N . Then by the proof of Proposition 2.2, there exist a
positive integer k < n and Xi ∈ Ψ(1 ≤ i ≤ k), Yt = (0, . . . , 0, ytk+1, . . . , ytn) ∈
P (n)(k + 1 ≤ t ≤ l), such that N = 〈{Xi, Yt | 1 ≤ i ≤ k, k + 1 ≤ t ≤ l}〉.
Let Xi = (0, . . . , p, . . . , 0) with p as ith component, k + 1 ≤ i ≤ n. We show
that the submodule M1 of F generated by {Yt | k + 1 ≤ t ≤ l} is equal to
the submodule M2 of F generated by {Xi | k + 1 ≤ i ≤ n}. Since Yt ∈ M2,
k + 1 ≤ t ≤ n, hence M1 ⊆ M2. Now since Xi ∈ N , k + 1 ≤ i ≤ n, we have

Xi =
∑k

j=1 rijXj +
∑l

t=k+1 litYt for some rij , lit ∈ R, 1 ≤ j ≤ k, k+1 ≤ t ≤ l,
k + 1 ≤ i ≤ n. By an argument similar to that in the proof of Proposition 2.2,
rij = 0, 1 ≤ j ≤ k, k + 1 ≤ i ≤ n. So Xi ∈ M1, k + 1 ≤ i ≤ n and M2 ⊆ M1.
Now let B = [X1 . . .Xn], then N = 〈B〉. �

Theorem 2.4. Suppose R is a valuation domain with maximal ideal m and

F = R(n) (n ≥ 2). Let l ≥ n be a positive integer and Ψ ⊆ F a finite subset

of F with | Ψ |= l. Let N = 〈Ψ〉. Then N is a prime submodule of F if and

only if there exist a matrix B ∈ Mn×n(R) and a positive integer α ≤ n such

that N = 〈B〉, mα = 〈detB〉 and the ideal J ′ of R generated by entries of B′

is mα−1, where B′ is the adjoint matrix of B.

Proof. Let N = 〈Ψ〉 be a prime submodule of F . By Corollary 2.3, N = 〈B〉
for some matrix B ∈ Mn×n(R) and (N : F ) is a finitely generated ideal of
R. By [4, Theorem 4.23.3], m = (N : F ) is principal. Assume that m = 〈p〉
for some p ∈ R. By [9, Lemma 1.1], 〈detB〉 ⊆ m. If 〈detB〉 ⊆ mk for every
positive integer k ≥ 1, then 〈detB〉 ⊆

⋂∞
k=1 m

k. So by [4, Theorem 3.17.1] and

[9, Corollary 1.3], m =
⋂∞

k=1 m
k. Hence m2 = m, which is a contradiction.

Thus there exist a positive integer α and a unit u ∈ R such that detB = upα.
So 〈detB〉 = mα. Now since p ∈ (N : F ), by Lemma 1.1, pb′ij ∈ 〈pα〉 and hence

b′ij ∈ 〈pα−1〉 for every 1 ≤ i, j ≤ n. Thus detB′ = (detB)n−1 ∈ 〈pn(α−1)〉.

Therefore (upα)n−1 = spn(α−1) for some s ∈ R. Since p is not a unit, n(α−1) ≤
α(n− 1) and so α ≤ n. Let J ′ be the ideal of R generated by the entries of B′.
Then J ′ = 〈b′ij〉 for some 1 ≤ i, j ≤ n. Since 〈pα〉 ⊆ 〈b′ij〉 ⊆ 〈pα−1〉, hence J ′

is m-primary and since m 6= m2, then J ′ = mt for t = α or α− 1 [4, Theorem
3.17.3]. If J ′ = mα, then detB′ = (detB)n−1 ∈ 〈pαn〉. Hence p is a unit,
which is a contradiction. So J ′ = mα−1. �

In the following we assume that (R,m) is a valuation domain with principal
maximal idealm. We introduce the notion of prime matrix and show that every
finitely generated prime submodule of R(n) (n ≥ 2), with at least n generators
is the row space of a prime matrix. Note that, R is not necessarily a PID.
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Example. Take Z ⊕ Z = Z(2) with lexicographic order. Let K be a field
and define the valuation v : K[x, y] → Z(2) with v(x) = (1, 0) ≤ v(y) = (0, 1)
and take the value of a polynomial as the minimal value among those of its
monomials. Then by [4, Proposition 3.18.1], v′ : K(x, y) → Z(2) with v′( f

g
) =

v(f)− v(g); f, g ∈ K[x, y] is a valuation on K(x, y). In this case, the maximal
ideal consists of all the elements whose valuations are strictly greater than
(0, 0). But the valuation of any such element is at least (0, 1) and therefore any
element of value (0, 1) gives a generator of the maximal ideal. Also, since the
value group is Z(2), the valuation ring is not a DVR.

Definition. Suppose R is a valuation domain with principal maximal ideal m
and m = 〈p〉 for some p ∈ R. Let J = {j1, . . . , jα} be a subset of {1, . . . , n}. A
matrix B = (bij) ∈ Mn×n(R) is said to be a p-prime matrix if it satisfies the
following conditions:

i) B is upper triangular.
ii) For all i, 1 ≤ i ≤ n, aii = p, if i ∈ J and aii = 1, if i 6∈ J .
iii) For all i, j ∈ {1, . . . , n}, aij = 0 except possibly when i 6∈ J and j ∈ J .
Sometimes we call J the set of integers associated with B and denote it by

JB. By (i) and (ii), it is clear that det(B) = pα.

Lemma 2.5. Suppose R is a valuation domain with principal maximal ideal

m = 〈p〉 and ri ∈ R, 1 ≤ i ≤ n. Let J = {j1, . . . , jα} be a subset of {1, . . . , n}
and Jk = {0, 1, . . . , jk} − J , 1 ≤ k ≤ α. Then (r1, . . . , rn) ∈ 〈B〉 for some p-

prime matrix B ∈ Mn×n(R) with JB = J if and only if for every k, 1 ≤ k ≤ α

the equation
∑

j∈Jk

rjxj ≡ rjk(mod p) has a solution.

Proof. Let B = (bij) be a p-prime matrix with JB = {j1, . . . , jα} and let
B′ = (b′ij). For all 1 ≤ i, j ≤ n, it is easy to see that b′ii = pα−1 if i ∈ JB ,

b′ii = pα if i 6∈ JB and b′ij = −pα−1bij if i 6= j. Hence by Lemma 1.1,

(r1, . . . , rn) ∈ 〈B〉 ⇐⇒ pα|

n
∑

j=1

rjb
′
jℓ, 1 ≤ ℓ ≤ n

⇐⇒ pα|

ℓ−1
∑

j=0

rj(−pα−1bjℓ) + pα−1rℓ for every ℓ ∈ JB

⇐⇒ p|
∑

j∈Jk

−rjbjjk + rjk , 1 ≤ k ≤ α

⇐⇒
∑

j∈Jk

rjbjjk ≡ rjk(mod p) for every k, 1 ≤ k ≤ α.
�

Lemma 2.6. Suppose R is a valuation domain with principal maximal ideal

m = 〈p〉 and s and n are positive integers such that s < n. Also, sup-

pose that A ∈ Mn×s(R), Y ∈ Mn×1(R) and X = (x1, . . . , xs) ∈ R(s). Let

C ∈ Mn×(s+1)(R) be the augmented matrix [A : Y ]. If p does not divide the

determinant of at least one s× s submatrix of A, then the system of equations



CHARACTERIZATION OF PRIME SUBMODULES 65

AX ≡ Y (mod p) has a solution if and only if p divides the determinants of all

(s+ 1)× (s+ 1) submatrices of C.

Proof. Suppose AX ≡ Y (mod p) has a solution and C0 is an (s+1)× (s+ 1)
submatrix of C. If Y0 is the last column of C0 and A0 consists of all columns of
C0 except for Y0, then A0X ≡ Y0 (mod p). So that C′

0A0X ≡ C′
0Y0 (mod p).

The last equation of this system is 0 ≡ det(C0) (mod p). Hence p | det(C0).
Conversely, let X1, . . . , Xs ∈ Mn×1(R) be the columns of A. Then At =
[Xt

1 . . . X
t
s] ∈ Ms×n(R) and Ct = [Xt

1 . . . X
t
sY

t] ∈ M(s+1)×n(R). Now let p ∤
det(At(i1, . . . , is)). Then by [9, Lemma 1.5(ii)], det(At(i1, . . . , is))Y

t ∈ 〈p〉F +
〈At〉. Since det(At(i1, . . . , is)) is unit, Y t ∈ 〈p〉F + 〈At〉 and so the system of
equations AX ≡ Y (mod p) has a solution. �

Theorem 2.7. Suppose R is a valuation domain with principal maximal ideal

m = 〈p〉. Let s, n and α be positive integers such that s ≤ n and 1 ≤ α ≤ n and

A ∈ Ms×n(R). Then 〈A〉 ⊆ 〈B〉 for some p-prime matrix B ∈ Mn×n(R) with

det(B) = pα if and only if p divides the determinants of all (n−α+1)×(n−α+1)
submatrices of A.

Proof. Let 〈A〉 ⊆ 〈B〉 for some p-prime matrix B with det(B) = pα. So there
exists C ∈ Ms×n(R) such that A = CB. Let A0 be an (n−α+1)× (n−α+1)
submatrix of A. Thus there exists an (n− α + 1)× n submatrix C0 of C and
an n× (n−α+ 1) submatrix B0 of B such that A0 = C0B0. Suppose that B1

is an (n − α+ 1)× (n − α+ 1) submatrix consisting of rows i1, . . . , in−α+1 of
B0. Since JB has α elements, ik ∈ JB for some k, 1 ≤ k ≤ n− α+ 1.

It follows that the entries of the row ik of B0 are 0 or p. Thus p| det(B1). By
the Binet-Cauchy formula [6, Theorem 1], det(A) may be expressed as a linear
combination of the determinants of all (n − α + 1) × (n − α + 1) submatrices
of B0, hence p | det(A0). Conversely, assume that p divides the determinants
of all (n − α + 1) × (n − α + 1) submatrices of A. By adding some zero rows
to A if necessary, we may suppose that A ∈ Mn×n(R). We use induction on α.
By assumption for α = 1, p | det(A). Let k be the smallest integer such that p
divides the determinants of all k× k submatrices of Ak, where Ak ∈ Mn×k(R)
consists of the first columns of A. If A = (aij) then by Lemma 2.6, the system
of equations







k−1
∑

j=0

aijxj ≡ aik (mod p) | 1 ≤ i ≤ n







has a solution. Therefore by Lemma 2.5, there exists a prime matrix B with
JB = {k} such that 〈A〉 ⊆ 〈B〉. Now suppose that the assertion is true for some
α, 1 ≤ α ≤ n−1. Assume that p divides the determinants of all (n−α)×(n−α)
submatrices of A = (aij). Hence p divides the determinants of all (n − α +
1) × (n − α + 1) submatrices of A. Therefore by the induction hypothesis,
there exists a prime matrix B with det(B) = pα such that 〈A〉 ⊆ 〈B〉. Let
JB = {j1, . . . , jα} and Jk = {0, 1, . . . , jk} − JB, 1 ≤ k ≤ α. Fix k for the



66 F. MIRZAEI AND R. NEKOOEI

moment. By Lemma 2.5, the system of equations






∑

j∈Jk

aijxj ≡ aijk (mod p) | 1 ≤ i ≤ n







has a solution, say xj = rj for some rj ∈ R, j ∈ Jk. Thus we have

(1)
∑

j∈Jk

aijrj ≡ aijk (mod p) ∀i, 1 ≤ i ≤ n.

Let A0 be the n × (n − α) submatrix obtained by deleting columns j1, . . . , jα
from A. Let ℓ be the smallest integer such that p divides the determinants
of all ℓ × ℓ submatrices of Aℓ ∈ Mn×ℓ(R) consisting of the first ℓ columns of
A0. Assume that j0 is the integer such that column ℓ of A0 is column j0 of A.
Clearly j0 6∈ JB . Let J0 = {0, . . . , j0 − 1} − JB. By Lemma 2.6, the system of
equations







∑

j∈J0

aijxj ≡ aij0 (mod p) | 1 ≤ i ≤ n







has a solution, say xj = sj for some sj ∈ R, j ∈ J0. Therefore we have

(2)
∑

j∈J0

aijsj ≡ aij0 (mod p) ∀i, 1 ≤ i ≤ n.

Put J ′ = {j1, . . . , jα, j0} and let J ′
k = {0, 1, . . . , jk} − J ′. If jk > j0, then

combining (1) and (2) yields

aijk ≡
∑

j∈J′

k

aijrj + (
∑

j∈J0

aijsj)rj0 (mod p),

for every i, 1 ≤ i ≤ n. Hence the system of equations






∑

j∈J′

k

aijxj ≡ aijk (mod p) | 1 ≤ i ≤ n







has a solution. On the other hand, if jk ≤ j0, then obviously the above system
has a solution by (1). Since k is arbitrary, by Lemma 2.5, there exists a prime
matrix B0 with det(B0) = pα+1 such that 〈A〉 ⊆ 〈B0〉 and jB0

= J ′. Thus the
assertion is true for α+ 1 and hence by induction for every α, 1 ≤ α ≤ n. �

Proposition 2.8. Suppose R is a valuation domain with principal maximal

ideal m = 〈p〉 and n a positive integer. Let A ∈ Mn×n(R) and 1 ≤ α ≤ n,

be the greatest integer such that pα| det(A) and pα−1 divides all entries of A′.

Then p divides the determinants of all (n−α+1)× (n−α+1) submatrices of

A.

Proof. By [2, Lemma 4.4], there exist a diagonal matrix C = (cij) and invertible
matrices D,E ∈ Mn×n(R) such that AE = DC, so that E′A′ = C′D′. By
hypothesis pα−1 divides all entries of A′ and hence those of C′D′. Let C′ =
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(c′ij). If p2 | cjj for some j, 1 ≤ j ≤ n, then pα−1 ∤ c′jj . Hence p divides all
entries of row j of D′. Thus p | det(D′), which contradicts the fact that D is
invertible. Since pα | det(C), p divides at least α entries of the diagonal of C,
therefore we conclude that p divides all the entries of at least one column of
every (n−α+1)×(n−α+1) submatrix ofDC. Thus p divides the determinants
of all (n−α+1)×(n−α+1) submatrix of DC and by the Binet-Cauchy formula
it is easy to see that p divides the determinants of all (n−α+1)× (n−α+1)
submatrices of A = (DC)E−1. �

Theorem 2.9. Suppose R is a valuation domain with maximal ideal m and

F = R(n) (n ≥ 2). Let N be a finitely generated submodule of F with at least n

generators. Then N is a prime submodule of F if and only if m is a principal

ideal of R and N is the row space of a prime matrix.

Proof. Let N be a prime submodule of F . Then, by Corollary 2.3 and Theorem
2.4, (N : F ) = m is a principal ideal ofR and there exist a matrixA ∈ Mn×n(R)
and a positive integer α ≤ n such that N = 〈A〉, 〈detA〉 = mα and the ideal
J ′ of R generated by entries of A′ is mα−1. Let m = 〈p〉 for some p ∈ R.
So by Proposition 2.8 and Theorem 2.7, N ⊆ 〈B〉 for some prime matrix B

with det(B) = pα. Thus A = CB for some C ∈ Mn×n(R) and therefore
upα = det(A) = det(C) det(B) = det(C)pα. Thus det(C) = u and so C is
invertible. Hence C−1B = A. It follows that 〈B〉 ⊆ N = 〈A〉. Therefore
N = 〈B〉. Conversely, by Theorem 2.4, the row space of every prime matrix is
a prime submodule. �

3. Prime submodules of F = R
(n) with at most n-generators over a

Prüfer domain R

In this section we characterize the prime submodules of F = R(n) (n ≥ 2)
with at most n-generators over a Prüfer domain.

Theorem 3.1. Suppose R is a Prüfer domain and F = R(n) (n ≥ 2). Let

B = [X1 · · ·Xm] for some Xi ∈ F (1 ≤ i ≤ m,m < n) and rank B = m. Then

N = 〈B〉 is a prime submodule of F if and only if the ideal J generated by the

determinants of all m×m submatrices of B is R.

Proof. Let N be a prime submodule of F . Then by [9, Proposition 1.2], (N :
F ) = 〈0〉. Suppose that J 6= R and P is a prime ideal of R with J ⊂ P .
Then by [5, Lemma 2.2], P 6= 0 and NP is a prime submodule of FP with
(NP : FP ) = 〈0〉. Since R is a Prüfer domain, RP is a valuation domain
[4, Theorem 4.22.1]. Therefore by Theorem 2.1, RP = JP . It follows that

1 = r
s

detB(j1,...,jm)
1 for some 1 ≤ j1 < · · · < jm < n, r ∈ R and s ∈ R\P . So

s = r detB(j1, . . . , jm) ∈ J ⊂ P , which is a contradiction. Therefore J = R.
The converse follows from Proposition 1.2. �

Theorem 3.2. Suppose R is a Prüfer domain and F = R(n). Let B ∈
Mn×n(R) and rank B = n. Then N = 〈B〉 is prime in F if and only if
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there exist a maximal ideal P of R and a positive integer α ≤ n such that

〈detB〉 = Pα and the ideal J ′ of R generated by entries of B′ is Pα−1, where

B′ is the adjoint matrix of B.

Proof. Let N be a prime submodule of F . By Proposition 2.2, P = (N : F ) =
√

〈detB〉 is a finitely generated ideal of R and so by [4, Theorem 4.23.3], is
maximal. Since R is a Prüfer domain, RP is a valuation domain. Since NP is
a PP -prime submodule of FP , by Theorem 2.4, 〈detB1 〉P = Pα

P and J ′
P = Pα−1

P

for some positive integer α ≤ n.
Let φ : R → RP be the natural homomorphism. Since 〈detB〉 is P -primary,

ϕ−1(〈detB1 〉P ) = 〈detB〉. So 〈detB〉 = Pα. Now let r ∈ ϕ−1(J ′
P ). Then

r
1 ∈ J ′

P and hence sr ∈ J ′ for some s ∈ R − P . Since P is a maximal ideal of
R, 1 = sx+ yα for some x ∈ R and y ∈ P . So r = sxr + yαr ∈ J ′. Therefore
ϕ−1(J ′

P ) = J ′. Thus J ′ = Pα−1. �
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